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Abstract—Big Data programs are those that process large 

data exceeding the capabilities of traditional technologies. Among 

newly proposed processing models, MapReduce stands out as it 

allows the analysis of schema-less data in large distributed 

environments with frequent infrastructure failures. Functional 

faults in MapReduce are hard to detect in a 

testing/preproduction environment due to its distributed 

characteristics. We propose an automatic test framework 

implementing a novel testing approach called Ex Vivo. The 

framework employs data from production but executes the tests 

in a laboratory to avoid side-effects on the application. Faults are 

detected automatically without human intervention by checking 

if the same data would generate different outputs with different 

infrastructure configurations. The framework (MrExist) is 

validated with a real-world program. MrExist can identify a fault 

in a few seconds, then the program can be stopped, not only 

avoiding an incorrect output, but also saving money, time and 

energy of production resources. 

Keywords—software testing; automatic testing; ex vivo testing; 

metamorphic testing; Big Data; Hadoop; MapReduce 

I.  INTRODUCTION 

The Big Data field involves the recent trends in data 
analysis that go beyond the capabilities of the traditional 
technology [1]. Although these programs are considered 
critical for several Fortune 1000 enterprises [2], there are 
several challenges and concerns: poor data quality [3], [4], lack 
of technological skills [5], [6], and different technological 
issues such as, among others, complexity [7], maturity [8], 
operability [9] and technical problems [3]. Some of the 
previously stated problems complicate the construction of the 
projects and could lead to failures. Gartner forecasts that in 
2017 60% of the Big Data projects fail to go beyond piloting 
and will be abandoned [10]. 

The MapReduce processing model [11] stands out among 
Big Data projects, as it allows the analysis of large datasets in a 
distributed architecture. MapReduce programs are broadly used 
[12], and are supported by several frameworks such as Hadoop 
[13], Flink [14] and Spark [15], among others. These 
frameworks manage the execution of the MapReduce 
applications allocating resources and dealing with the frequent 
infrastructure failures [16]. 

A study by Kavulya et al. [17] reveals that around 3% of 
MapReduce programs in production do not finish their 
execution, whereas another broader study places the percentage 

between 1.38% and 33.11% [18]. The quality of the 
MapReduce programs is important, especially those employed 
in critical sectors such as health (DNA alignment [19]) and 
security (image processing in ballistics [20]).  

In a previous work, we identified and classified several 
MapReduce faults [21], and we proposed a testing technique to 
detect them in an automated way just by varying the test input 
data [22]. This paper improves on these works with an 
automatic testing framework to detect the faults when the 
programs are deployed and executed in production. As we 
discuss in Section IV, to detect faults that may depend on the 
deployed MapReduce configuration, one would need to test the 
application in production (In Vivo), but this is hardly feasible 
due to a lack of control on the tester's side. We propose here a 
hybrid approach between testing in the laboratory and testing 
in production, which we have named the Ex Vivo approach: the 
tests are automatically obtained from the runtime data, but they 
are executed outside of the production environment so as not to 
affect the application. The proposed framework can 
automatically detect functional faults without requiring any 
human intervention. 

In summary, the main contributions of this paper are:  

1. A novel generally-applicable test approach called Ex 
Vivo, and its adaptation to MapReduce programs. The 
test cases are designed based on production 
information such as runtime data, but the tests are 
executed outside the production environment to obtain 
fine-grained control and not to impact negatively on 
the execution of applications. 

2. The automation of the previous approach in a 
continuous testing framework, called MrExist. When a 
user executes a program in production, the framework 
automatically performs testing with runtime data 
outside the production environment. If the framework 
detects functional faults, the user is notified so that the 
program can be stopped not only to avoid incorrect 
output, but also to save time, energy and cost of the Big 
Data resources employed in potentially faulty 
executions. 

3. The validation of the previous approach within a real-
world case study. 

The remainder of the paper is organized as follows. Section 
II overviews the MapReduce processing model. Section III 
discusses related work. Section IV defines the Ex Vivo testing 



approach, and Section V describes the MrExist framework 
based on this approach that is adapted to the MapReduce 
processing model. Then MrExist is validated in Section VI. 
Finally, the conclusions and plans for future work are included 
in Section VII. 

II. MAPREDUCE 

The MapReduce processing model follows the divide and 
conquer principle with two functionalities: Mapper that divides 
one problem in several subproblems, and Reducer that solves 
each subproblem. Both functionalities receive and generate the 
data in a <key, value> pair fashion. The key represents the 
subproblem, and the value contains the data to solve this 
subproblem. 

Consider as an example a program that calculates the 
average temperature per year. This problem can be divided in 
as many subproblems as there are years, then each subproblem 
only calculates the average temperature for one year. To start 
off, several Mappers receive subsets of historical data and emit 
<year, temperature of this year>. After the execution of all 
Mappers, the temperatures (values) are grouped by their year 
(key). Then, several Reducers receive subproblems like <year, 
[all temperatures of this year]>, that is one year with all 
temperatures for this year, and emit the average. 

For example, Fig. 1 represents the execution of the 
following temperature data:  year 2000 with 3º, 2002 with 4º, 
2000 with 1º, and 2001 with 5º. The first two inputs are 
analyzed in one Mapper task and the remainder in another task. 
After the execution of the Mappers, the temperatures are 
grouped per year and sent to the Reducer tasks. The first 
Reducer receives all the temperatures for the years 2000 and 
2002, and the other task for the year 2001. Finally, each 
Reducer emits the average temperature of the subproblems: 2º 
in the year 2000, 4º in 2002 and 5º in 2001. This program with 
the same input could be executed in another way by the 
framework, for example with three Mappers and three 
Reducers. Regardless of how the framework executes the 
program, it should generate the expected output. 

The MapReduce programs process high quantities of data 
between Mapper and Reducer. In order to optimize the 
program, a Combiner functionality can be implemented. This 
functionality is run after the Mapper with the aim of removing 
the   irrelevant <key, value> pairs to solve the subproblem. In 
MapReduce, other components can also be implemented, such 
as for example Partitioner that determines for each <key, 
value> pair which Reducer analyses it, Sort that controls the 
order of <key, value> pairs, and Group that aggregates the 
values of each key before the Reducer. 

An incorrect implementation of these functionalities could 
cause a failure in one of the different ways in which Hadoop or 
other distributed systems can execute the program. These 
functional faults are difficult to detect during testing because 
they are triggered in aggressive environments with a mix of 
large data and computer failures, among others. 

III.  RELATED WORK 

Software testing is one of the quality assurance techniques 
most used to evaluate software products [23]. This field has 
experimented great progress in recent years [24], but there are 
still some challenges to test Big Data programs [25], [26]. 
Despite the fact that most works are focused on performance 
testing [27], [28], functional testing is also important [29]. 

Some functional faults depend on how the distributed 
system, for example Hadoop, executes the programs according 
to the infrastructure configuration. If the program generates 
incorrect output in some configurations and the expected 
output in others, then the program has a functional fault. A 
study of 507 MapReduce programs in production reveals at 
least 5 different kinds of these faults [30]. To detect them, 
Csallner et al. [31] and Chen et al. [32] use testing techniques 
based on symbolic execution and model checking. Other 
authors [21], [33] identified and classified more kinds of these 
faults that are caused by the infrastructure configurations. To 
detect them, Morán et al. [34] designed an automatic testing 
technique based on combinatorics and simulation. This paper 
also aims to detect these kinds of faults that are caused by the 
infrastructure configurations, but not executing the tests in 
stages prior to production. Instead, the approach for testing 
proposed in this paper is automatically performed during 
production and taking advantage of the runtime data. 

In the production environment, the infrastructure failures 
are fairly frequent. Several research lines suggest the injection 
of infrastructure failures [35], [36] during the testing, and 
several tools support it [37]–[39]. For example, Marynowski et 
al. [40] create test cases specifying which computers fail and 
when. Some faults can be detected with the injection of 
infrastructure failures, but others require a full control of the 
distributed system and its underlying large infrastructure. To 
detect this kind of faults, this work does not inject 
infrastructure failures, but simulates the different infrastructure 
configurations in a lab to obtain fine-grained control and 
reproducibility of the tests. 

Other testing techniques focus on the generation of test 
input data with different approaches: using data flow [41], 
based on a bacteriological algorithm [42], or with input domain 
together with combinatorial testing [43]. Unlike the previous 
testing techniques, this paper takes the data directly from 
production in runtime. 

There are several tools to design and execute test cases for 
MapReduce applications. Herriot [44] allows the execution of 
the tests in a real cluster at the same time that it supports the 
injection of the infrastructure failures. Other tools called 
MiniClusters [45] execute the test cases in a cluster simulated 
in memory. For unit testing, MRUnit [46] provides an 
adaptation of JUnit [47] to the MapReduce processing model. 
This paper also proposes a testing tool for the MapReduce 

 

Fig. 1. Execution of MapReduce program that calculates the average 

temperature per year 
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processing model, but unlike the others it performs full 
automatic testing in production with the runtime data. 

IV. EX VIVO TESTING 

Modern software applications are increasingly distributed, 
pervasive, and adaptive. For such systems, the boundary 
between development-time and production is vanishing [48], 
and several authors (e.g., [49], [50]) have proposed that 
software testing can (or should) be used even after  
deployment to continue detecting functional faults that cannot 
be found in the development environment. Testing in the 
production environment has been referred to with different 
terminology [51]: 

 Online testing, as opposed to offline, to highlight that 
testing is done without interrupting the normal 
operation. 

 Testing “in the field”, as opposed to traditional testing 
performed “in the lab”. 

 Runtime testing, to highlight that testing is done 
employing execution data from operation, rather than 
other artificial data. 

 A form of testing in production is also monitoring, 
which is referred to as passive testing in contrast with 
actively providing some stimulus (test input). 

From the previous approaches, other testing approaches 
arise, among them In Vivo testing [52]. This kind of testing is 
performed inside the production environment but in an isolated 
process in order not to affect the program executed in 
production. In this way, testing can take advantage of 
information from production such as runtime data, third party 
libraries or configurations. However, online tests also consume 
memory and other production resources that could negatively 
impact the program executed in production, especially 
regarding performance. 

The performance of the MapReduce programs is important 
because they usually analyze large and complex datasets [53]. 
The information of these datasets can be useful for carrying out 

testing in runtime [54], but the execution of the tests in the 
production environment is problematic for several reasons. 
Hadoop automatically manages the executions carried out in 
production, but does not support fine-grained control and 
reproduction in the same circumstances. In addition, the tests 
executed in production consume resources and can negatively 
impact the performance of the applications. Although 
production data can be a good test data, in the MapReduce 
context it is not feasible to execute the test cases in the 
production environment like the In Vivo testing. A more 
convenient alternative is the execution of the test cases in a 
simulator outside production, but using production data as test 
inputs. 

Thus, this paper proposes a novel testing approach called 
Ex Vivo. This new type of testing takes some information from 
production like the In Vivo approach, but performs testing 
outside the production environment. Then testing can take 
advantage of the runtime information but in a more 
controllable way than In Vivo, and without the limitations 
imposed by the actual production environment. The Ex Vivo 
testing also has few risks to impact the execution of programs 
because it does not take resources from production like the In 
Vivo approach. To the best of our knowledge there are no 
testing approaches with these principles, either in MapReduce 
or in other software contexts. 

The terminology used of In Vivo and Ex Vivo testing, 
together with In Vitro, has been borrowed from biological 
sciences where they are used to denote different kinds of tests. 
As Fig. 2 describes, In Vivo (latin for "within the living") are 
those tests performed inside an organism, Ex Vivo (latin for 
"out of living") outside, and In Vitro in a tube. In software 
testing the organism could be seen as the analogy for the 
production environment whereas the tube could be the 
development-testing environments. Consequently, In Vitro is 
the traditional testing that does not take advantage of the 
production information to detect faults. In contrast, both In 
Vivo and Ex Vivo, take advantage of this information (for 
example runtime data), but testing is performed in different 
environments: In Vivo performs testing inside the production 
environment, while Ex Vivo performs testing outside. 

V. MREXIST: EX VIVO TESTING FRAMEWORK FOR 

MAPREDUCE APPLICATIONS 

In order to perform testing not only in development-testing 
phases, but also actively during production, an automatic 
continuous testing framework is proposed.  This framework is 
called MrExist (MapReduce EX vIvo teSTing) and it is based 
on the Ex Vivo testing approach exposed in Section IV adapted 
to the MapReduce processing model characteristics. These 
programs are executed in a non-deterministic way by a 
distributed system, for example by Hadoop. Usually these 
systems do not allow fine-grained control of the execution, thus 
making testing more difficult. The Ex Vivo framework 
proposed here takes data under execution and then executes 
test cases based on such real data in a test server outside the 
production environment. Therefore the execution of the test 
cases does not take resources from production, does not 
introduce side-effects and can be fully controlled. 

Input Software 
under test

Output

Testing environment

Input Application Output

Production environment

Input Software 
under test

Output

Testing environment

Input Application Output

Production environment

Input Software 
under test

Output

IN VITRO

EX VIVO

IN VIVO

 

Fig. 2. Software testing approaches 



Fig. 3 describes the MrExist framework starting with a user 
that executes a program and finishing by testing performed 
automatically without any knowledge either of the 
specification or of the expected output. Firstly a probe detects 
that a user has executed a program (1), and the probe sends this 
program to the test server (2). Then the program is parsed by 
the test server (3) to obtain the location of the data and the 
MapReduce functionality code. This code is instrumented (4) 
to analyze its internal states, and the test input data are sampled 
from the production data (5). Finally, the testing is performed 
using a specific MapReduce testing technique [22], [34] that 
only needs the test input data and the program to detect 
functional faults (6). 

Generally speaking, a challenge for testing in production is 
how to check whether the output is correct or not (test oracle), 
especially in those programs that are specifically developed to 
obtain some previously unknown or costly answer [55], as for 
example some machine learning programs. Such problems do 
not exist in our approach, as we can compare the outputs 
obtained for the same data in different configurations. The 
MrExist framework automatically detects a functional fault 
when the same data executed in different configurations do not 
generate an equivalent output. The different parts of MrExist 
are described in detail in the subsections below together with 
the following example. 

Consider the program that calculates the average 
temperature per year described in Section II and extended with 
a Combiner to improve the performance. The Combiner 
receives several temperatures and then they are replaced by 
their average to decrease the data sent from one computer to 
another. This program has a functional fault because all the 
temperatures are needed to obtain the total average 
temperature. First, the Combiner replaces the data available 
locally for their average, and then the Reducer calculates the 
global average with these local averages, but sometimes this 
output does not match the average of all temperatures. This 
kind of fault is difficult to detect in the MapReduce programs 
and is usually masked during the testing [22] because the latter 
does not suffer aggressive situations as in the execution of 
large data in production like parallelization, computer failures, 
automatic optimizations and so on. Then these programs can be 
released to production and the Ex Vivo framework proposed, 
MrExist, could automatically detect faults and notify the user 
in runtime. 

A. Parser 

The probe sends the program executed in production to the 
test server. Then the program is parsed in order to obtain the 
MapReduce code functionality and the location of the dataset 
employed in production. The parser analyzes the bytecode with 
Javassist [56] not only to obtain the bytecode of the Mapper, 
Combiner and Reducer, but also other MapReduce advanced 
functionalities such as Partitioner and Sort, among others that 
are relevant for testing. 

The parser employs a cache based on MD5 hashes [57] that 
leverages the communications between client and test server. 
The client only sends a few bytes of hash instead of the 
program, and when the test server does not have the program in 
the cache, then it can request it. The parser also detects 
automatically if the program under test has been tested before 
or not, and then registers the different versions/improvements 
of the program based also on its hashes. 

For example, when the user executes the program that 
calculates the average per year, the probe sends the MD5 hash 
of the program to the test server. If the program is not in the 
cache, the test server requests the program from the probe. 
Then the program is parsed in the test server obtaining (1) 
location of dataset, (2) code of the MapReduce functionality, 
and (3) other metadata such as the number of the version. For 
the program under test the parser obtains the following 
MapReduce code: AvgMapper function (Mapper), AvgReducer 
function (Reducer and Combiner), TextInputFormat function 
(Input format), among other advanced codes of the MapReduce 
programs and dependencies. Finally, the parser checks if the 
program has been tested before or if it is a new version with 
changes of a previous program. Then the parser registers this 
information about the program version, allowing the 
visualization of the quality evolution in the user programs. 

B. Instrumentation 

The Mapper, Combiner and Reducer functions in Hadoop 
do not return any data, the <key, value> pairs are sent from one 
function to another based on buffers, dumps, and remote calls, 
among others. In order to observe the internal states of the 
program under test, the MapReduce functions are instrumented. 
The instrumentation automatically adds mocks, stubs and spies 
inside the code using mocking frameworks widely used in 
practice [58] such as Mockito [59] and PowerMock [60]. 

For example, in the program that calculates the average 
temperature per year, the parser obtains that avgMapper and 
avgReducer code implement the Mapper, Combiner and 
Reducer. In order to enable full control and monitoring of their 
internal states during testing, these functions are instrumented 
with mocks, stubs and spies. 

C. Sampling 

In addition to the code under test, MrExist needs data to 
perform testing. The sampling method generates the test input 
data from the location previously obtained by the parser.  

In Big Data, the datasets usually contain a huge amount of 
data stored in a distributed database or filesystem, such as 
HBase [61] or HDFS (Hadoop Distributed File System) [62]. 

 

Fig. 3. Architecture of MrExist (MapReduce EX vivo teSTing) 

Client

Input data 
location Sampling

Testing

Instrumentation
Mapper
Combiner
...

010...
110...
101...

110...

Input
data 

Program

probe

1

3

4
5

6

Parser

Code under
test

P
ro

d
u

ct
io

n
La

b

Production cluster
Te

st
 s

er
ve

r
...

...

2



In terms of resources, it is not feasible to perform functional 
testing with all of these large data. Instead, MrExist generates a 
smaller test input data with a reservoir sampling [63]. This 
algorithm samples streams of data and can be parallelized to 
improve the performance. The MrExist framework implements 
the sampling using the MapReduce processing model to 
employ Big Data power during the sampling of the large 
datasets. This algorithm assigns a random number to each 
<key, value> pair, and then only the highest are sampled.  

The samples obtained from the sampling algorithm are used 
as test input data and are saved in a specific binary format for 
the <key, value> data, called SequenceFile [64]. These samples 
are obtained based on randomness, but the algorithm also 
supports pseudorandom numbers, also called seeds, to obtain 
the samples in a deterministic way and support the 
reproduction of the test cases in the same circumstances. 

In a Big Data cluster there are several datasets, but the 
majority of the programs only analyze the same one, two or 
few datasets [18], and sometimes concurrently [65]. To avoid 
multiple samplings of these Big Data datasets a cache is 
implemented to improve performance [66], [67]. Then the 
sampling method is only executed when the dataset has no 
samples in cache. These samples can also be generated 
proactively, for example scheduling the samplings of the 
available datasets during weekends, nights or at other times 
with low production activities. 

In the program that calculates the average temperature per 
year, the parser obtains the dataset used in production. Then 
MrExist checks if the cache contains test input data for this 
dataset. If there is no data, a sampling is performed obtaining, 

among others, the temperatures 4⁰ , 2⁰  and 3⁰  in the year 
1999. Then these test input data are available in the cache for 
future uses in testing. 

D. Testing 

The execution of the program in production is managed by 
a distributed system, for example Hadoop, that automatically 
allocates resources in a parallel way, re-executes different parts 
of the program in case of computer failures, performs some 
data optimization and mixes the analysis of different parallel 
traces, among others. These automatic mechanisms guide the 
execution in a highly scalable way, but could also cause that a 
program generates an incorrect output. In this case, the 
program has a functional fault because it generates valid or 

incorrect output depending on the infrastructure configuration 
[21]. 

MrExist detects these faults employing a specific 
MapReduce testing technique [22]. This testing technique 
executes the same data in different infrastructure configurations 
and checks whether their outputs are similar or not. These 
infrastructure configurations are generated with a combination 
of a different number of Mapper/Reducer tasks, and several 
MapReduce optimizations, among others.  Fig. 4 describes the 
execution of the testing technique taking advantage of the 
sampling and instrumentation of the previous sections. The test 
server obtains the test input data from sampling, and the 
software under test from instrumentation. Then the test server 
executes each test input data with different configurations and 
finally checks if the outputs are equivalent, revealing a fault if 
they are not. These configurations are generated and executed 
with an extension of MRUnit [22], [46] (JUnit [47] for 
MapReduce), and checked with Hamcrest matchers [68]. 

In the program that calculates the average temperature per 
year, MrExist automatically detects a fault. First, the parser 
obtains that the program under test has a customized Mapper, 
Combiner and Reducer functionalities, among other 
MapReduce advanced functions. Then these functions are 
instrumented, and the testing is performed with the different 
test input data obtained from production by the sampling 
method. Fig. 5 describes the testing performed with the test 

input data: 4⁰ , 2⁰  and 3⁰  in the year 1999. The test server 
iteratively generates and simulates different configurations, and 
then checks if one of the outputs is not equivalent to the others. 
The first configuration generated is made up of only one 

Mapper, one Combiner and one Reducer, producing 3⁰  as 

output. The second configuration also generates 3⁰  with a 
different configuration: two Mappers (the first with two data, 
and the second with one data), two Combiners and one 
Reducer. But the third configuration generates a different 

output, 3.25⁰ , that automatically reveals a fault because the 
program generates different output depending on how it is 
executed. This configuration is composed by two Mappers (the 
first with one data, the second with two data), two Combiners 
and one Reducer. In this case, the program does not support 
this Combiner because it replaces the temperatures available 
locally by their average, and then Reducer calculates 
erroneously the total average with these local averages. 

 

Fig. 4. Testing technique used in MrExist 
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Once the fault is automatically detected, MrExist sends an 
email to the user in order to notify the fault. The email not only 
contains the existence of the fault, but also represents how this 
fault is caused, as can be seen at the bottom of Fig. 5. Then the 
user can stop the program to avoid incorrect worthless output 
while also saving money, energy and time of large-scale 
computation resources, especially for those MapReduce 
programs that finish their execution after several hours [18] or 
days  [17]. 

E. Test oracle 

The test oracles have some properties to characterize the 
testing efficacy [69], [70]. The MrExist framework aims to 
detect faults without human intervention, and the oracle used 
during testing is an automated partial oracle [55]. This kind of 
oracle can detect some faults without any knowledge about the 
expected output. The oracle employed in MrExist is 
automatically derived from the program executions [71] using 
metamorphic testing [72]–[74], that is a field also employed to 
test machine learning programs [75] and in In Vivo 
frameworks [76]. The metamorphic testing given a test case 
checks relationships inside one or different executions of the 
program. The test case is called original test case, the different 
executions are called follow-up test cases, and the relationship 
that should be satisfied is called metamorphic relationship. 

The MrExist framework proposes a metamorphic testing 
that can automatically test the MapReduce programs. This 
approach obtains the test cases from production (original test 
cases) then executes them with different configurations 
(follow-up test cases) and finally checks if their outputs are 
equivalent (metamorphic relationship), if not a potential fault is 
detected.  

In most metamorphic testing research, the test cases are 
generated with random testing [77]. In MrExist, the original 
test cases are also obtained randomly based on a sampling of 
the production dataset. One benefit of testing with this 
automatic oracle is that these random data can be useful to 
cover more test domains [78]. 

According to the study of Segura et al. [77] the number of 
metamorphic papers will increase in the following years, but to 
date 49% employ the metamorphic testing capabilities to 
different problem domains, and only 2% present a tool. In our 
case, this paper not only defines and automatizes the 
metamorphic relationship to the MapReduce domain, but also 
develops a tool that detects faults in production without human 
intervention and non-intrusively from runtime data. 

F. Probe 

MrExist executes testing with runtime data when a 
MapReduce program is executed in production. The probe 
detects the execution of the program and catches it together 
with other information about the context and user. Then the 
probe sends the program and all information to the test server 
asynchronously with the aim of minimizing the impact of the 
probe in terms of execution time.  

The probe is not intrusive in the sense that no modification 
or additional code is necessary either in the MapReduce 

applications or in the production cluster. To enable MrExist 
framework it is only necessary (1) the replacement of one 
library in the Hadoop client that adds the probe for all 
programs executed in this computer, and (2) the deployment of 
the test server to perform testing with access to the Hadoop 
cluster and data sources employed in production. The test 
server is a Java application that automatically deploys a Jetty 
server [79] and serverless database SQLite [80], [81] both 
embedded inside. Thus the test server is self-contained and can 
easily be deployed from one computer to another in case of 
computer failures. 

VI. CASE STUDY 

In order to validate the testing framework MrExist, we use 
the real-world program Open Ankus [82] as case study. This 
program implements Machine Learning and Data Mining 
libraries using the MapReduce processing model. One part of 
the program is a recommendation system that predicts the best 
books for each user based on the books read by others. The 
system obtains the similarities between users based on the 
points that each user assigns to different books. Given these 
similarities, the system predicts the points from each user to 
each book, and the highest are recommended. Finally, when the 
user assigns points to the book, the system calculates the error 
of its previous prediction. 

This program is executed in the production environment, 
and MrExist automatically notifies the existence of a functional 
fault. This fault arises in the following situation: (1) the system 
predicts that Alice could assign 0 points to Don Quixote, (2) 
Alice assigns 0 points to Don Quixote, (3) later the system 
detects a change in Alice’s taste and predicts that Alice could 
assign 10 points to Don Quixote, and (4) Alice assigns 10 
points to Don Quixote. For the previous situation obtained 
from runtime data, the expected output is that the predictions 
are accurate with 0% of error. But MrExist detects that the 
MapReduce program has a fault because it sometimes obtains 
100% of error as output and 0% in others, depending on the 
infrastructure configuration (number of computers, computer 
failures, and so on). The program checks per each user-book 
the first points assigned against the first points predicted, and 
so on (0 vs 0 and 10 vs 10, 0% of error). The fault arises when 
the infrastructure configuration causes that the input data are 
processed in a different order. The MapReduce processing 
model splits the input data into several subsets that are 
analyzed in parallel, then the final part of the input data can be 
processed before the first part. This fault is revealed when the 
infrastructure configuration causes that the first assignment is 
checked against the second prediction, and the second 
assignment against the first prediction (0 vs 10 and 10 vs 0, 
100% of error). 

 Fig. 6 depicts the Ex Vivo testing for the previous 
situation. When the program is executed in production, the 
tests are executed in the test server. Firstly the large runtime 
data is sampled to obtain test input data, among others: (1) 
prediction of Alice-Don Quixote: 0 points, (2) assignment of 
Alice-Don Quixote: 0 points, (3) prediction of Alice-Don 
Quixote: 10 points, and (4) assignment of Alice-Don Quixote: 
10 points. Then these runtime data are executed in several 
configurations. The first configuration obtains 0% of error as 



output whereas the second obtains an incorrect output of 100% 
of error because the infrastructure configuration causes that the 
program analyzes the input data in a different order. Then the 
testing framework MrExist notifies the user of the existence of 
a functional fault in the program executed in production. 

VII. CONCLUSIONS AND FUTURE WORK 

This paper introduces a context-independent testing 
approach called Ex Vivo to detect faults. The tests are designed 
from production data and executed in a different environment 
to avoid side-effects and gain fine-grained control. This 
approach is employed in an automatic testing framework for 
MapReduce programs. The execution of an application triggers 
the testing in background taking advantage of runtime data and 
detecting faults without human intervention. In the case of a 
fault, the framework notifies the user who can stop the faulty 
program, allowing to improve the quality, avoid incorrect 
output and save time, money and energy of the large-scale 
resources executed in production. 

This approach is applied in a real-world program executed 
in a production cluster, and without any modification, the 
testing framework automatically notifies that the program has a 
functional fault. 

As future work, we are creating an automatic method to 
forecast in runtime the percentage of the production output 
affected by the functional fault. Another research line pursues 
self-healing through automatic localization and removal of the 
fault in production. 
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