
This paper is a post-print paper accepted in “IEEE International Conference on Software

Quality, Reliability and Security (QRS), 2017“

The final version of this paper is available through IEEE Xplore in the next link:

http://ieeexplore.ieee.org/document/8009910/

J. Morán, A. Bertolino, C. de la Riva and J. Tuya, "Towards Ex Vivo Testing of MapReduce

Applications," 2017 IEEE International Conference on Software Quality, Reliability and Security

(QRS), Prague, 2017, pp. 73-80. doi: 10.1109/QRS.2017.17

IEEE copyright notice. © 2017 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of

any copyrighted component of this work in other works

Towards Ex Vivo testing of MapReduce applications

Jesús Morán

Department of Computing

University of Oviedo

Gijón, Spain

moranjesus@uniovi.es

Antonia Bertolino

ISTI-CNR

Consiglio Nazionale delle Ricerche

Pisa, Italy

antonia.bertolino@isti.cnr.it

Claudio de la Riva, Javier Tuya

Department of Computing

University of Oviedo

Gijón, Spain

{claudio, tuya}@uniovi.es

Abstract—Big Data programs are those that process large

data exceeding the capabilities of traditional technologies. Among

newly proposed processing models, MapReduce stands out as it

allows the analysis of schema-less data in large distributed

environments with frequent infrastructure failures. Functional

faults in MapReduce are hard to detect in a

testing/preproduction environment due to its distributed

characteristics. We propose an automatic test framework

implementing a novel testing approach called Ex Vivo. The

framework employs data from production but executes the tests

in a laboratory to avoid side-effects on the application. Faults are

detected automatically without human intervention by checking

if the same data would generate different outputs with different

infrastructure configurations. The framework (MrExist) is

validated with a real-world program. MrExist can identify a fault

in a few seconds, then the program can be stopped, not only

avoiding an incorrect output, but also saving money, time and

energy of production resources.

Keywords—software testing; automatic testing; ex vivo testing;

metamorphic testing; Big Data; Hadoop; MapReduce

I. INTRODUCTION

The Big Data field involves the recent trends in data
analysis that go beyond the capabilities of the traditional
technology [1]. Although these programs are considered
critical for several Fortune 1000 enterprises [2], there are
several challenges and concerns: poor data quality [3], [4], lack
of technological skills [5], [6], and different technological
issues such as, among others, complexity [7], maturity [8],
operability [9] and technical problems [3]. Some of the
previously stated problems complicate the construction of the
projects and could lead to failures. Gartner forecasts that in
2017 60% of the Big Data projects fail to go beyond piloting
and will be abandoned [10].

The MapReduce processing model [11] stands out among
Big Data projects, as it allows the analysis of large datasets in a
distributed architecture. MapReduce programs are broadly used
[12], and are supported by several frameworks such as Hadoop
[13], Flink [14] and Spark [15], among others. These
frameworks manage the execution of the MapReduce
applications allocating resources and dealing with the frequent
infrastructure failures [16].

A study by Kavulya et al. [17] reveals that around 3% of
MapReduce programs in production do not finish their
execution, whereas another broader study places the percentage

between 1.38% and 33.11% [18]. The quality of the
MapReduce programs is important, especially those employed
in critical sectors such as health (DNA alignment [19]) and
security (image processing in ballistics [20]).

In a previous work, we identified and classified several
MapReduce faults [21], and we proposed a testing technique to
detect them in an automated way just by varying the test input
data [22]. This paper improves on these works with an
automatic testing framework to detect the faults when the
programs are deployed and executed in production. As we
discuss in Section IV, to detect faults that may depend on the
deployed MapReduce configuration, one would need to test the
application in production (In Vivo), but this is hardly feasible
due to a lack of control on the tester's side. We propose here a
hybrid approach between testing in the laboratory and testing
in production, which we have named the Ex Vivo approach: the
tests are automatically obtained from the runtime data, but they
are executed outside of the production environment so as not to
affect the application. The proposed framework can
automatically detect functional faults without requiring any
human intervention.

In summary, the main contributions of this paper are:

1. A novel generally-applicable test approach called Ex
Vivo, and its adaptation to MapReduce programs. The
test cases are designed based on production
information such as runtime data, but the tests are
executed outside the production environment to obtain
fine-grained control and not to impact negatively on
the execution of applications.

2. The automation of the previous approach in a
continuous testing framework, called MrExist. When a
user executes a program in production, the framework
automatically performs testing with runtime data
outside the production environment. If the framework
detects functional faults, the user is notified so that the
program can be stopped not only to avoid incorrect
output, but also to save time, energy and cost of the Big
Data resources employed in potentially faulty
executions.

3. The validation of the previous approach within a real-
world case study.

The remainder of the paper is organized as follows. Section
II overviews the MapReduce processing model. Section III
discusses related work. Section IV defines the Ex Vivo testing

approach, and Section V describes the MrExist framework
based on this approach that is adapted to the MapReduce
processing model. Then MrExist is validated in Section VI.
Finally, the conclusions and plans for future work are included
in Section VII.

II. MAPREDUCE

The MapReduce processing model follows the divide and
conquer principle with two functionalities: Mapper that divides
one problem in several subproblems, and Reducer that solves
each subproblem. Both functionalities receive and generate the
data in a <key, value> pair fashion. The key represents the
subproblem, and the value contains the data to solve this
subproblem.

Consider as an example a program that calculates the
average temperature per year. This problem can be divided in
as many subproblems as there are years, then each subproblem
only calculates the average temperature for one year. To start
off, several Mappers receive subsets of historical data and emit
<year, temperature of this year>. After the execution of all
Mappers, the temperatures (values) are grouped by their year
(key). Then, several Reducers receive subproblems like <year,
[all temperatures of this year]>, that is one year with all
temperatures for this year, and emit the average.

For example, Fig. 1 represents the execution of the
following temperature data: year 2000 with 3º, 2002 with 4º,
2000 with 1º, and 2001 with 5º. The first two inputs are
analyzed in one Mapper task and the remainder in another task.
After the execution of the Mappers, the temperatures are
grouped per year and sent to the Reducer tasks. The first
Reducer receives all the temperatures for the years 2000 and
2002, and the other task for the year 2001. Finally, each
Reducer emits the average temperature of the subproblems: 2º
in the year 2000, 4º in 2002 and 5º in 2001. This program with
the same input could be executed in another way by the
framework, for example with three Mappers and three
Reducers. Regardless of how the framework executes the
program, it should generate the expected output.

The MapReduce programs process high quantities of data
between Mapper and Reducer. In order to optimize the
program, a Combiner functionality can be implemented. This
functionality is run after the Mapper with the aim of removing
the irrelevant <key, value> pairs to solve the subproblem. In
MapReduce, other components can also be implemented, such
as for example Partitioner that determines for each <key,
value> pair which Reducer analyses it, Sort that controls the
order of <key, value> pairs, and Group that aggregates the
values of each key before the Reducer.

An incorrect implementation of these functionalities could
cause a failure in one of the different ways in which Hadoop or
other distributed systems can execute the program. These
functional faults are difficult to detect during testing because
they are triggered in aggressive environments with a mix of
large data and computer failures, among others.

III. RELATED WORK

Software testing is one of the quality assurance techniques
most used to evaluate software products [23]. This field has
experimented great progress in recent years [24], but there are
still some challenges to test Big Data programs [25], [26].
Despite the fact that most works are focused on performance
testing [27], [28], functional testing is also important [29].

Some functional faults depend on how the distributed
system, for example Hadoop, executes the programs according
to the infrastructure configuration. If the program generates
incorrect output in some configurations and the expected
output in others, then the program has a functional fault. A
study of 507 MapReduce programs in production reveals at
least 5 different kinds of these faults [30]. To detect them,
Csallner et al. [31] and Chen et al. [32] use testing techniques
based on symbolic execution and model checking. Other
authors [21], [33] identified and classified more kinds of these
faults that are caused by the infrastructure configurations. To
detect them, Morán et al. [34] designed an automatic testing
technique based on combinatorics and simulation. This paper
also aims to detect these kinds of faults that are caused by the
infrastructure configurations, but not executing the tests in
stages prior to production. Instead, the approach for testing
proposed in this paper is automatically performed during
production and taking advantage of the runtime data.

In the production environment, the infrastructure failures
are fairly frequent. Several research lines suggest the injection
of infrastructure failures [35], [36] during the testing, and
several tools support it [37]–[39]. For example, Marynowski et
al. [40] create test cases specifying which computers fail and
when. Some faults can be detected with the injection of
infrastructure failures, but others require a full control of the
distributed system and its underlying large infrastructure. To
detect this kind of faults, this work does not inject
infrastructure failures, but simulates the different infrastructure
configurations in a lab to obtain fine-grained control and
reproducibility of the tests.

Other testing techniques focus on the generation of test
input data with different approaches: using data flow [41],
based on a bacteriological algorithm [42], or with input domain
together with combinatorial testing [43]. Unlike the previous
testing techniques, this paper takes the data directly from
production in runtime.

There are several tools to design and execute test cases for
MapReduce applications. Herriot [44] allows the execution of
the tests in a real cluster at the same time that it supports the
injection of the infrastructure failures. Other tools called
MiniClusters [45] execute the test cases in a cluster simulated
in memory. For unit testing, MRUnit [46] provides an
adaptation of JUnit [47] to the MapReduce processing model.
This paper also proposes a testing tool for the MapReduce

Fig. 1. Execution of MapReduce program that calculates the average

temperature per year

Mapper Task
<2000, 3º>
<2002, 4º>
<2000, 1º>
<2001, 5º>

<2000, 3º>
<2002, 4º>

Mapper Task

Reducer Task

Reducer Task
<2001, 5º>

<2000, [3º, 1º]>
<2002, [4º]>

<2001, [5º]>

<2000, 2º>
<2002, 4º>

<2001, 5º>
<2000, 1º>

processing model, but unlike the others it performs full
automatic testing in production with the runtime data.

IV. EX VIVO TESTING

Modern software applications are increasingly distributed,
pervasive, and adaptive. For such systems, the boundary
between development-time and production is vanishing [48],
and several authors (e.g., [49], [50]) have proposed that
software testing can (or should) be used even after
deployment to continue detecting functional faults that cannot
be found in the development environment. Testing in the
production environment has been referred to with different
terminology [51]:

 Online testing, as opposed to offline, to highlight that
testing is done without interrupting the normal
operation.

 Testing “in the field”, as opposed to traditional testing
performed “in the lab”.

 Runtime testing, to highlight that testing is done
employing execution data from operation, rather than
other artificial data.

 A form of testing in production is also monitoring,
which is referred to as passive testing in contrast with
actively providing some stimulus (test input).

From the previous approaches, other testing approaches
arise, among them In Vivo testing [52]. This kind of testing is
performed inside the production environment but in an isolated
process in order not to affect the program executed in
production. In this way, testing can take advantage of
information from production such as runtime data, third party
libraries or configurations. However, online tests also consume
memory and other production resources that could negatively
impact the program executed in production, especially
regarding performance.

The performance of the MapReduce programs is important
because they usually analyze large and complex datasets [53].
The information of these datasets can be useful for carrying out

testing in runtime [54], but the execution of the tests in the
production environment is problematic for several reasons.
Hadoop automatically manages the executions carried out in
production, but does not support fine-grained control and
reproduction in the same circumstances. In addition, the tests
executed in production consume resources and can negatively
impact the performance of the applications. Although
production data can be a good test data, in the MapReduce
context it is not feasible to execute the test cases in the
production environment like the In Vivo testing. A more
convenient alternative is the execution of the test cases in a
simulator outside production, but using production data as test
inputs.

Thus, this paper proposes a novel testing approach called
Ex Vivo. This new type of testing takes some information from
production like the In Vivo approach, but performs testing
outside the production environment. Then testing can take
advantage of the runtime information but in a more
controllable way than In Vivo, and without the limitations
imposed by the actual production environment. The Ex Vivo
testing also has few risks to impact the execution of programs
because it does not take resources from production like the In
Vivo approach. To the best of our knowledge there are no
testing approaches with these principles, either in MapReduce
or in other software contexts.

The terminology used of In Vivo and Ex Vivo testing,
together with In Vitro, has been borrowed from biological
sciences where they are used to denote different kinds of tests.
As Fig. 2 describes, In Vivo (latin for "within the living") are
those tests performed inside an organism, Ex Vivo (latin for
"out of living") outside, and In Vitro in a tube. In software
testing the organism could be seen as the analogy for the
production environment whereas the tube could be the
development-testing environments. Consequently, In Vitro is
the traditional testing that does not take advantage of the
production information to detect faults. In contrast, both In
Vivo and Ex Vivo, take advantage of this information (for
example runtime data), but testing is performed in different
environments: In Vivo performs testing inside the production
environment, while Ex Vivo performs testing outside.

V. MREXIST: EX VIVO TESTING FRAMEWORK FOR

MAPREDUCE APPLICATIONS

In order to perform testing not only in development-testing
phases, but also actively during production, an automatic
continuous testing framework is proposed. This framework is
called MrExist (MapReduce EX vIvo teSTing) and it is based
on the Ex Vivo testing approach exposed in Section IV adapted
to the MapReduce processing model characteristics. These
programs are executed in a non-deterministic way by a
distributed system, for example by Hadoop. Usually these
systems do not allow fine-grained control of the execution, thus
making testing more difficult. The Ex Vivo framework
proposed here takes data under execution and then executes
test cases based on such real data in a test server outside the
production environment. Therefore the execution of the test
cases does not take resources from production, does not
introduce side-effects and can be fully controlled.

Input Software
under test

Output

Testing environment

Input Application Output

Production environment

Input Software
under test

Output

Testing environment

Input Application Output

Production environment

Input Software
under test

Output

IN VITRO

EX VIVO

IN VIVO

Fig. 2. Software testing approaches

Fig. 3 describes the MrExist framework starting with a user
that executes a program and finishing by testing performed
automatically without any knowledge either of the
specification or of the expected output. Firstly a probe detects
that a user has executed a program (1), and the probe sends this
program to the test server (2). Then the program is parsed by
the test server (3) to obtain the location of the data and the
MapReduce functionality code. This code is instrumented (4)
to analyze its internal states, and the test input data are sampled
from the production data (5). Finally, the testing is performed
using a specific MapReduce testing technique [22], [34] that
only needs the test input data and the program to detect
functional faults (6).

Generally speaking, a challenge for testing in production is
how to check whether the output is correct or not (test oracle),
especially in those programs that are specifically developed to
obtain some previously unknown or costly answer [55], as for
example some machine learning programs. Such problems do
not exist in our approach, as we can compare the outputs
obtained for the same data in different configurations. The
MrExist framework automatically detects a functional fault
when the same data executed in different configurations do not
generate an equivalent output. The different parts of MrExist
are described in detail in the subsections below together with
the following example.

Consider the program that calculates the average
temperature per year described in Section II and extended with
a Combiner to improve the performance. The Combiner
receives several temperatures and then they are replaced by
their average to decrease the data sent from one computer to
another. This program has a functional fault because all the
temperatures are needed to obtain the total average
temperature. First, the Combiner replaces the data available
locally for their average, and then the Reducer calculates the
global average with these local averages, but sometimes this
output does not match the average of all temperatures. This
kind of fault is difficult to detect in the MapReduce programs
and is usually masked during the testing [22] because the latter
does not suffer aggressive situations as in the execution of
large data in production like parallelization, computer failures,
automatic optimizations and so on. Then these programs can be
released to production and the Ex Vivo framework proposed,
MrExist, could automatically detect faults and notify the user
in runtime.

A. Parser

The probe sends the program executed in production to the
test server. Then the program is parsed in order to obtain the
MapReduce code functionality and the location of the dataset
employed in production. The parser analyzes the bytecode with
Javassist [56] not only to obtain the bytecode of the Mapper,
Combiner and Reducer, but also other MapReduce advanced
functionalities such as Partitioner and Sort, among others that
are relevant for testing.

The parser employs a cache based on MD5 hashes [57] that
leverages the communications between client and test server.
The client only sends a few bytes of hash instead of the
program, and when the test server does not have the program in
the cache, then it can request it. The parser also detects
automatically if the program under test has been tested before
or not, and then registers the different versions/improvements
of the program based also on its hashes.

For example, when the user executes the program that
calculates the average per year, the probe sends the MD5 hash
of the program to the test server. If the program is not in the
cache, the test server requests the program from the probe.
Then the program is parsed in the test server obtaining (1)
location of dataset, (2) code of the MapReduce functionality,
and (3) other metadata such as the number of the version. For
the program under test the parser obtains the following
MapReduce code: AvgMapper function (Mapper), AvgReducer
function (Reducer and Combiner), TextInputFormat function
(Input format), among other advanced codes of the MapReduce
programs and dependencies. Finally, the parser checks if the
program has been tested before or if it is a new version with
changes of a previous program. Then the parser registers this
information about the program version, allowing the
visualization of the quality evolution in the user programs.

B. Instrumentation

The Mapper, Combiner and Reducer functions in Hadoop
do not return any data, the <key, value> pairs are sent from one
function to another based on buffers, dumps, and remote calls,
among others. In order to observe the internal states of the
program under test, the MapReduce functions are instrumented.
The instrumentation automatically adds mocks, stubs and spies
inside the code using mocking frameworks widely used in
practice [58] such as Mockito [59] and PowerMock [60].

For example, in the program that calculates the average
temperature per year, the parser obtains that avgMapper and
avgReducer code implement the Mapper, Combiner and
Reducer. In order to enable full control and monitoring of their
internal states during testing, these functions are instrumented
with mocks, stubs and spies.

C. Sampling

In addition to the code under test, MrExist needs data to
perform testing. The sampling method generates the test input
data from the location previously obtained by the parser.

In Big Data, the datasets usually contain a huge amount of
data stored in a distributed database or filesystem, such as
HBase [61] or HDFS (Hadoop Distributed File System) [62].

Fig. 3. Architecture of MrExist (MapReduce EX vivo teSTing)

Client

Input data
location Sampling

Testing

Instrumentation
Mapper
Combiner
...

010...
110...
101...

110...

Input
data

Program

probe

1

3

4
5

6

Parser

Code under
test

P
ro

d
u

ct
io

n
La

b

Production cluster
Te

st
 s

er
ve

r
...

...

2

In terms of resources, it is not feasible to perform functional
testing with all of these large data. Instead, MrExist generates a
smaller test input data with a reservoir sampling [63]. This
algorithm samples streams of data and can be parallelized to
improve the performance. The MrExist framework implements
the sampling using the MapReduce processing model to
employ Big Data power during the sampling of the large
datasets. This algorithm assigns a random number to each
<key, value> pair, and then only the highest are sampled.

The samples obtained from the sampling algorithm are used
as test input data and are saved in a specific binary format for
the <key, value> data, called SequenceFile [64]. These samples
are obtained based on randomness, but the algorithm also
supports pseudorandom numbers, also called seeds, to obtain
the samples in a deterministic way and support the
reproduction of the test cases in the same circumstances.

In a Big Data cluster there are several datasets, but the
majority of the programs only analyze the same one, two or
few datasets [18], and sometimes concurrently [65]. To avoid
multiple samplings of these Big Data datasets a cache is
implemented to improve performance [66], [67]. Then the
sampling method is only executed when the dataset has no
samples in cache. These samples can also be generated
proactively, for example scheduling the samplings of the
available datasets during weekends, nights or at other times
with low production activities.

In the program that calculates the average temperature per
year, the parser obtains the dataset used in production. Then
MrExist checks if the cache contains test input data for this
dataset. If there is no data, a sampling is performed obtaining,

among others, the temperatures 4⁰ , 2⁰ and 3⁰ in the year
1999. Then these test input data are available in the cache for
future uses in testing.

D. Testing

The execution of the program in production is managed by
a distributed system, for example Hadoop, that automatically
allocates resources in a parallel way, re-executes different parts
of the program in case of computer failures, performs some
data optimization and mixes the analysis of different parallel
traces, among others. These automatic mechanisms guide the
execution in a highly scalable way, but could also cause that a
program generates an incorrect output. In this case, the
program has a functional fault because it generates valid or

incorrect output depending on the infrastructure configuration
[21].

MrExist detects these faults employing a specific
MapReduce testing technique [22]. This testing technique
executes the same data in different infrastructure configurations
and checks whether their outputs are similar or not. These
infrastructure configurations are generated with a combination
of a different number of Mapper/Reducer tasks, and several
MapReduce optimizations, among others. Fig. 4 describes the
execution of the testing technique taking advantage of the
sampling and instrumentation of the previous sections. The test
server obtains the test input data from sampling, and the
software under test from instrumentation. Then the test server
executes each test input data with different configurations and
finally checks if the outputs are equivalent, revealing a fault if
they are not. These configurations are generated and executed
with an extension of MRUnit [22], [46] (JUnit [47] for
MapReduce), and checked with Hamcrest matchers [68].

In the program that calculates the average temperature per
year, MrExist automatically detects a fault. First, the parser
obtains that the program under test has a customized Mapper,
Combiner and Reducer functionalities, among other
MapReduce advanced functions. Then these functions are
instrumented, and the testing is performed with the different
test input data obtained from production by the sampling
method. Fig. 5 describes the testing performed with the test

input data: 4⁰ , 2⁰ and 3⁰ in the year 1999. The test server
iteratively generates and simulates different configurations, and
then checks if one of the outputs is not equivalent to the others.
The first configuration generated is made up of only one

Mapper, one Combiner and one Reducer, producing 3⁰ as

output. The second configuration also generates 3⁰ with a
different configuration: two Mappers (the first with two data,
and the second with one data), two Combiners and one
Reducer. But the third configuration generates a different

output, 3.25⁰ , that automatically reveals a fault because the
program generates different output depending on how it is
executed. This configuration is composed by two Mappers (the
first with one data, the second with two data), two Combiners
and one Reducer. In this case, the program does not support
this Combiner because it replaces the temperatures available
locally by their average, and then Reducer calculates
erroneously the total average with these local averages.

Fig. 4. Testing technique used in MrExist

Large input

Program

Large output

Test input
data 1

Software
under test

Conf. 1
Conf. 2...

Output 1
Output 2... Are

equivalent?...Other test input data

P
ro

d
u

ct
io

n
La

b
 t

es
t

se
rv

e
r

Testing techniqueInstrumentationSampling

Configuration

Yes

No

Mapper

<1999, 4º>
<1999, 2º>
<1999, 3º>

<1999, [4º, 2º, 3º]>
Combiner Reducer

<1999, [3º]>
<1999, 3º>

Mapper
<1999, 4º>
<1999, 2º>
<1999, 3º>

<1999, [4º, 2º]>
Combiner

Reducer
<1999, [3º, 3º]>

<1999, 3º>
Mapper Combiner

<1999, [3º]>

Mapper<1999, 4º>
<1999, 2º>
<1999, 3º>

<1999, [4º]>
Combiner

Reducer
<1999, [4º, 2.5º]>

<1999, 3.25º>
Mapper Combiner

<1999, [2º,3º]>

Same input Different infrastructure configuration Different output

Fig. 5. Execution of MapReduce program in different infrastructure

configurations

Once the fault is automatically detected, MrExist sends an
email to the user in order to notify the fault. The email not only
contains the existence of the fault, but also represents how this
fault is caused, as can be seen at the bottom of Fig. 5. Then the
user can stop the program to avoid incorrect worthless output
while also saving money, energy and time of large-scale
computation resources, especially for those MapReduce
programs that finish their execution after several hours [18] or
days [17].

E. Test oracle

The test oracles have some properties to characterize the
testing efficacy [69], [70]. The MrExist framework aims to
detect faults without human intervention, and the oracle used
during testing is an automated partial oracle [55]. This kind of
oracle can detect some faults without any knowledge about the
expected output. The oracle employed in MrExist is
automatically derived from the program executions [71] using
metamorphic testing [72]–[74], that is a field also employed to
test machine learning programs [75] and in In Vivo
frameworks [76]. The metamorphic testing given a test case
checks relationships inside one or different executions of the
program. The test case is called original test case, the different
executions are called follow-up test cases, and the relationship
that should be satisfied is called metamorphic relationship.

The MrExist framework proposes a metamorphic testing
that can automatically test the MapReduce programs. This
approach obtains the test cases from production (original test
cases) then executes them with different configurations
(follow-up test cases) and finally checks if their outputs are
equivalent (metamorphic relationship), if not a potential fault is
detected.

In most metamorphic testing research, the test cases are
generated with random testing [77]. In MrExist, the original
test cases are also obtained randomly based on a sampling of
the production dataset. One benefit of testing with this
automatic oracle is that these random data can be useful to
cover more test domains [78].

According to the study of Segura et al. [77] the number of
metamorphic papers will increase in the following years, but to
date 49% employ the metamorphic testing capabilities to
different problem domains, and only 2% present a tool. In our
case, this paper not only defines and automatizes the
metamorphic relationship to the MapReduce domain, but also
develops a tool that detects faults in production without human
intervention and non-intrusively from runtime data.

F. Probe

MrExist executes testing with runtime data when a
MapReduce program is executed in production. The probe
detects the execution of the program and catches it together
with other information about the context and user. Then the
probe sends the program and all information to the test server
asynchronously with the aim of minimizing the impact of the
probe in terms of execution time.

The probe is not intrusive in the sense that no modification
or additional code is necessary either in the MapReduce

applications or in the production cluster. To enable MrExist
framework it is only necessary (1) the replacement of one
library in the Hadoop client that adds the probe for all
programs executed in this computer, and (2) the deployment of
the test server to perform testing with access to the Hadoop
cluster and data sources employed in production. The test
server is a Java application that automatically deploys a Jetty
server [79] and serverless database SQLite [80], [81] both
embedded inside. Thus the test server is self-contained and can
easily be deployed from one computer to another in case of
computer failures.

VI. CASE STUDY

In order to validate the testing framework MrExist, we use
the real-world program Open Ankus [82] as case study. This
program implements Machine Learning and Data Mining
libraries using the MapReduce processing model. One part of
the program is a recommendation system that predicts the best
books for each user based on the books read by others. The
system obtains the similarities between users based on the
points that each user assigns to different books. Given these
similarities, the system predicts the points from each user to
each book, and the highest are recommended. Finally, when the
user assigns points to the book, the system calculates the error
of its previous prediction.

This program is executed in the production environment,
and MrExist automatically notifies the existence of a functional
fault. This fault arises in the following situation: (1) the system
predicts that Alice could assign 0 points to Don Quixote, (2)
Alice assigns 0 points to Don Quixote, (3) later the system
detects a change in Alice’s taste and predicts that Alice could
assign 10 points to Don Quixote, and (4) Alice assigns 10
points to Don Quixote. For the previous situation obtained
from runtime data, the expected output is that the predictions
are accurate with 0% of error. But MrExist detects that the
MapReduce program has a fault because it sometimes obtains
100% of error as output and 0% in others, depending on the
infrastructure configuration (number of computers, computer
failures, and so on). The program checks per each user-book
the first points assigned against the first points predicted, and
so on (0 vs 0 and 10 vs 10, 0% of error). The fault arises when
the infrastructure configuration causes that the input data are
processed in a different order. The MapReduce processing
model splits the input data into several subsets that are
analyzed in parallel, then the final part of the input data can be
processed before the first part. This fault is revealed when the
infrastructure configuration causes that the first assignment is
checked against the second prediction, and the second
assignment against the first prediction (0 vs 10 and 10 vs 0,
100% of error).

 Fig. 6 depicts the Ex Vivo testing for the previous
situation. When the program is executed in production, the
tests are executed in the test server. Firstly the large runtime
data is sampled to obtain test input data, among others: (1)
prediction of Alice-Don Quixote: 0 points, (2) assignment of
Alice-Don Quixote: 0 points, (3) prediction of Alice-Don
Quixote: 10 points, and (4) assignment of Alice-Don Quixote:
10 points. Then these runtime data are executed in several
configurations. The first configuration obtains 0% of error as

output whereas the second obtains an incorrect output of 100%
of error because the infrastructure configuration causes that the
program analyzes the input data in a different order. Then the
testing framework MrExist notifies the user of the existence of
a functional fault in the program executed in production.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces a context-independent testing
approach called Ex Vivo to detect faults. The tests are designed
from production data and executed in a different environment
to avoid side-effects and gain fine-grained control. This
approach is employed in an automatic testing framework for
MapReduce programs. The execution of an application triggers
the testing in background taking advantage of runtime data and
detecting faults without human intervention. In the case of a
fault, the framework notifies the user who can stop the faulty
program, allowing to improve the quality, avoid incorrect
output and save time, money and energy of the large-scale
resources executed in production.

This approach is applied in a real-world program executed
in a production cluster, and without any modification, the
testing framework automatically notifies that the program has a
functional fault.

As future work, we are creating an automatic method to
forecast in runtime the percentage of the production output
affected by the functional fault. Another research line pursues
self-healing through automatic localization and removal of the
fault in production.

ACKNOWLEDGMENT

This work was supported in part by PERTEST (TIN2013-46928-
C3-1-R), project funded by the Spanish Ministry of Science and
Technology; TestEAMoS (TIN2016-76956-C3-1-R) and POLOLAS
(TIN2016-76956-C3-2-R), projects funded by the Spanish Ministry of
Economy and Competitiveness; GRUPIN14-007, funded by the
Principality of Asturias (Spain); GAUSS (PRIN 2015,
2015KWREMX), funded by Italian MIUR; and ERDF funds.

REFERENCES

[1] ISO/IEC JTC 1 - Big Data, preliminary report. 2014.

[2] NewVantage Partners LLC, “Big Data Executive Survey 2016 An Update on the

Adoption of Big Data in the Fortune 1000,” 2016.

[3] Xerox, “Big Data in Western Europe Today,” 2015.

[4] L. Cai and Y. Zhu, “The Challenges of Data Quality and Data Quality Assessment

in the Big Data Era,” Data Sci. J., vol. 14, p. 2, 2015.

[5] B. Marr, “Where Big Data Projects Fail,” 2015. [Online]. Available:

http://www.forbes.com/sites/bernardmarr/2015/03/17/where-big-data-projects-fail/.

[6] Pure Storage, “BIG DATA’S BIG FAILURE: The struggles businesses face in

accessing the information they need,” 2015.

[7] Capgemini Consulting, “Big Data survey,” 2014.

[8] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498, no. 7453, pp.

255–260, Jun. 2013.

[9] D. Bachlechner and T. Leimbach, “Big data challenges: Impact, potential

responses and research needs,” in 2016 IEEE International Conference on

Emerging Technologies and Innovative Business Practices for the Transformation

of Societies (EmergiTech), 2016, pp. 257–264.

[10] Gartner, “How to Take a First Step to Advanced Analytics,” 2015.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters,” Proc. OSDI - Symp. Oper. Syst. Des. Implement., pp. 137–149, 2004.

[12] Institutions that are using Apache Hadoop. [Online]. Available:

https://wiki.apache.org/hadoop/PoweredBy. [Accessed: 2017].

[13] Apache Hadoop. [Online]. Available: https://hadoop.apache.org/.

[14] Apache Flink. [Online]. Available: https://flink.apache.org. [Accessed: 2017].

[15] Apache Spark. [Online]. Available: https://spark.apache.org. [Accessed: 2017].

[16] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud Computing Hardware

Reliability,” Proc. 1st ACM Symp. Cloud Comput. - SoCC ’10, p. 193, 2010.

[17] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis of Traces from a

Production MapReduce Cluster,” in 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, 2010, pp. 94–103.

[18] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s adolescence,” Proc.

VLDB Endow., vol. 6, no. 10, pp. 853–864, 2013.

[19] M. C. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce,”

Bioinformatics, vol. 25, no. 11, pp. 1363–1369, Jun. 2009.

[20] H. Kocakulak and T. T. Temizel, “A Hadoop solution for ballistic image analysis

and recognition,” in 2011 International Conference on High Performance

Computing & Simulation, 2011, pp. 836–842.

[21] J. Moran, C. de la Riva, and J. Tuya, “MRTree: Functional Testing Based on

MapReduce’s Execution Behaviour,” in 2014 International Conference on Future

Internet of Things and Cloud, 2014, pp. 379–384.

Fig. 6. Fault detected automatically by MrExist in the recommendation system of Open Ankus

Mapper
prediction

Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Alice -> Don Quixote
Prediction Assignment

0 0
10 10

Alice ->Don Quixote

Mapper
assignment

<Alice -> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 0,
Assignment: 10]>

Mapper
prediction

Prediction: 0
Prediction: 10

Assignment: 0

Assignment: 10

Reducer

Prediction Assignment
0 10
10 0

Alice ->Don Quixote

Mapper
assignment

Mapper
assignment

<Alice -> Don Quixote, [
Prediction: 0,
Prediction: 10,
Assignment: 10,
Assignment: 0]>

Same input Different infrastructure configuration Different output

Prediction: 0
Prediction: 10

Assignment: 0
Assignment: 10

Alice ->Don Quixote

Large input

Program

Large output

Pr
od

uc
ti

o
n

La
b

 t
es

t
se

rv
er

Testing techniqueInstrumentationSampling

Configuration

Are
equivalent?

No

Reducer

C
o

n
fi

gu
ra

ti
o

n
 1

C
o

n
fi

gu
ra

ti
o

n
 2

Software
under
test

Same program

Erin -> The Shadow of the Wind: 10 10
 To kill a mockingbird: 7 5
Alice -> Don Quixote: 0 10
 Carol -> Figth club: 10 10

 Carol -> Frankenstein: 5 8
 Frank -> The alchemist : 9 6

Prediction Assignment

Notification

User

Alice -> Don Quixote -> Prediction: 0
Alice -> Don Quixote -> Assignment: 0
Alice -> The neverending story -> Prediction: 7

Alice -> Don Quixote -> Prediction: 10
Alice -> Don Quixote -> Assignment: 10

Carol -> The Divine Comedy -> Assignment: 9

Dave -> Le petit prince: 8 10

[22] J. Morán, B. Rivas, C. De Riva, J. Tuya, I. Caballero, and M. Serrano,

“Configuration / Infrastructure-aware testing of MapReduce programs,” Adv. Sci.

Technol. Eng. Syst. J., vol. 2, no. 1, pp. 90–96, 2017.

[23] A. Orso and G. Rothermel, “Software testing: a research travelogue (2000–2014),”

Proc. Futur. Softw. Eng. - FOSE 2014, pp. 117–132, 2014.

[24] A. Bertolino, “Software Testing Research : Achievements , Challenges , Dreams,”

in Future of Software Engineering. FOSE ’07, 2007, pp. 85–103.

[25] S. Nachiyappan and S. Justus, “Getting ready for BigData testing: A practitioner’s

perception,” in 2013 4th International Conference on Computing, Communications

and Networking Technologies, ICCCNT 2013, 2013.

[26] A. Mittal, “Trustworthiness of Big Data,” Int. J. Comput. Appl., vol. 80, no. 9, pp.

35–40, Oct. 2013.

[27] Z. Liu, “Research of performance test technology for big data applications,” 2014

IEEE Int. Conf. Inf. Autom. ICIA 2014, no. July, pp. 53–58, 2014.

[28] A. S. Nagdive, R. M. Tugnayat, P. Shri, S. Agnihotri, and M. P. Tembhurkar,

“Overview on Performance Testing Approach in Big Data,” Int. J. Adv. Res.

Comput. Sci., vol. 5, no. 8.

[29] M. Gudipati, S. Rao, N. D. Mohan, and N. Kumar Gajja, “Big Data: Testing

Approach to Overcome Quality Challenges,” vol. 11, no. 1. Big Data: Challenges

and Opportunities, pp. 65–72, 2013.

[30] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen, and L. Zhou,

“Nondeterminism in MapReduce considered harmful? an empirical study on non-

commutative aggregators in MapReduce programs,” in Companion Proceedings of

the 36th International Conference on Software Engineering - ICSE Companion

2014, 2014, pp. 44–53.

[31] C. Csallner, L. Fegaras, and C. Li, “New Ideas Track: Testing Mapreduce-style

Programs,” Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng.,

pp. 504–507, 2011.

[32] Y.-F. Chen, C.-D. Hong, N. Sinha, and B.-Y. Wang, “Commutativity of

Reducers,” Springer Berlin Heidelberg, 2015, pp. 131–146.

[33] L. C. Camargo and S. R. Vergilio, “Classifica{ç} ao de Defeitos para Programas

MapReduce: Resultados de um Estudo Emp{\i}rico,” 2013.

[34] J. Moran, B. Rivas, C. De La Riva, J. Tuya, I. Caballero, and M. Serrano,

“Infrastructure-Aware Functional Testing of MapReduce Programs,” in 2016 IEEE

4th International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW), 2016, pp. 171–176.

[35] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H. Campbell, and W. H.

Sanders, “Failure scenario as a service (FSaaS) for Hadoop clusters,” Proc. Work.

Secur. Dependable Middlew. Cloud Monit. Manag. - SDMCMM ’12, pp. 1–6,

2012.

[36] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A Programmable Tool for

Multiple-Failure Injection,” ACM SIGPLAN Not., vol. 46, no. 10, p. 171, 2011.

[37] Anarchy Ape. [Online]. Available: https://github.com/david78k/anarchyape.

[38] Chaos Monkey. [Online]. Available: https://github.com/Netflix/SimianArmy.

[39] Hadoop Injection Framework. [Online]. Available: https://hadoop.apache.org/.

[40] J. E. Marynowski, A. O. Santin, and A. R. Pimentel, “Method for testing the fault

tolerance of MapReduce frameworks,” Comput. Networks, vol. 86, pp. 1–13, 2015.

[41] J. Morán, C. de la Riva, and J. Tuya, “Testing data transformations in MapReduce

programs,” in Proceedings of the 6th International Workshop on Automating Test

Case Design, Selection and Evaluation - A-TEST 2015, 2015, pp. 20–25.

[42] A. J. de Mattos, “Test data generation for testing mapreduce systems,” Federal

University of Paraná, 2011.

[43] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial test data

generation to big data applications,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering - ASE 2016, 2016,

pp. 637–647.

[44] Herriot: Large-scale automated test framework. [Online]. Available:

https://wiki.apache.org/hadoop/HowToUseSystemTestFramework.

[45] Minicluster. [Online]. Available: https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-common/CLIMiniCluster.html. [Accessed: 27-Feb-2017].

[46] Apache MRUnit. [Online]. Available: http://mrunit.apache.org. [Accessed: 2017].

[47] JUnit. [Online]. Available: http://junit.org. [Accessed: 2017].

[48] L. Baresi and C. Ghezzi, “The Disappearing Boundary Between Development-time

and Run-time,” Work. Futur. Softw. Eng. Res. FSE/SDP, pp. 17–22, 2010.

[49] M. Ali, F. De Angelis, D. Fani, A. Bertolino, G. De Angelis, and A. Polini, “An

extensible framework for online testing of choreographed services,” Computer

(Long. Beach. Calif)., vol. 47, no. 2, pp. 23–29, 2014.

[50] E. M. Fredericks, A. J. Ramirez, and B. H. C. Cheng, “Towards run-time testing of

dynamic adaptive systems,” 2013 8th Int. Symp. Softw. Eng. Adapt. Self-Managing

Syst., pp. 169–174, 2013.

[51] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and Catalog of Runtime

Software- Fault Monitoring Tools,” IEEE Trans. Softw., vol. 30, no. 12, pp. 1–16,

2004.

[52] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality Assurance of Software

Applications Using the In Vivo Testing Approach,” in 2009 International

Conference on Software Testing Verification and Validation, 2009, pp. 111–120.

[53] A. Jacobs, “The Pathologies of Big Data,” Queue, vol. 7, no. 6, p. 10, 2009.

[54] J. Gao, C. Xie, and C. Tao, “Big Data Validation and Quality Assurance -- Issuses,

Challenges, and Needs,” in 2016 IEEE Symposium on Service-Oriented System

Engineering (SOSE), 2016, no. August, pp. 433–441.

[55] E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25, no. 4, pp.

465–470, 1982.

[56] S. Chiba and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient Java Bytecode

Translators,” Springer Berlin Heidelberg, 2003, pp. 364–376.

[57] R. (MIT L. for C. S. Rivest, “The MD5 Message-Digest Algorithm,” IETF. pp. 1–

22, 1992.

[58] S. Mostafa and X. Wang, “An Empirical Study on the Usage of Mocking

Frameworks in Software Testing,” in 2014 14th International Conference on

Quality Software, 2014, pp. 127–132.

[59] Mockito. [Online]. Available: http://mockito.org/.

[60] PowerMock. [Online]. Available: http://powermock.github.io/.

[61] HBase. [Online]. Available: https://hbase.apache.org/.

[62] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File

System,” in 2010 IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), 2010, pp. 1–10.

[63] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw., vol.

11, no. 1, pp. 37–57, 1985.

[64] SequenceFile. [Online]. Available: https://wiki.apache.org/hadoop/SequenceFile.

[65] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan,

and E. Harris, “Scarlett : Coping with Skewed Content Popularity in MapReduce

Clusters,” in Proceedings of the sixth conference on Computer systems-EuroSys

’11 (2011), 2011, pp. 287–300.

[66] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data

systems: a cross-industry study of MapReduce workloads,” Proc. VLDB Endow.,

vol. 5, no. 12, pp. 1802–1813, 2012.

[67] G. Ananthanarayanan, A. Ghodsi, and A. Wang, “PACMan: Coordinated memory

caching for parallel jobs,” 9th USENIX Symp. Networked Syst. Des. Implement., p.

14 pages, 2012.

[68] Hamcrest. [Online]. Available: http://hamcrest.org/. [Accessed: 02-Mar-2017].

[69] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs, tests, and oracles:

the foundations of testing revisited,” in Proceeding of the 33rd international

conference on Software engineering - ICSE ’11, 2011, p. 391.

[70] R. A. P. Oliveira, U. Kanewala, and P. A. Nardi, “Automated test oracles: State of

the art, taxonomies, and trends,” Adv. Comput., vol. 95, pp. 113–199, 2015.

[71] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem

in software testing: A survey,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp. 507–

525, 2015.

[72] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new approach for

generating next test cases,” … , Hong Kong Univ. Sci. …, pp. 1–11, 1998.

[73] M. Blum and S. Kannan, “Designing programs that check their work,” J. ACM,

vol. 42, no. 1, pp. 269–291, Jan. 1995.

[74] P. E. Ammann and J. C. Knight, “Data diversity: an approach to software fault

tolerance,” IEEE Trans. Comput., vol. 37, no. 4, pp. 418–425, 1988.

[75] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing and

validating machine learning classifiers by metamorphic testing,” in Journal of

Systems and Software, 2011, vol. 84, no. 4, pp. 544–558.

[76] C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of programs

without test oracles,” Proc. eighteenth Int. Symp. Softw. Test. Anal., pp. 189–200,

2009.

[77] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A Survey on

Metamorphic Testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–824, Sep.

2016.

[78] T. Chen, F. Kuo, Y. Liu, and A. Tang, “Metamorphic Testing and Testing with

Special Values.,” in International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2004.

[79] Jetty server. [Online]. Available: http://www.eclipse.org/jetty/. [Accessed: 2017].

[80] Bi and Chunyue, “Research and application of SQLite embedded database

technology,” WSEAS Trans. Comput., vol. 8, no. 1, pp. 83–92, 2009.

[81] SQLite. [Online]. Available: https://sqlite.org. [Accessed: 23-Feb-2017].

[82] Open Ankus. [Online]. Available: http://www.openankus.org

