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Abstract
Traditional and non-traditional cardiovascular (CV) risk factors underlie CV disease occurrence in rheumatoid
arthritis (RA). Recently, a functional impairment of high-density lipoprotein (HDL) has been observed. Although the
actual players are unknown, anti-HDLs were associated with altered lipid profile, decreased paraoxonase 1 (PON1)
activity and CV disease in RA. Therefore, we aimed to evaluate whether the presence of antibodies against PON1
may be involved in this scenario. IgG anti-PON1 antibodies were quantified by ELISA in serum samples from 212 RA
patients, 175 healthy controls (HC) and 54 subjects with traditional CV risk factors. A subgroup of 13 RA patients
was prospectively followed upon tumour necrosis factor-α (TNFα)-blockade. Serum PON1 activity, nitric oxide (NO)
and total antioxidant capacity (TAC) were measured. Interferon-γ (IFNγ ), interleukin 8 (IL-8), monocyte chemotactic
protein 1 (MCP-1), vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule (sICAM) and
TNFα serum levels were assessed by immunoassays. PON1 rs662 (Q > R) status was studied by RT-PCR. IgG
anti-PON1 antibodies are increased in RA patients compared with HC (P < 0.0001) and CVR subjects (P < 0.001),
even after correcting for total IgG levels. Although no associations with lipid profile were found, a positive correlation
with Health Assessment Questionnaire (HAQ) was observed (r = 0.215, P = 0.004). Anti-PON1 antibodies were
associated with PON1 activity, NO and TAC, a rs662-mediated gene-dosage effect being found. Similarly, anti-PON1
antibodies were associated with sICAM serum levels in univariate and multivariate models. Finally, these antibodies
were not affected by TNFα-blockade. Anti-PON1 antibodies can be responsible of PON1 impairment in RA patients,
with a potential impact on biomarkers of oxidative status and endothelial activation. A gene–environment
interaction of rs662 variants is supported.
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INTRODUCTION

Rheumatoid arthritis (RA) is associated with increased rates of

Q1

Q2

cardiovascular disease (CVD) morbidity and mortality [1]. Since
traditional CV risk factors fail to fully account for this excess
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rheumatoid factor; sICAM, soluble intercellular adhesion molecule; TAC, total antioxidant capacity; TNFα, tumour necrosis factor-α, vascular endothelial growth factor.
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risk, disease-related features, such as chronic inflammation and
immune dysregulation are thought to play a role [2,3].

Interestingly, a cross-talk between these two groups of risk
factors has been proposed [4]. Altered lipoprotein profile is a
common feature of RA, especially in high disease activity states
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[5,6]. Actually, the term ‘lipid paradox’ has been coined to cover
this topic [7]. Upon treatment, normalization of disease activ-
ity and thus, inflammatory burden, led to normalization of lipid
levels to variable degrees, depending on the drug approach used
[5,8]. These findings support the involvement of different im-
mune pathways in the maintenance of the lipid profile, although
some authors proposed that inflammation cannot be the only un-
derlying factor [5]. In recent years, in addition to altered levels,
compromised high-density lipoprotein (HDL) functionality has
been also reported in RA [9,10], hence expanding the topic of
‘lipid paradox’ to ‘HDL dysfunction’. However, how the inter-
play between lipids, immune pathways and CVD is orchestrated
remains vaguely understood.

Among the novel functions for HDL, anti-inflammatory and
antioxidant capacities are of outstanding relevance. Antioxid-
ant functionality is mostly developed by the calcium-dependent
esterase paraoxonase 1 (PON1) [11]. PON1 enzymatic activity
prevents the oxidization of low-density lipoproteins (LDL) as
well as the inactivation of already formed oxidized phosphol-
ipids [11]. Moreover, PON1 protects HDL itself from oxidation,
thus playing a crucial role on antioxidant capacity of HDL [12].
The role of oxidized lipoproteins in the early stages of athero-
sclerosis development, involving immune-mediated mechanisms
and the up-regulation of adhesion molecules, accounts for the
role of the antioxidant activity of PON1 in preventing athero-
sclerosis [13,14]. PON1 activity is under genetic control by a
number of polymorphisms, a single nucleotide located at posi-
tion +192 being the most important [15]. Moreover, controversy
on the influence of rs662 variants [16,17] may suggest that gene–
environment interactions are responsible of the final PON1 activ-
ity outcome [18,19]. However, what the clinical significance for
PON1 impairment is remains controversial.

In line with the emerging role of autoantibodies in CVD patho-
genesis, we have recently characterized the involvement of anti-
bodies against high-density lipoproteins (anti-HDL) on lipid pro-
files, therapy outcome and PON1 activity in RA [20,21]. Since
other groups have revealed the presence of anti-apolipoprotein
A1 antibodies [22] and due to the complexity of the HDL struc-
ture, we wondered whether HDL dysfunction may be linked to
other lipoprotein components. Therefore, in the present report
we aimed (i) to analyse whether PON1 is a new autoimmune tar-
get in RA, (ii) to investigate whether anti-PON1 antibodies may
be linked to lipid profiles and inflammatory mediators, (iii) to
evaluate whether anti-PON1 are linked to a compromised PON1
functionality and its association with PON1 rs662 genetic vari-
ants and finally (iv) to analyse whether anti-PON1 antibodies
might be affected by immunomodulatory treatment.

MATERIALS AND METHODS

Patients and controls
This cross-sectional case-control study involved three different
groups of individuals recruited (Table 1). RA patients, all ful-
filling 2010 ACR/EULAR classification criteria, were enrolled
from the Department of Rheumatology at Hospital Universitario

Central de Asturias. A complete clinical examination, including
disease activity score 28-joints (DAS28) calculation, was per-
formed on all patients on their clinic appointment and a blood
sample was drawn by venipuncture. Clinical records were ret-
rospectively revised so as to register traditional CV risk factors
and the history of CV events. Definition and classification of
CV events and traditional risk factors (hypertension, diabetes,
dyslipidaemia, obesity and smoking) were performed as previ-
ously established [21]. Similarly, a subgroup of 13 RA patients
[12 women, median age 43 (range: 30–65), DAS28 5.08(1.93),
38.5 % RF+, 46.1 % ACPA+], biological-naı̈ve and candidates
for tumour necrosis factor-α (TNFα)-blockers, was prospectively
followed for 3 months. A blood sample was obtained immedi-
ately before (baseline, pre-treatment) as well as 3-months after
initiation of anti-TNFα therapy (post-treatment) [11 golimumab
(50 mg/month, subcutaneous) and 2 etanercept (50 mg/week,
subcutaneous)]. All patients were in concomitant methotrexate
and 10 (76.9 %) were also in low-dose glucocorticoid therapy.
Clinical response was evaluated by EULAR criteria.

Simultaneously, 175 gender- and age-matched healthy volun-
teers (HC) were recruited from the same population and a group
of 54 individuals with traditional CV risk factors (Table 1) was
recruited from their primary healthcare centre.

Automated serum lipids analysis was carried out on all the par-
ticipants from fresh blood samples. Serum samples were stored
at −80oC until laboratory measurements were performed. Ap-
proval for the study was obtained from the Institutional Review
Board (Comité de Ética Regional de Investigación Clı́nica), in
compliance with the Declaration of Helsinki. All the participants
gave written informed consent prior to their inclusion in the study.

Determination of IgG anti-PON1 antibodies
IgG anti-PON1 antibodies were measured in serum samples by
an in-house ELISA. Microtiter Maxisorp plates (Nunc) were
half-coated with 2μg/ml human paraoxonase-1 protein (Ab-
cam) in carbonate buffer (pH 9.6) (half test) or carbonate buf-
fer alone (half control) overnight at 4oC. Plates were blocked
with PBS containing 2 % BSA (Sigma) for 2 h at 37oC. Then,
serum samples diluted 1:100 in PBS 0.1 % BSA and standard
curves from pooled sera (dilutions 1:20–1:2560) were incubated
for 2 h. After washing with TBS–Tween 20 (0.05 %), alkaline
phosphatase-conjugated anti-human IgG (1:2000) (Immunostep)
was added and incubated for 1 h with gentle shaking. Finally, the
plate was washed with TBS and p-nitrophenylphosphate (Sigma)
in diethanolamine buffer was added as substrate. Absorbance at
405 nm was recorded, anti-PON1 arbitrary units (AU) were cal-
culated for each sample according to those from the standard
curve after subtracting absorbance from the half control to that
of the half test.

Similarly, total IgG was quantified by conventional ELISA
techniques. Anti-PON1 AU values were corrected using total
IgG levels (anti-PON1/IgG).

Determination of IgG anti-HDL antibodies
IgG anti-HDL antibodies were quantified as previously reported
by our group [21].
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Table 1 Demographic and clinical features in the different study groups
Continuous variables were summarized as median (interquartile range) or mean +− S.D., as appropriated, and n (%) for
categorical ones, unless otherwise stated. Differences among the three study groups were analysed by χ2 or Kruskal–Wallis
tests. CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; NSAIDs, non-steroidal anti-inflammatory drugs.

HC (n = 175) RA (n = 212) CVR (n = 54) P-value

Demographic parameters

Gender (f/m) 102/35 175/37 38/16 0.071

Age at sampling, years (mean (range)) 51 (23–80) 54 (18–87) 54 (33–68) 0.300

Total-cholesterol, mg/dl 204.61 +− 34.35 207.42 +− 35.71 216.97 +− 45.25 0.185

HDL-cholesterol, mg/dl 58.83 +− 13.81 60.56 +− 17.60 57.39 +− 14.06 0.394

LDL-cholesterol, mg/dl 125.38 +− 30.05 122.60 +− 32.38 135.54 +− 35.25 0.080

Total/HDL-cholesterol ratio 3.67 +− 1.00 3.72 +− 1.35 3.93 +− 1.13 0.211

Clinical features

Disease duration (years) (range) 2.75 (0–30)

Recruited at onset, n (%) 47 (22.1)

Age at diagnosis (years) 50.00 (17.00)

CRP (mg/dl) 1.00 (2.63)

ESR (mm) 18.00 (23.00)

DAS28 score 3.73 (2.24)

HAQ 0.87 (1.25)

RF+, n (%) 119 (56.1)

ACPA+, n (%) 121 (57.0)

Treatments, n (%)

None or NSAIDs 47 (22.1)

Glucocorticoids 103 (48.5)

Methotrexate 139 (65.5)

TNFα-blockers 48 (22.6)

Tocilizumab 12 (5.6)

Statins 24 (11.3)

Traditional CV risk factors, n (%)

Hypertension 65 (30.6) 34 (62.9)

Dyslipidaemia 52 (34.5) 21 (38.8)

Diabetes 22 (10.3) 20 (37.0)

Obesity (n = 129) 29 (13.6) 21 (38.8)

Smoking 74 (34.9) 34 (62.9)

Previous CV events, n (%) 38 (17.9)

Analysis of PON1 activity
PON1 activity was quantified as previously described [20] using
paraoxon (Sigma) as substrate. A unit (U) of PON1 activity was
expressed as micromoles of p-nitrophenol formed per minute per
millilitre of serum.

Quantification of cytokine serum levels
Interleukin 8 (IL-8) and vascular endothelial growth factor
(VEGF) serum levels were quantified using a Cytometric Bead
Array Flex Set (BD) in a FACS Canto II flow cytometer using
FCAP Array v.1.0.1, following the manufacturer’s instructions.
The detection limits were 1.2 and 4.5 pg/ml respectively.

Interferon-γ (IFNγ ) serum levels were assessed using an Op-
tEIA kit (BD) following the manufacturer’s instructions (detec-
tion limit: 0.58 pg/ml). Levels of TNFα, monocyte chemotactic
protein 1 (MCP-1) and sICAM-1 were quantified using Mini
ELISA Development Kits (PeproTech), according to the man-

ufacturer’s instructions (detection limits were: 3.9, 8 and 23.44
pg/ml respectively).

Analysis of total antioxidant capacity
Serum total antioxidant capacity (TAC) was assessed by means
of a spectrophotometric method based on the cupric reducing
antioxidant capacity (CUPRAC method) using a commercial kit
(TAC Assay Kit, Sciencell Research Laboratories). Serum TAC
was expressed as Trolox equivalent units (T-Eq).

Assessment of nitric oxide serum levels
Nitric oxide (NO) levels were indirectly quantified through the
measurement of the stable metabolites nitrite and nitrate (NOx)
in serum. These products were measured by means of the Griess
reaction using a commercial kit [Nitric Oxide (total) detection
kit, Enzo Life Sciences], following the protocol provided by the
manufacturer. NOx detection limit was 3.1 μM. Serum samples
were treated with zinc sulfate (ZnSO4) (less than 1/20th of the
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Figure 1 Levels of IgG anti-PON1 and anti-HDL antibodies in the different study groups
Results are shown as box plots, where the boxes represent the 25th to 75th percentiles, the lines within the boxes
represent the median, and the lines outside the boxes represent the minimum and maximum values. Differences were
assessed by Kruskal–Wallis and Dunn–Bonferroni post hoc tests. HC (n = 172), RA (n = 212), CVR (n = 54).

total volume) to allow protein precipitation, as described in [23].
Efficiency of protein precipitation was evaluated by protein quan-
tification by the Bradford Assay.

PON1 rs662 genotyping
DNA was obtained from whole peripheral blood using standard
methods. The PON1 rs662 polymorphism was genotyped with
TaqMan predesigned single-nucleotide polymorphism (SNP)
genotyping assays (C_2548962_20) in a 7900 HT Real-Time
PCR system. PCR cycles (total volume: 4 μl) were carried out as
follows: denaturation at 95 ◦C for 10 min, 45 cycles of denatura-
tion at 92 ◦C for 15 s, and then annealing and extension at 60 ◦C
for 1 min.

Statistical analysis
Data are expressed as median (interquartile range) or
mean +− S.D., as appropriated. Categorical variables were ex-
pressed as n (%) and analysed using χ 2 tests. Correlations were
assessed by Spearman rank’s test, whereas differences among
groups were analysed by Kruskal–Wallis (Dunn–Bonferroni cor-
rection for multiple comparisons test) or Mann–Whitney U tests.
An ANCOVA model was used to evaluate the simultaneous effect
of anti-PON1 antibodies and rs662 variants on PON1 activity.
Variables were log-transformed to achieve normal distribution
prior to multiple regression analyses and adjusted β, B coef-
ficients and 95 % confidence intervals (CI) were calculated. A
P-value <0.050 was considered as the limit of signification. Stat-
istical analyses were performed under SPSS 19.0 and Graph Pad
5.0.

RESULTS

IgG anti-PON1 antibodies are increased in RA
patients
The levels of IgG anti-PON1 and anti-HDL antibodies were quan-
tified in serum samples from the study groups summarized in

Table 1. IgG anti-PON1 antibodies were found to be increased
in RA patients compared with HC and CVR populations (Fig-
ure 1). Although no correlation was found with anti-HDL levels
(r = 0.087, P = 0.211), higher anti-PON1 levels were observed
in patients with elevated anti-HDL levels (levels >90th anti-
HDL/IgG in the HC population, P = 0.043). Increased anti-PON1
antibodies in RA cannot be attributed to a general IgG produc-
tion in the context of autoimmunity, since differences remained
after correction for total IgG levels [anti-PON1/IgG: 8.63 (15.34)
compared with 10.92 (35.62); P = 0.015].

Therefore, we evaluated whether IgG anti-PON1 antibodies
may be associated with a subgroup of RA patients with spe-
cific clinical or immunological features. Anti-PON1/IgG levels
were neither correlated to disease activity (r = 0.078, P = 0.289)
nor duration (r = 0.123, P = 0.083), although a positive correl-
ation was found with Health Assessment Questionnaire (HAQ)
score (r = 0.215, P = 0.004). Moreover, rheumatoid factor (RF)
or anti-citrullinated peptide antibodies (ACPA) positivity was not
associated with anti-PON1 levels (P = 0.893 and P = 0.159 re-
spectively). Interestingly, the history of previous CV events was
not related to anti-PON1 levels (P = 0.697), and equivalent res-
ults were obtained for the presence of traditional CV risk factors
(all P > 0.050), in line with the results observed in the CVR
group. Finally, no effect of immunomodulatory therapies was
found on anti-PON1 levels (all P > 0.050).

Due to the role of PON1 as a component of HDL particles,
we wondered whether anti-PON1 might be associated with an
impaired lipid blood profile in RA. Anti-PON1/IgG was not
correlated to HDL levels in the whole group of RA patients
(r = −0.027, P = 0.718) or after stratification according to dis-
ease duration: patients at onset (r = −0.237, P = 0.136; n = 47)
and established (r = 0.029, P = 0.736; n = 165). Furthermore,
anti-PON1 levels failed to predict those of HDL in a multivariate
regression analysis including age, gender, disease duration, and
treatment usages as potential confounders (B[95 % CI], P-value:
−0.013[−0.044, 0.018], P = 0.393). Equivalent results were ob-
tained when the ratio total cholesterol/HDL was studied.
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Table 2 Serum levels of pro-inflammatory cytokines and biomarkers of endothelial activation and dysfunction
Variables are summarized as median (interquartile range) or mean +− S.D. and differences were assessed by Kruskal–Wallis
and Dunn–Bonferroni post hoc tests. Differences in the multiple comparison tests are indicated as *P < 0.050, **P < 0.010
and ***P < 0.001 with respect to the HC population. NOx, nitrite/nitrate.

HC RA CVR P-value

TNFα (pg/ml) 93.94 (201.52) 246.00 (282.40)*** 151.70 (145.45) <0.0001

IFNγ (pg/ml) 3.29 (7.35) 4.48 (5.02)* 4.35 (16.6)* 0.019

IL-8 (pg/ml) 14.84 (11.48) 43.08 (17.07)*** 14.42 (8.88) <0.0001

VEGF (pg/ml) 85.19 (44.34) 113.30 (44.93)*** 76.54 (50.62) <0.0001

MCP-1 (pg/ml) 247.00 (303.80) 303.70 (398.20)* 287.50 (283.90) 0.036

sICAM-1 (pg/ml) 158.80 (139.80) 230.30 (190.00)** 201.10 (132.90) 0.005

NOx (μM) 22.14 +− 18.41 20.12 +− 21.23 16.25 +− 17.49 0.181

All these results revealed a specific increase in IgG anti-PON1
antibodies in RA patients which is not associated with traditional
CV risk factors, clinical parameters or lipid profile.

IgG anti-PON1 antibodies are linked to an impaired
PON1 activity, oxidative stress and endothelial
activation
Next, to analyse the possible impact of anti-PON1 on HDL func-
tionality, PON1 activity and some biomarkers of oxidative status,
inflammation and endothelial activation were measured. Serum
PON1 activity was decreased in RA patients (287.10 +− 123.88 U)
compared with both HC (336.57 +− 127.21 U, P(Dunn–
Bonferroni) < 0.010) and CVR subjects (336.27 +− 134.70 U,
P(Dunn–Bonferroni) < 0.050). Interestingly, a negative correla-
tion was found between PON1 activity and anti-PON1/IgG levels
in RA (r = −0.223, P < 0.001), this association being stronger
in patients with established disease (r = −0.258, P < 0.001) and
absent from patients recruited at onset (r = −0.027, P = 0.855).
No associations between anti-PON1 levels and PON1 activity
were found in HC (r = 0.103, P = 0.254) or CVR (R = −0.126,
P = 0.365).

Similarly, serum TAC was decreased in RA (3.90 +− 0.88 mM
T-Eq) compared with HC (4.62 +− 1.03 mM T-Eq) and CVR indi-
viduals (4.50 +− 0.95 mM T-Eq) [P(Dunn–Bonferroni) < 0.001,
in both cases]. A slight correlation was found between TAC
and anti-PON1 antibodies in RA patients with established dis-
ease (r = −0.158, P = 0.040). However, no association was de-
tected in patients recruited at onset (r = 0.077, P = 0.609),
where a stronger decrease in TAC was observed compared
with their established counterparts (3.66 +− 0.68 compared with
4.02 +− 0.92 mM T-Eq, P = 0.020).

Finally, the associations between anti-PON1 antibodies and
serum levels of pro-inflammatory cytokines (TNFα, IFNγ and
IL-8) as well as biomarkers of endothelial activation (VEGF,
MCP-1 and sICAM-1) and dysfunction (NOx) were analysed
(Table 2). Interestingly, anti-PON1/IgG levels were correlated
to those of sICAM-1 in RA (r = 0.226, P = 0.010). Additionally,
anti-PON1/IgG levels were found to be slightly correlated to NOx

serum levels in RA (r = −0.183, P = 0.018).
Therefore, IgG anti-PON1 antibodies seem to have a detri-

mental effect on PON1 activity, oxidative status and endothelial
activation.

Effects of anti-PON1 antibodies are dependent on
PON1 rs662 genotype
Due to the role of rs662 genetic variants on the functional activity
of PON1, RA patients were stratified according to rs662 status
and the influence of anti-PON1 antibodies on PON1 activity,
TAC, sICAM and NOx serum levels was analysed.

Surprisingly, the negative association between PON1 activity
and anti-PON1 levels was restricted to patients harbouring the
QQ genotype, being absent from their QR- or RR-counterparts
(Table 3). Of note, no differences were observed in anti-PON1
levels among rs662 variants. Accordingly, an ANCOVA ana-
lysis confirmed an independent effect (interaction P = 0.486) of
both rs662 status (P < 0.0001) and anti-PON1 levels (P = 0.015).
Therefore, a multivariate linear regression analysis was con-
ducted after adjusting for disease parameters and treatments
(Table 4), hence confirming the independent role of anti-PON1
antibodies as predictors of impaired PON1 activity in RA. Of
note, a slight effect of TNFα-blockers was observed.

Likewise, the analysis of the association between anti-PON1
levels and serum TAC revealed a notable rs662-driven gene-
dosage effect, which mirror that of found for the correlation
between PON1 activity and TAC (Table 3). A similar effect was
observed for NOx serum levels. Interestingly, anti-PON1 antibod-
ies remained associated with NOx serum levels after adjusting for
DAS28 score, disease duration and treatments as potential con-
founders (B[95 % CI], P: −5.234 [−9.319, −1.148], 0.013). On
the other hand, sICAM serum levels were not affected by rs662
variants, and its association with anti-PON1 antibodies remained
significant after controlling for potential confounders (Table 5).

Overall, these findings revealed a link between anti-PON1
antibodies-mediated PON1 activity impairment and decreased
antioxidant capacity in RA, and point to rs662 variants as key
regulators of the outcome of these associations. Similarly, a role
for these antibodies in endothelial dysfunction can be expected.

IgG anti-PON1 antibodies, PON1 activity and TAC
upon TNFα blockade
Since TNFα-blockers have been described to restore HDL levels
and function in RA patients, we wondered whether a therapy-
induced fluctuation of anti-PON1 antibodies may underlie these
findings. Then, we tested this hypothesis in a subgroup of 13

C© 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society. 5
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Table 3 Effect of rs662 polymorphism on the impact of IgG anti-PON1 antibodies
Differences among genotypes were assessed by Kruskal–Wallis tests and correlations were analysed by Spearman rank’s
test. NOx, serum nitrite/nitrates.

QQ (n = 95) QR (n = 69) RR (n = 22) P-value

Anti-PON1/IgG 11.12 (35.62) 12.60 (35.33) 14.19 (68.39) 0.548

PON1 activity (unit) 217.57 +− 86.08 345.96 +− 115.12 418.33 +− 101.17 <0.0001

TAC (mM, T-Eq) 3.99 +− 0.91 3.71 +− 0.86 3.85 +− 0.91 0.106

NOx (μM) 18.25 +− 16.52 18.97 +− 15.96 18.41 +− 9.06 0.792

sICAM-1 (pg/ml) 226.80 (168.92) 273.25 (208.56) 244.31 (278.16) 0.507

Correlations (r, p)

Anti-PON1 – PON1 activity r = −0.369 r = −0.158 r = −0.310

P = 0.0002 P = 0.199 P = 0.160

Anti-PON1 – TAC r = −0.290 r = −0.259 r = 0.150

P = 0.015 P = 0.056 P = 0.567

PON1 activity – TAC r = 0.325 r = 0.154 r = 0.123

P = 0.006 P = 0.241 P = 0.639

Anti-PON1 – NOx r = −0.310 r = 0.027 r = −0.453

P = 0.007 P = 0.842 P = 0.180

Table 4 Effect of rs662 polymorphism and IgG anti-PON1
levels on PON1 activity
R = 0.648; R2 = 0.438. Multivariate linear regression analysis adjusted
for CRP, ESR, DAS28 score, traditional CV risk factors and treatments
using PON1 activity as dependent variable. ESR, erythrocyte sediment-
ation rate.

β B [95 % CI] P-value

Anti-PON1/IgG −0.245 −0.073 [−0.109, −0.036] <0.001

rs662 0.557 0.167 [0.130, 0.203] <0.0001

Disease duration −0.117 −0.022 [−0.051, −0.007] 0.143

ESR 0.004 0.001 [−0.022, 0.023] 0.906

DAS28 0.014 0.002 [−0.024, 0.028] 0.961

Glucocorticoids 0.019 0.008 [−0.046, 0.061] 0.778

Methotrexate 0.111 0.049 [−0.011, 0.109] 0.111

TNFα-blockers −0.166 −0.080 [−0.146, −0.015] 0.034

Statins −0.066 −0.042 [−0.122, 0.037] 0.295

Tocilizumab −0.041 −0.037 [−0.155, 0.082] 0.542

biologic-naı̈ve RA patients, candidates for anti-TNFα therapy,
who were recruited and prospectively followed for 3 months.

TNFα-blockade was associated with decreasing TNFα

serum levels in patients exhibiting a good clinical response
(n = 5, 451.05 +− 265.98 compared with 150.14 +− 153.47 pg/ml,
P = 0.045), but not in the no-responder group (n = 8, P = 0.451).
No effect of TNFα-blockers was found on anti-PON1 antibodies,
and equivalent results were observed for PON1 activity, TAC and
NOx levels (Figure 2). Similarly, no differences were observed
when patients were grouped by EULAR response or rs662 vari-
ants (QQ: n = 7, QR: n = 5, RR: n = 1) in any of the variables
studied.

Consequently, our results suggest that anti-PON1 antibodies
are not influenced by anti-TNFα agents, hence underlining that
other strategies may be needed to counteract the anti-PON1-
mediated PON1 impairment and, therefore, its relevance to the
antioxidant status.

Table 5 Association between anti-PON1 antibodies and
sICAM-1 serum levels
R = 0.611; R2 = 0.374. Multivariate linear regression analysis using
sICAM-1 serum levels as dependent variable. BMI, body mass index;
ESR, erythrocyte sedimentation rate.

β B [95 % CI] P-value

Anti-PON1/IgG 0.494 0.159 [0.065, 0.2253] <0.001

rs662 0.043 0.014 [−0.076, 0.104] 0.755

Disease duration −0.140 −0.080 [−0.246, 0.086] 0.341

ESR 0.018 0.009 [−0.146, 0.164] 0.907

DAS28 −0.058 −0.059 [−0.391, 0.272] 0.721

BMI −0.059 −0.003 [−0.018, 0.012] 0.693

Hypertension 0.166 0.080 [−0.045, 0.205] 0.204

Diabetes 0.193 0.182 [−0.083, 0.446] 0.175

Smoking 0.213 0.105 [−0.018, 0.227] 0.092

Glucocorticoids −0.093 −0.045 [−0.176, 0.086] 0.492

Methotrexate −0.070 −0.039 [−0.175, 0.097] 0.569

TNFα-blockers 0.069 0.033 [−0.115, 0.181] 0.660

Statins 0.221 0.137 [−0.051, 0.325] 0.149

Tocilizumab −0.011 −0.007 [−0.215, 0.201] 0.944

DISCUSSION

Although extensive links between autoimmunity and CV dis-
ease have been reported, the actual mechanisms and mediators
involved remain elusive. In recent years, a growing body of evid-
ence strongly highlights a role for autoantibodies in the develop-
ment of CVD [24]. In the present study, we described for the first
time the IgG anti-PON1 antibodies as the new potential players
in this scenario.

The presence of IgG anti-PON1 antibodies can explain,
at least in part, the decreased PON1 activity reported in RA
[10,25,26]. Actually, these antibodies may be responsible of the
anti-HDL impairment of PON1 activity described by our group
[21] and others [22,27] in different conditions, and they can also
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Figure 2 Effect of TNFα-blockade on anti-PON1/IgG levels, PON1 activity, TAC and NOx serum levels
Changes in anti-PON1/IgG, PON1 activity, serum TAC and NOx levels upon TNFα-blockade were analysed in a group
of 13 biological-naı̈ve RA patients. Differences between pre-treatment (BL, baseline) and at the end of 3 months of
anti-TNFα therapy (PT, post-treatment) were evaluated by Wilcoxon paired test. No differences were found for anti-PON1/IgG
(P = 0.969), PON1 (P = 0.068), TAC (P = 0.098) and NOx (P = 0.162).

explain the PON1 impairment in the absence of traditional CV
risk factors. However, anti-PON1 antibodies were not related to
an impaired blood lipid profile and history of past CV events,
as reported for anti-HDL antibodies [21]. Taking into account
the role for PON1 activity and lipid profile in CVD development,
the findings herein presented may suggest that PON1 impairment
could be necessary but not sufficient to promote CVD, at least
in the context of autoimmune diseases. This notion is suppor-
ted by the fact that individuals exhibiting high PON1 activity
(i.e. those harbouring QR and RR rs662 variants) are not totally
protected against CVD [28,29]. Similarly, although PON1 knock-
out mice exhibited enhanced lipoprotein oxidation, their double
PON1/ApoE knockout counterparts exhibited a true accelerated
atherosclerosis development [30], hence suggesting that addi-
tional mechanisms are needed as a ‘second hit’ to promote CVD
occurrence. The interaction between PON1 and Apo A1 may
support this notion [31,32].

An outstanding finding of our study is the association between
anti-PON1 antibodies and the antioxidant capacity of serum. On
the one hand, the impact of PON1 impairment out of the HDL-
PON1 axis remains unclear in the current literature. We have
found that anti-PON1 levels are connected with a decrease an-
tioxidant defence. Decreased antioxidant capacity has been pre-
viously linked to disability, poor quality of life and frailty in
other conditions [33,34]. Our findings relating decreased TAC
and HAQ score are in accordance with these pieces of evidence
and confirm the clinical relevance of anti-PON1 antibodies and
impaired antioxidant capacity in RA. As a consequence, this study
supports a role for anti-PON1 antibodies as players of the HDL
dysfunction phenomenon [35], which has been linked to a pro-
inflammatory milieu [36,37]. On the other hand, several authors
have previously related the oxidative status to the inflammatory
burden, mainly in the context of CV risk and inflammatory condi-
tions [13]. Actually, PON1 knockout mice exhibited an increased
oxidative status with enhanced lipid peroxidation [38]. However,
in human diseases mechanistic insight is lacking. Our results sup-
port that anti-PON1 antibodies may be the missing link between
autoimmunity, oxidative stress and CVD, the rs662 genetic vari-
ants having a crucial role. Although the promotion of oxidative
stress by autoantibodies has been suggested in some conditions,
as anti-phospholipid syndrome (APS) [39], this was not clear

in RA, where APS-related autoantigens are not relevant immun-
odominant epitopes. Therefore, different autoimmune-mediated
mechanisms may be responsible of oxidative status in different
conditions, thus supporting the need for accurate patient strati-
fication and tailored medicine in the clinical setting.

A key result of our report is the association between anti-
PON1 antibodies and sICAM levels. ICAM expression is known
to be up-regulated by oxidative stress [14,40] and similar results
have been reported for sICAM levels [41]. Actually, oxidative
stimuli promote ICAM shedding [42]. Interestingly, ICAM ex-
pression is also under the control of several pathways which have
been reported to be triggered by certain autoantibodies [43].

Therefore, anti-PON1 antibodies could interfere with PON1
activity, thus impairing the HDL ability to scavenge reactive oxid-
ative species and thus promoting an oxidant-prone milieu which
may result in enhanced lipid peroxidation. This could in turn res-
ult in an up-regulation and shedding of ICAM, as a consequence
of endothelial activation in response to oxidant stimuli. A pro-
gressive endothelial activation in a scenario of chronic inflam-
mation and lipoprotein oxidation might result in an accelerated
atherosclerosis development. This phenomenon is known to be
especially relevant in low HDL scenarios [44], which is a common
feature of RA. Moreover, a link between sICAM and biomarkers
of oxidative stress depending on HDL levels has been reported
[45]. Accordingly, smoking habit, a strong inducer of lipid perox-
idation, has also been related to increased CVD rates in subjects
with low PON1 activity [46]. These ideas are in line with the
greater frequency of CV events in RA patients harbouring the
QQ variant [20] reported by our group.

The fact that oxidative stress has an early role in CVD de-
velopment may explain, at least in part, the lack of association
between anti-PON1 antibodies and CVD in this work. Since
the oxidative stress plays an early role in CVD pathogenesis
[14], anti-PON1-mediated PON1 impairment may be related to
other subclinical surrogate markers of CVD, such as endothelial
dysfunction or cIMT. This idea is supported by the association
between anti-PON1 levels and sICAM. It has been described
that sICAM is a very early marker of future CV events [47],
whereas other CAMs reflect the presence of already advanced
atherosclerotic progression [48,49]. These lines of evidence are
in line with the notion of the ‘second hit’ needed after PON1
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impairment for CVD promotion. In this sense, the negative as-
sociation between anti-PON1 antibodies and NOx serum levels
reinforce this hypothesis. On the one hand, reduced NO synthesis
is the main trigger of endothelial dysfunction, particularly in the
early steps of atherosclerosis. Decreased NO production may be
caused by a depletion of the bioavailability of tetrahydrobiopterin
(BH4) from endothelial nitric oxide synthase (eNOS) by oxidat-
ive stress [50,51]. This phenomenon leads to eNOS uncoupling,
shifting this enzymatic activity from a protective NO-producing
activity, towards a dysfunctional superoxide ion-producing activ-
ity, thereby perpetuating this loop [52]. Actually, decreased NO
serum levels have been reported in other conditions hallmarked by
oxidative stress and CV risk (reviewed in [52]). Accordingly, di-
minished NO production has been related to reduced HDL levels
[53] and decreased paraoxonase activity [54]. Overall, our results
are in line with these previous findings and support a mechan-
istic role for the anti-PON1 antibodies in the earliest steps of
endothelial activation/dysfunction, oxidative status playing a key
role. However, whether this negative association between anti-
PON1 antibodies and NOx levels is related to a clinically relevant
endothelial dysfunction cannot be concluded in the present study.
Therefore, a study of subclinical CVD in association with anti-
PON1 antibodies warrants further insight into the connection
between autoantibody-mediated PON1 impairment, endothelial
dysfunction, eNOS uncoupling and CVD.

Finally, our results shed some light on the inflammation-
oxidative stress axis and its relevance as a therapeutic target.
Although some authors have suggested a link between TNFα

and oxidative stress [55], our results fail to show such an asso-
ciation. Interestingly since TNFα-blockade showed no effect on
anti-PON1 levels and antioxidant capacity, other therapies may
be advisable in patients with high anti-PON1 levels. Although a
slight effect on anti-HDL has been reported by our group [21],
anti-PON1 antibodies were not affected, thus reinforcing the idea
that certain complexity within autoantibodies systems in terms of
response upon TNFα-blockade exists in RA [56]. Furthermore,
low sample size of our prospective study and short-term follow
up of the patients recruited may be important limitations of our
study. On the other hand, some therapeutic drugs are known to
counteract oxidative stress linked to inflammation or endothelial
activation in other conditions [39]. Among them, statins, N-acetyl
cysteine and coenzyme Q10 are promising compounds. Similarly,
fenofibrates have been reported to abrogate the HDL-mediated
increase of sICAM [44]. Therefore, anti-PON1 antibodies may
provide a rationale for treatment decision-making in the clinical
setting.

Overall, our approach allowed us to suggest the involvement
of a novel potential player in CVD in RA by investigating new
candidate epitopes in HDL. Interestingly, this approach shares
some similarities with the research of the fine specificity of ACPA
antibodies in RA [57], which has provided not only valuable in-
sight on new relevant immunodominant peptides, but also new
clues for the clinical management of this condition. Looking
at these similarities, one can speculate that investigation on the
‘fine specificity’ of anti-HDL antibodies will bring us priceless
information to delineate the links between CVD and HDL struc-
ture, whose complexity is merely started to be appreciated. Ac-

tually, the lack of association between anti-PON1 and anti-HDL
suggest the existence of multiple specificities. Since anti-PON1
antibodies were not associated with disease activity, clinical fea-
tures or treatments in RA, it is tempting to speculate that some
alterations within HDL structure are needed to make PON1 an
accessible epitope for the generation of autoantibodies. In fact,
changes in HDL structure have been reported in response to the
inflammatory burden in RA [58]. Interestingly, when RA patients
were stratified according to disease activity, those with moderate
activity (DAS28 > 3.2) showed a positive correlation between
both types of antibodies (r = 0.228, P = 0.013), being stronger in
patients with established disease (r = 0.331, P = 0.002). On the
contrary, this correlation was absent from patients with milder
disease activity (DAS28 < 3.2) (r = −0.079, P = 0.523). There-
fore, the findings herein presented point to a pivotal role for
inflammatory-mediated changes within HDL in the origin of anti-
PON1 autoantibodies and warrants further studies to unravel the
complex HDL ‘fine specificity’.

In conclusion, we report for the first time the presence of
anti-PON1 antibodies in RA in association with impaired PON1
activity, oxidative status and surrogate markers of endothelial
activation and dysfunction. Collectively, our data point towards
anti-PON1 antibodies as the missing link between autoimmunity
and oxidative stress in RA, PON1 impairment and rs662 variants
having a crucial role. These antibodies may be a promising tool
for patient stratification and clinical management in RA and other
conditions.

CLINICAL PERSPECTIVES

• In addition to serum levels, serum lipids seem to be function-
ally impaired in RA.

• The presence of high levels of IgG anti-PON1 antibodies in
RA patients may explain not only the decreased PON1 activity,
but also its connections with the antioxidant status and the
endothelial activation. Moreover, a strong gene–environment
interaction was observed.

• Anti-PON1 antibodies could have a pivotal role in the cross-
talk between lipid abnormalities and inflammation in RA by
being the missing link between autoimmunity and oxidative
stress in RA. Therefore, anti-PON1 antibodies may be con-
sidered as promising early biomarkers of cardiovascular risk
in RA patients, with potential use in the clinical setting for
CV risk stratification and early treatment consideration.
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