
A heuristic in A* for inference in nonlinear
Probabilistic Classifier Chains

Deiner Menaa,b, José Ramón Quevedoa, Elena Montañésa,∗, Juan José del Coza

aArtificial Intelligence Center. University of Oviedo at Gijón, 33204 Asturias, Spain
http://www.aic.uniovi.es

bDept. de Ingenieŕıa en Telecomunicaciones e Informática, Universidad Tecnológica del
Chocó, Quibdó - Chocó, Colombia http://www.utch.edu.co

Abstract

Probabilistic Classifier Chains (PCC) is a very interesting method to cope with

multi-label classification, since it is able to obtain the entire joint probability

distribution of the labels. However, such probability distribution is obtained

at the expense of a high computational cost. Several efforts have been made

to overcome this pitfall, proposing different inference methods for estimating

the probability distribution. Beam search and the ε- approximate algorithms

are two methods of this kind. A more recently approach is based on the A*

algorithm with an admissible heuristic, but it is limited to be used just for linear

classifiers as base methods for PCC. This paper goes in that direction presenting

an alternative admissible heuristic for the A* algorithm with two promising

advantages in comparison to the above-mentioned heuristic, namely, i) it is

more dominant for the same depth and, hence, it explores fewer nodes and ii) it

is suitable for nonlinear classifiers. Additionally, the paper proposes an efficient

implementation for the computation of the heuristic that reduces the number of

models that must be evaluated by half. The experiments show, as theoretically

expected, that this new algorithm reaches Bayes-optimal predictions in terms

of subset 0/1 loss and explores fewer nodes than other state-of-the-art methods

∗Corresponding author
Email addresses: deiner.mena@utch.edu.co (Deiner Mena), quevedo@uniovi.es (José

Ramón Quevedo), montaneselena@uniovi.es (Elena Montañés), juanjo@uniovi.es (Juan
José del Coz)

that also provide optimal predictions. In spite of exploring fewer nodes, this

new algorithm is not as fast as the ε-approximate algorithm with ε = 0 when

the search for an optimal solution is highly directed. However, it shows its

strengths when the datasets present more uncertainty, making faster predictions

than other state-of-the-art approaches.

Keywords: Multilabel, Classifier Chains, Inference, Heuristic Search

1. Introduction

In Multi-label classification (MLC), a subset from a predefined set of labels

may be assigned to an instance. Several real problems fall into this kind of

learning task, for instance, tag assignment to resources in social networks, object

detection in pictures or medical diagnosis.

Researchers in this field coincide in arguing that one interesting quality of

multi-label learning is the dependence that may be concealed among labels. In

fact, this dependence has been susceptible of being exploited by algorithms al-

ready available in the literature [2, 13, 14, 18, 22, 23, 24]. In the last years, Prob-

abilistic Classifier Chains (PCC) have been gained interest due to its promising

property of obtaining the entire joint probability. In particular, PCC meth-

ods exploit the conditional dependence, widely discussed in the literature [4],

instead of the marginal or unconditional dependence.

The high computational cost of the original method [3], which performs an

exhaustive search (ES), is the reason why researchers have been get down to

work for designing inference algorithms able to estimate such entire joint con-

ditional probability with an non-prohibitive computational cost. One of the

forefathers of these inference methods is the ε-approximate algorithm (ε-A) [5],

which uses uniform-cost search to obtain optimal Bayes predictions in terms of

subset 0/1 loss considerably reducing the computational cost. Another alter-

native also available in the literature is beam search (BS) [8], whose reduction

in computational time is remarkable, in spite of not guaranteeing optimal pre-

dictions in terms of subset 0/1 loss. Also Monte Carlo approaches [5, 16] take

2

the classifiers to draw samples of label combination susceptible of being an op-

timal prediction. Even more recently, the A* algorithm has also been proposed

[10, 12], which includes an admissible heuristic that guarantees reaching an op-

timal solution in terms of subset 0/1 loss. Despite authors include a depth

parameter in order to control the number of nodes explored in regard to the

computational time spent in computing the heuristic, the use of this heuris-

tic is limited to linear classifiers as base methods for PCC, except when the

depth of the heuristic is 1, for which any base classifier with probabilistic out-

put is allowed. But this is the extreme case of spending the least possible time

in computing the heuristic, but at expenses of exploring the most number of

nodes.

The main contribution of this paper is an alternative heuristic to the one

proposed in [10, 12] for the A* algorithm that i) it is also admissible, hence, it

guarantees Bayes-optimal predictions for the subset 0/1 loss, ii) it also includes

a depth parameter to balance the number of nodes explored and the computa-

tional time of computing the heuristic, but iii) it overcomes the limitation of

being applicable only when linear classifiers are chosen as base methods in PCC

and iv) it is more dominant than the one introduced in [10, 12] for the same

depth, hence, it theoretically explores fewer nodes. The second contribution is

to present an efficient algorithm of the heuristic in order to optimize its com-

putation. This algorithm significantly reduces the number of models that must

be evaluated to compute the heuristic and outperforms the approach presented

in [10, 12] both in terms of number of nodes explored and computational time.

The experiments also confirm that the proposed method is competitive with

respect to other approaches, especially for complex problems.

The rest of the paper is organized as follows. Section 2 formally states

the multi-label problem and describes the PCC method. Section 3 gives a brief

overview and discussion of some state-of-the-art algorithms to perform inference

in PCC. Section 4 details the proposal of this paper. Finally, Sections 5 and 6

respectively show and discuss the experiments carried out and the conclusions.

3

2. Multi-label classification and Probabilistic Classifier Chains

Before describing the PCC algorithm and the inference methods, let us for-

mally introduce the multi-label classification problem. Firstly, a non-empty

and finite set of m labels L = {`1, `2, . . . , `m} is provided. Secondly, if X is

the instance description space and Y is the power set of L, a set of instances

S = {(x1,y1), . . . , (xn,yn)} is drawn over X×Y according to an unknown prob-

ability distribution P(X,Y). Notice that the output space can be redefined as

Y = {0, 1}m, since yi is, in fact, a vector yi = (yi,1, yi,2, . . . , yi,m) where yi,j = 1

means a positive relevance and yi,j = 0 means that label `j is irrelevant for xi.

Under this framework, the goal of MLC is to obtain f : X −→ Y from S

that minimize the risk in terms of a certain loss function L(·, ·). That risk can

be defined as the expected loss over the entire joint distribution P(X,Y), that

is,

rL(f) = EX,YL(Y,f(X)). (1)

This expression can be simplified if the conditional probability distribution

P(y |x) of Y = y conditioned by X = x is taken into account, obtaining

the following expression

rL(f(x)) = arg min
f

∑
y∈Y

P(y |x) · L(y,f(x)). (2)

Among the evaluation measures suitable for studying the performance of the

algorithms designed for MLC, this paper focuses its attention to the subset 0/1

loss. This loss function is an instance-oriented measure that evaluates for each

instance if the set of predicted labels coincides with the set of actual labels or

not. Formally, it is defined as1

LS0/1
(y,f(x)) = [[y 6= f(x)]]. (3)

Taking into account the subset 0/1 loss as loss function, the risk minimizer is

1[[p]] equals 1 if p is true and 0 otherwise

4

reduced to optimize the conditional joint distribution, that is,

rS0/1
(f(x)) = arg max

y∈Y
P(y |x). (4)

This simplification of the risk minimizer for the subset 0/1 loss allows pro-

viding optimal predictions just considering all the possible combinations for the

values of the labels. This task continues being of exponential order, and, as we

will see later on, this is the reason why it is necessary to perform inference. But

obtaining optimal predictions for a generic loss function L(·, ·) means to directly

use Equation (2), which involves summing over an exponential number of label

combinations for all f [6]. Hamming loss is another common measure in MLC,

which is easier to optimize than subset 0/1. This loss is also an instance-oriented

measure that evaluates if the predicted value for each label coincides with the

actual value or not. Formally, it is defined as

LH(y,f(x)) =
1

m

m∑
i=1

[[yi 6= fi(x)]]. (5)

Hence, the risk minimizer for the Hamming loss measure is

rH(f(x)) = (rH,1(f1(x)), . . . , rH,m(fm(x))), (6)

where

rH,i(fi(x)) = arg max
v∈{0,1}

P(yi = v |x). (7)

Therefore, providing optimal predictions in terms of Hamming loss means to

obtain optimal predictions for each label independently of the rest of labels [18],

so just applying the well-known Binary Relevance approach one can optimize

this measure and no inference is required. Hence, this paper just focuses on

subset 0/1 loss, whose optimization requieres inference to obtain Bayes-optimal

predictions.

Among the methods to cope with MLC, let us concentrate on PCC in what

follows. The interest of this approach among researches is that, in addition

of considering the conditional dependence among labels, it has the ability of

optimally estimating the joint probability of a set of labels and, hence, the risk

5

minimizer for the subset 0/1 loss (see Equation (4)). Let us now explain the

method in order to easily deduce that for this purpose it is just necessary to

apply the product rule of probability.

First of all, PCC [3] establishes an order of the labels, defining a chain. Sec-

ondly and following this order, PCC trains a binary and probabilistic classifier

for each label `j able to estimate the probability of `j of being relevant for a

given instance x and taking into account the predictions for the previous labels

in the chain, that is, PCC estimates P(yj |x, y1, . . . , yj−1). Hence, the binary

probabilistic classifier that estimates the relevance of the label `j is of the form

fj : X × {0, 1}j−1 −→ [0, 1]. (8)

The training set employed to induce fj is Sj ={(x1, y1,j), . . . , (xn, yn,j)} where

now the instance description is xi = (xi, yi,1, . . . , yi,j−1), that is, the original

instance description xi together with the relevance of the labels `1, . . . , `j−1

placed before `j in the chain and the class yi,j is the relevance of `j .

Consequently, the task of evaluating the risk minimizer for the subset 0/1 loss

is simplified to just finding a combination of labels that maximizes the expression

obtained after applying the product rule of probability to the conditional joint

probability, that is:

P(y |x) =

m∏
j=1

P(yj |x, y1, . . . , yj−1). (9)

Theoretically, this expression is valid for all possible orders of the labels, but

in practice, those methods based on Classifier Chains (CC) [17] are label-order

dependent and, besides, some of them also present other issues related to error

propagation [20, 21]. These aspects are topics of interest among researchers

but they are out of the scope of this paper. Hence, let us consider an unique

order of the chain and concentrate on what follows in performing inference to

provide Bayes-optimal predictions in a way that the computational cost may be

reduced.

Before analyzing this issue in the next section, note that from a theoretical

point of view, this expression holds for any order considered for the labels. In

6

P(yj+1=0|x,y1=v1,…,yj=vj)! P(yj+1=1|x,y1=v1,…,yj=vj)!

(v1,…,vj ,0)!
!

P(y1=v1,…,yj=vj,
yj+1=0|x)!

(v1,…,vj ,1)!
!

P(y1=v1,…,yj=vj,
yj+1=1|x)!

(v1,…,vj)!
!

P(y1=v1,…,yj=vj,
|x)!

Figure 1: A generic node and its children of the probability binary tree. The top part of each

node contains the combination of labels and the bottom part includes the joint probability of

such a combination. The edges are labeled with the conditional probability

any case, in this paper we assume the order of the labels in the chain to be

given, since the goal is just to analyze the performance of the methods, without

taking into account the effect of different orders. Hence, we do not include any

study about which order can be the best.

Notice that performing inference in PCC can be seen as the different ways

of exploring a probability binary tree (see Figure 1). In this tree, the root is

labeled by the empty set of labels and a generic node of level j<m is labeled by

(v1, v2, . . . , vj) with vi ∈ {0, 1} for i=1, . . . , j. This node has two children who

are respectively labeled by (v1, v2, . . . , vj , 0) and (v1, v2, . . . , vj , 1) with a respec-

tive marginal joint conditional probability P(y1 =v1, . . . , yj =vj , yj+1=0 |x) and

P(y1 = v1, . . . , yj = vj , yj+1 = 1 |x). The probability of the edges between the

node and their children are respectively the conditional probabilities P(yj+1 =

0 |x, y1 =v1, . . . , yj =vj) and P(yj+1 =1 |x, y1 =v1, . . . , yj =vj) estimated using

the trained classifiers by 1− fj+1(x, v1, . . . , vj) and fj+1(x, v1, . . . , vj). Finally,

the marginal joint conditional probability of the children is estimated using the

product rule of probability: P(y1 = v1, . . . , yj = vj , yj+1 = vj+1 |x) = P(yj+1 =

vj+1 |x, y1 =v1, . . . , yj =vj) ·P(y1 =v1, . . . , yj =vj |x).

7

3. Inference methods in PCC for multi-label classification

Several state-of-the-art methods for inference in PCC have been deeply stud-

ied so far (see [11] for an exhaustive review). Let us now briefly describe some of

the most promising approaches, with which the method proposed in this paper

will be compared later on.

3.1. Greedy Search

The so-called method CC [18] is the original inference method for PCC.

It performs a Greedy Search (GS) over the probability binary tree, then it

just explores one path. At each node, it follows the branch with the highest

marginal joint conditional probability. Taking into account the product rule of

probability, this branch coincides with that of the highest conditional probability

estimated by fj , since both branches among to choose are children of the same

node. Each classifier fj is successively feed by the labels previously predicted

along the path. This method tries to optimize the subset 0/1 loss, but an

analysis performed in this direction [5] have shown poor results and in general

it does not reach an optimal solution.

3.2. ε-Approximate algorithm

The ε-Approximate (ε-A) algorithm [5] has promisingly arisen in between the

high computational cost of obtaining the entire joint conditional probability by

ES and the poor performance of GS. The method explores more than one path

and it consists of expanding just the nodes whose marginal joint conditional

probability exceeds the value of the threshold ε = 2−k, with 1 ≤ k ≤m. The

values of this threshold determines the strategy of the algorithms. For instance,

the particular case of ε = 0 (or any value in the interval [0, 2−m], that is, k=m)

means to perform a uniform-cost search (UC) that always reaches an optimal

solution. Besides, the method goes towards GS as ε increases and equals GS

when ε = 2−1 = 0.5 (k = 1). This method optimizes the subset 0/1 loss to a

greater or lesser degree depending on the value of ε [5].

8

3.3. Beam Search

Beam Search (BS) [7, 8] also explores several paths, whose number is limited

by a parameter b called beam width. In fact, at most b nodes are explored at

each level. Hence, i) it performs an ES in the first k∗− 1 levels, where k∗ is the

lowest integer such that b < 2k
∗

and ii) it explores just b nodes from the k∗-th

level to the leaves, those with the highest marginal joint conditional probability.

BS encapsulates both GS (with b = 1) and ES (with b=2m), then, adjusting the

beam width, this method establishes a balance between the computational cost

and the performance. BS also tends to optimize the subset 0/1 loss when b is

large enough. The authors of [8] state that BS converges rapidly to the optimal

predictions in terms of subset 0/1 loss with b < 15. They also observe that with

b = 15 a significant fraction of the actual labels are predicted as relevant even

when the label combination selected is not exactly correct.

3.4. Methods based on Monte Carlo sampling

Monte Carlo sampling was also proposed [5, 16] to perform inference in PCC.

In them, the classifiers fj induce probability distributions to draw random values

from which the prediction of the value of `j is obtained whereas in GS, such

prediction is taken directly from the evaluation of fj . This flexibility of Monte

Carlo approaches makes possible to perform the process several times, each one

offering a label combination, although the same combination may appear more

than once. After generating a certain number of label combinations, they must

be aggregated to provide the final prediction. In this sense, one can take the

most frequent label combination (the mode) [5] or the label combination with the

highest joint conditional probability [16]. In any case, Monte Carlo approaches

converge to optimize the subset 0/1 loss when the number of predictions drawn

is large enough, but they do not guarantee to reach optimal predictions. As

final remark, the number of nodes expanded by these approaches is m · q, where

m is the number of labels and q the number of predictions drawn.

9

3.5. A* algorithm using an admissible heuristic designed for linear classifiers

The A* algorithm has been also proposed for inference in PCC [10, 12] using

an admissible heuristic only suitable when the classifiers fi are linear. Since the

main contribution of the paper continues this research designing an alternative

heuristic with more promising properties, let us give a detailed description of

this approach. The A* algorithm [15, 19] explores the best node according to an

evaluation function e which can be decomposed in two other evaluation functions

g (called the known part) and h (called the unknown part). In this way, for a

generic node k, g(k) computes the cost or gain for going from the root to the node

k in a tree, whereas h(k) estimates the cost or gain for going from the node k to

a leave. Hence, e(k) computes the cost or gain for going from the root to a leave

through the node k. Usually, it is possible to obtain the exact value of g(k), but

h(k) must be estimated using an heuristic. One of the principles of A* algorithm

is that only if the heuristic is admissible2, the A* algorithm is able to reach an

optimal solution. Another crucial principle is that the A* algorithm is the most

efficient algorithm for any heuristic, because there is not any other algorithm

that using the same heuristic expands fewer nodes than A*. The particular case

of using the A* algorithm for inference in PCC means to consider a gain rather

than a cost, since the interest is to optimize the subset 0/1 loss. Besides, the

function of g and h to obtain e is the product function due to the product rule

of probability, that is, for a node k of the level j, e(k) = g(k) · h(k). Then,

e(k) = P(y1, . . . , ym |x) will be the joint conditional probability that applying

the product rule of probability is decomposed into g(k) = P(y1, . . . , yj |x),

which is the marginal joint conditional probability of labels from `1 to `j in

the order of the chain, and h(k) = P(yj+1, . . . , ym |x, y1, . . . , yj), which is the

marginal joint conditional probability of labels from `j+1 to `m.

Notice that the above-mentioned requirement for g of being exactly com-

puted is satisfied, since the values of y1, . . . , yj are known at level j. On the

2An heuristic h is admissible if for any node k, h(k) does not overestimate (in case of e(k)

is a cost function) or underestimate (in case of e(k) is a gain function) the actual cost or gain.

10

(0,0,0)
0.008

(0,0,1)
0.072

(0,1,0)
0.128

(0,1,1)
0.192

(1,0,0)
0.024

(1,0,1)
0.216

(1,1,0)
0.18

(1,1,1)
0.18

(0,0)
0.08

(0,1)
0.32

(1,0)
0.24

(1,1)
0.36

(0)
0.4

0.8

(1)
0.6

0.6

()
1

0.6

hl =0.6 · 0.8=0.48

max(1-0.6=0.4

 0.4 0.2

2

)=0.6

)=0.8 max(

Figure 2: An example of hdl heuristic for d = 2 levels of depth, hence, only two levels of

depth from there are expanded. The node in dark grey is the node for which the heuristic

is computed. Bold lines indicate the evaluations of the classifiers that must be computed

to obtain the value of the heuristic, which are, at most, two evaluations per classifier, that

which respectively correspond to the maximum of the left branches and to the maximum of

the right branches per level. Notice that only one evaluation of the classifier is performed for

the contiguous level of the node for which the heuristic is computed

other hand, h must be estimated, since the values of yj+1, . . . , ym are unknown,

so h will be an heuristic. Moreover, it must be an admissible heuristic to guar-

antee reaching an optimal solution. Also, g is, in fact, the same evaluation

function that ε-A and BS consider in order to choose the node to be explored

next. Even more, ε-A with ε= 0 is equivalent to the A* algorithm with h = 1

as heuristic [10, 12].

The design of an admissible heuristic requires to define a function that re-

turns an upper bound of P(yj+1, . . . , ym |x, y1, . . . , yj) as close as possible to

the exact value. An upper bound can be easily obtained performing the product

of the highest probability for each remaining level, from label `j+1 to label `m.

Besides, the depth of this computation may be limited to d levels, from `j+1

to `j+d and upperbounding the probability by 1 for the remaining levels, from

`j+d+1 to `m. This is the heuristic proposed in [10, 12] that shall be denoted

here as hdl , in which d represents the depth and the subscript l means that the

11

heuristic is only valid for linear models. An example is depicted in Figure 2.

There, the value of the heuristic h2l for the root node is 0.48 which is an upper

bound of the exact value of P(yj+1, . . . , ym |x, y1, . . . , yj) = 0.216. Besides, this

value is also an upper bound of the highest joint probability for those nodes at

the j+d-th level (0.36).

Therefore, the computation of hdl is reduced to calculate the highest prob-

ability for each level. This is not difficult for linear classifiers, since this kind

of classifiers, fi, are defined by means of (wi = [wi
x,w

i
y], βi), where wi

x and

wi
y are respectively the weight vectors for the x part (the description of the

example) and the y part (the values of the previous labels in the chain for the

example) and βi is the intercept term. Mathematically, hdl can be computed as

follows (see [12] for a complete deduction):

hdl =

j+d∏
i=j+1

max
v∈{0,1}

{P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1)} ·

m∏
i=j+d+1

1, (10)

where P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1) for each i with j + 1 ≤ i ≤ j + d.

The maximum value for either v = 1 or v = 0 only depends on the value that

takes each yi,vk because the part 〈wi
x,x〉 + βi is constant for each instance x.

Hence, it is straightforward to determine yi,vk looking at the corresponding value

of wi
y,k depending on v:

1) using fi(x, y1, . . . , yj , y
i,1
j+1, . . . , y

i,1
i−1) when v = 1. In this case, we set yi,1k

for j + 1 ≤ k ≤ i− 1 to 1 if the corresponding wi
y,k of the linear classifier

is positive and 0 otherwise. These values for yi,1k for j + 1 ≤ k ≤ i − 1

make the probability P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1) be maximum

when v = 1.

2) using 1− fi(x, y1, . . . , yj , yi,0j+1, . . . , y
i,0
i−1) when v = 0. In this case, we set

yi,1k for j+1 ≤ k ≤ i−1 to 1 if the corresponding wi
y,k of the linear classifier

is negative and 0 otherwise. These values for yi,1k for j + 1 ≤ k ≤ i − 1

make the probability P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1) be maximum

when v = 0.

12

Taking the maximum of the probability P(yi = v |x, y1, . . . , yj , yi,vj+1, . . . , y
i,v
i−1)

between the two values when v = 1, obtained in 1), and when v = 0, obtained

in 2), for each i with j + 1 ≤ i ≤ j + d and performing the product of this

maximum for all i such that j + 1 ≤ i ≤ j + d, the value of the heuristic hdl of

depth d for a node of level j is provided. Remember that the values of yi for

1 ≤ i ≤ j are known at all nodes of level j, so they depend on the node of the

level j for which the heuristic is computed.

Figure 2 illustrates the computation of the heuristic h2l when d = 2 levels of

depth for the unique node (the root) of level j = 0 and m = 3. In this case i

takes values i = 1, 2 (1 = j + 1 ≤ i ≤ j + d = 2).

1) For i = 1, P(y1 = 1 |x) = 0.6 and P(y1 = 0 |x) = 0.4, hence, the

maximum is reached when v = 1 and is 0.6.

2) For i = 2, P(y2 = 1 |x, y2,11) equals 0.8 when y2,11 = 0 and equals 0.6

when y2,11 = 1, hence, for v = 1 the maximum is 0.8. In the same way,

P(y2 = 0 |x, y2,01) equals 0.2 when y2,01 = 0 and equals 0.4 when y2,01 = 1,

hence, for v = 0 the maximum is 0.4. Now, the maximum between 0.8

(for v = 1) and 0.4 (for v = 0) is 0.8, reached for v = 1.

Computing the product of the maximum reached in 1) and 2), one obtains

0.6 · 0.8 = 0.48, which is the value of the heuristic for the root.

In addition to the limitation of the heuristic hdl of being just valid for linear

classifiers as base models, it is a quite time consuming heuristic because it

requires to evaluate 2d − 1 models. Hence, the power of exploring fewer nodes

than other state-of-the-art algorithms is lessened by the time spent in computing

hdl [12].

4. Exhaustive admissible heuristic in the A* algorithm for nonlinear

classifiers

This section details the steps followed to build the exhaustive heuristic pro-

posed in this paper for the A* algorithm as an alternative to the one pre-

sented in [10, 12]. The goal is to design an heuristic that may be used with

13

both, linear and nonlinear models. First of all, such heuristic must be admis-

sible, hence, it cannot underestimate the marginal joint conditional probability

P(yj+1, . . . , ym |x, y1, . . . , yj). This leads to trivially think of selecting the max-

imum value that this probability can take, which will be the optimal possibility

h∗:

h∗ = max
(yj+1,...,ym)∈{0,1}m−j

P(yj+1, . . . , ym |x, y1, . . . , yj) (11)

Applying the product rule of probability, that expression leads to

h∗ = max
(yj+1,...,ym)∈{0,1}m−j

m∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) (12)

The main problem is that evaluating this maximum is not computationally ac-

ceptable, since it means to apply an ES for the subset of labels L = {`j+1, . . . , `m}.

The main idea consists in relaxing the optimality of the heuristic h∗ in ex-

change of designing a computationally feasible heuristic. Our proposal involves

including a parameter d for limiting the depth of the heuristic in order to con-

trol the computational cost. In this sense, an ES is carried out just until d

levels of depth in the tree. This is possible thanks to the fact that any prob-

ability is delimited by 1. Hence, for a node of the level j and a value of d

such that 0 ≤ d ≤ m − j, the probabilities P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1)

are computed i) applying ES from level j + 1 to j + d, that is, evaluating

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) for these levels and taking the combination

that reaches the maximum and ii) delimiting P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1)

by 1 from level j + d+ 1 to m. Hence, we define the heuristic hdnl, in which the

subscript nl indicates that the heuristic is also valid for nonlinear classifiers, as:

hdnl = max
(yj+1,...,yj+d)∈{0,1}d

j+d∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) ·
m∏

i=j+d+1

1 (13)

or equivalently

hdnl = max
(yj+1,...,yj+d)∈{0,1}d

j+d∏
i=j+1

P(yi |x, y1, . . . , yj , yj+1, . . . , yi−1) (14)

14

(0,0,0)
0.008

(0,0,1)
0.072

(0,1,0)
0.128

(0,1,1)
0.192

(1,0,0)
0.024

(1,0,1)
0.216

(1,1,0)
0.18

(1,1,1)
0.18

(0,0)
0.08

(0,1)
0.32

(1,0)
0.24

(1,1)
0.36

(0)
0.4

0.8

(1)
0.6

0.6

()
1

0.6

hnl =max(.4 ·.2,.4 ·.8,.6 ·.4,.6 ·.6)=0.36

1-0.6=0.4

1-0.6=0.4 1-0.8=0.2

2

(a) A parent node

(0,0,0)
0.008

(0,0,1)
0.072

(0,1,0)
0.128

(0,1,1)
0.192

(1,0,0)
0.024

(1,0,1)
0.216

(1,1,0)
0.18

(1,1,1)
0.18

(0,0)
0.08

(0,1)
0.32

(1,0)
0.24

0.9

(1,1)
0.36

0.5

(0)
0.4

(1)
0.6

0.6

()
1

hnl =max(.4 ·.1,.4 ·.9,
 .6 ·.5,.6 ·.5)=0.36

1-0.6=0.4

1-0.9=0.1 1-0.5=0.5

2

(b) A child node

Figure 3: An example of hdnl heuristic for d = 2 levels of depth, hence, only two levels of

depth from there are expanded. The nodes in dark grey are the nodes for which the heuristic

is computed: (a) Root node (unique node of level j = 0) (b) a child node (the right node out

of two existing nodes in level j = 1). Bold lines indicate the evaluations of the classifiers that

must be computed to obtain the value of the heuristic. Notice that those evaluations are only

those corresponding to the classifier of the deepest level, except for the root node in which all

possible evaluations must be computed

15

Notice that hdnl continues being admissible, but less dominant3 than the opti-

mal heuristic h∗. The particular case of d = 0 is the constant heuristic h = 1.

Hence, hdnl is in turn more dominant than h0nl. In general, hdnl becomes more

dominant as d increases, and then, it gets to explore fewer nodes, but at the cost

of increasing the computational cost. This computational cost mainly depends

on the number of models that must be evaluated to calculate the heuristic. The-

oretically, hdnl requires to evaluate 2d−1 models, which means to evaluate many

more models than the number of models evaluated by hdl (2d− 1). However, an

appropriate implementation of hdnl (see next Section) can reduce that number to

2d−1, making the computational cost of both heuristics comparable for d ≤ 4.

Figure 3 illustrates the ways of computing the heuristic hdnl for d = 2 in

two different cases: for a parent node and for one of its child. Looking to the

former case (Figure 3(a)), the value of h2nl for the root node is 0.36, which

corresponds to the highest joint conditional probability of the nodes of the 2-th

level (label combination (1,1)). This value is an upper bound of the optimal

value h∗ = 0.211 which corresponds to the path of the label combination (1,0,1).

But the most interesting issue of our proposal is that this bound is tighter than

the one computed by h2l (0.48) (see Figure 2). Notice that for the latter case

(Figure 3(b)), it is just necessary to evaluate the classifiers of the last level

because the classifiers of previous levels were evaluated when the heuristic was

computed for the parent node.

The reason why hdl is not able to deal with nonlinear models is because hdl

is computed taking into account the weights of the linear models (see (10)).

In case of hdnl, those weights are not required because the computation of hdnl

just wisely applies the models over the label combinations at the deepest level

of the corresponding subtree. For instance, to compute h2nl for the child node

in Figure 3(b), we just need to apply model f3 over the label combinations

(y1 = 1, y2 = 0) and (y1 = 1, y2 = 1). With these two evaluations, it is possible

3When e is a gain function, an heuristic h1 is more dominant than another heuristic h2,

denoted by (h1 ≺ h2), if the value of h2 is not lower than the value of h1 for any node

16

to compute the probabilities P(y3 = 1 |x, y1 = 1, y2 = 0) = 0.9 and P(y3 =

1 |x, y1 = 1, y2 = 1) = 0.5. The other two probabilities are trivially obtained as

P(y3 =0 |x, y1 =1, y2 =0) = 1−P(y3 =1 |x, y1 =1, y2 =0) = 1− 0.9 = 0.1 and

P(y3 =0 |x, y1 =1, y2 =1) = 1−P(y3 =1 |x, y1 =1, y2 =1) = 1− 0.5 = 0.5.

Finally, Figure 4 shows how different are the paths followed by A* when

h2l (top) and h2nl (bottom) are taken as heuristics. First, notice that both

approaches reach a Bayes-optimal solution (unique in this case), which it is

the label combination (1,0,1) that has the highest joint conditional probability.

However, h2nl requires fewer steps than h2l , since it follows the most direct path.

This is due to the fact that the estimates computed by h2nl are more accurate. In

this case, this means that the estimates are smaller and closer to the optimum.

Notice that this occurs for the three top-nodes of the tree in Figure 4 (0.36 vs.

0.48, 0.48 vs. 0.72 and 0.36 vs. 0.54).

4.1. An efficient implementation of the heuristic

This section proposes a complete implementation of the A* algorithm using

hdnl as heuristic, including an efficient algorithm for computing hdnl that reduces

the number of models that must be evaluated from 2d−1 to 2d−1. The key idea

is that each node stores the probabilities necessary to compute the heuristic (see

Figure 5). Then, when a node is expanded, those probabilities are copied and

reused to calculate the heuristic for its children. Applying this solution, only the

probabilities of the d-th level must be computed because the rest were already

calculated for the parent node. This implementation makes hdnl evaluate fewer

or equal models than hdl when d ≤ 3.

Algorithm 1 shows the pseudocode of the implementation of A∗ algorithm

using hdnl. Initially, for the root, all the probabilities until level d must be

computed (see CompProbs in line 3). When a non root node is expanded,

the information of its parent is copied and reused (see CopyHeuristicV ector

in lines 13 and 19). In this case, only the last-level classifier is evaluated for

obtaining just the new needed probabilities (see CompNewProbs in lines 14

and 21 respectively for the left and right children of the node expanded). Both

17

(0,0,0)
0.008

(0,0,1)
0.072

(0,1,0)
0.128

(0,1,1)
0.192

(1,0,0)
0.024

(1,0,1)
0.216

(1,1,0)
0.18

(1,1,1)
0.18

(0,0)
0.08

 0.1 0.9

(0,1)
0.32

0.4 0.6

(1,0)
0.24

0.1 0.9

(1,1)
0.36

0.5 0.5

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

0.4 0.6

hl =.8 · .9=0.72
e =.4 · .72=0.288

hl =.6 · .9=0.54
e =.6 · .54=0.324

hl =0.9
e =0.08

hl =0.6
e =0.192

hl =0.9
e =0.216

hl =0.5
e =0.18

hl =.6 · .8=0.48
e =1 · .48=0.48

2

2 2

2 2 2 2

(a) hdl

(0,0,0)
0.008

(0,0,1)
0.072

(0,1,0)
0.128

(0,1,1)
0.192

(1,0,0)
0.024

(1,0,1)
0.216

(1,1,0)
0.18

(1,1,1)
0.18

(0,0)
0.08

 0.1 0.9

(0,1)
0.32

0.4 0.6

(1,0)
0.24

0.1 0.9

(1,1)
0.36

0.5 0.5

(0)
0.4

0.2 0.8

(1)
0.6

0.4 0.6

()
1

hnl =.8 · .6=0.48
e =.4 · .48=0.192

hnl =.4 · .9=0.36
e =.6 · .36=0.216

hnl =0.9
e =0.08

hnl =0.6
e =0.192

hnl =0.9
e =0.216

hnl =0.5
e =0.18

0.4 0.6

hnl =.6 · .6=0.36
e =1 · .36=0.36

2

2 2

2 2 2 2

(b) hdnl

Figure 4: Path (dotted arrows) followed by the algorithm A* using (a) hdl and (b) hdnl both

with d = 2 levels of depth. Both approaches reach the Bayes-optimal solution but h2nl requires

fewer steps than h2l

18

2 3

1
c

rl

ll lr rl rr

lll llr lrl lrr rll rlr rrr rrl

 c l ll lr r rl rr1

 l ll lll llr lr lrl lrr2 r rl rll rlr rr rrl rrr3

Figure 5: Optimal computation of the heuristic. The heuristic vector represents the computed

probabilities of the tree using a preorder traversal. The example assumes that node 1 is

expanded, so its children, nodes 2 and 3, must be added to the Q list. The computation of the

heuristic for both nodes reuses the information contained in the heuristic structure of node 1.

Only the probabilities of the lower level must be computed (positions in bold in vectors 2 and

3)

children of an expanded node are included in the list of candidate nodes to be

expanded (see Insert in lines 16 and 22), taking each time the node with the

highest joint conditional probability (see line 6). The algorithm ends when the

expanded node is a leaf or equivalently the level of the expanded node is m.

Algorithm 2 details the procedure to copy reusable probabilities of the vector

v (CopyHeuristicV ector). Particularly, when the heuristic must be computed

for a node, it first copies the probabilities previously computed for its parent.

Also, Algorithm 3 describes the recursive function which computes all the joint

probabilities from the vector of probabilities (v) of a node. In particular, it takes

advantage of the probabilities previously saved in the way that none probabil-

ity is computed twice. Finally, Algorithm 4 presents the iterative function to

compute the missing probabilities of the vector v for a new node. Hence, this

function evaluates the classifier of the j+d-th level in order to obtain the new

19

probabilities needed to compute the heuristic for the current node. It also stores

such probabilities for being reused just in case the heuristic for any descendant

must be computed later on.

Notice that all of these algorithms make sense if d ≥ 2, since for the particular

case of d = 1, where only one level is explored, the implementation may be

considerably simplified. At sight of them, the computation of hdnl means to

calculate new 2d−1 evaluations of the last-level (j + d) classifier each time the

heuristic is computed for a node, in contrast to the new 2d − 1 evaluations of

d different classifiers for hdl [12] (see Figure 5). Hence, both heuristics need

to compute the same new classifier evaluations for d = 1 (1 evaluation). The

number of classifier evaluations of hdnl and hdl are approximately equal for 2 ≤

d ≤ 4 (2 vs. 3 evaluations when d = 2, 4 vs. 5 when d = 3, and 8 vs. 7 when

d = 4). From d = 5, the number of classifier evaluations to compute begins to

differ, being 16 evaluations for hdnl and 9 for hdl . This fact suggests not to take

high values of d, because if not the advantage gained by the dominance of the

heuristic would not offset the computational cost involved in its computation.

In exchange of that, i) hdnl is more dominant than hdl for the same level of depth

d and ii) unlike hdl , hdnl is suitable for nonlinear classifiers as base methods.

According to the experiments performed, our advice is not to consider values of

d greater than 3.

5. Experiments

The experiments were carried out over the same benchmark multi-label

datasets used in [12], whose number of labels ranges from 5 to 374 (see Ta-

ble 1 for the main properties of the datasets). The algorithm A* using the

exhaustive heuristic introduced in this paper, hdnl, is compared to the heuristic,

hdl , proposed in [10, 12]. As commented before, the values of d must not be

so high due to the computational cost, then only values of d ∈ {1, 2, 3} were

considered. The algorithm A* using both heuristics are in turn compared to

other state-of-the art algorithms for inference in PCC. Particularly, it is com-

20

Table 1: Properties of the datasets

Datasets Instances Attributes Labels Cardinality

bibtex 7395 1836 159 2.40

corel5k 5000 499 374 3.52

emotions 593 72 6 1.87

enron 1702 1001 53 3.38

flags 194 19 7 3.39

image 2000 135 5 1.24

mediamill* 5000 120 101 4.27

medical 978 1449 45 1.25

reuters 7119 243 7 1.24

scene 2407 294 6 1.07

slashdot 3782 1079 22 1.18

yeast 2417 103 14 4.24

pared with GS, ε-A with different values of ε∈{.0, .25, .5} and BS with several

values of b∈ {1, 2, 3}. Remember that GS, ε-A (.5) and BS with b= 1 explore

the same path in the tree, so they attain identical results. The same occurs to

ε-A (.0), UC and the algorithm A* with both h0l and h0nl (or equivalently whit

the heuristic h = 1). None experiment is included for the Monte Carlo methods,

since they have been shown to be less efficient than the ε-A algorithm [11] in

addition of not guarantee to obtain an optimal prediction.

5.1. Subset 0/1 scores

First of all, we have tested the heuristic hdnl for the A* algorithm in com-

parison with other state-of-the-art algorithms (GS, ε-A with different values of

ε∈{.0, .25, .5} and BS with several values of b∈{1, 2, 3}) using as base method

a nonlinear classifier. Particularly, the nonlinear base classifier taken was SVM

with probabilistic output and with radial basis function as kernel function. The

parameters C of SVM and G of the radial basis kernel were optimized applying

21

Table 2: Subset 0/1 loss for the methods when a nonlinear classifier (SVM with radial basis

kernel) is taken as base method for PCC. Those scores that are equal or lower than the optimal

predictions are in bold

UC/A* GS/BS(1) BS(2) BS(3)

Datasets ε-A(.0) ε-A(.25) ε-A(.5)

bibtex 81.20 81.22 81.34 81.22 81.20

corel5k 98.02 98.48 98.54 98.22 98.10

emotions 66.10 66.10 69.79 66.77 66.10

enron 84.20 84.84 86.78 84.49 84.31

flags 82.45 83.47 83.45 82.97 82.45

image 58.20 58.45 60.20 58.05 58.20

mediamill* 84.36 84.36 85.02 84.48 84.40

medical 28.73 28.73 29.14 28.73 28.73

reuters 21.98 22.00 23.14 22.03 21.98

scene 31.15 31.15 32.40 31.15 31.15

slashdot 51.27 51.53 53.15 51.24 51.27

yeast 77.24 77.62 79.77 77.33 77.24

a grid search over the values of C,G ∈ {10−2, . . . , 101} using the brier loss [1]

as target function estimated through a 2-fold cross validation of five repetitions.

The heuristic hdl is out of this comparison, since its computation is only suitable

when a linear classifier is taken as base method.

Tables 2 and 3 respectively show the subset 0/1 loss estimated by a 10-fold

cross validation for UC, A* with the heuristic hdnl, GS, ε-A algorithm and BS

and the p-values of the underlying Wilcoxon signed-rank test. The approaches

UC, ε-A(.0) and the A* algorithm using whatever admissible heuristic provide

optimal solutions in terms of the subset 0/1 loss (see the scores in the first

column of the table). As seen, there is four cases out of 12 for which ε-A(.25)

equals them. None case exists where GS (or BS(1) or ε-A(.5)) improves the

algorithms with theoretically obtain optimal solutions. BS(2) does it in 2 cases

22

Table 3: Wilcoxon signed-rank test for the methods when a nonlinear classifier is taken as

base method for PCC

Optimal methods others p-value

UC/A* ε-A(.0) ε-A(.25) 0.0078

UC/A* ε-A(.0) GS/BS(1) ε-A(.5) 0.0005

UC/A* ε-A(.0) BS(2) 0.0488

UC/A* ε-A(.0) BS(3) 0.2500

(flags and slashdot) and equals them in other 2 cases. Finally, BS(3) gets

equal results in 8 cases and it is never better. The p-values of the Wilcoxon

signed-rank test confirm these results, namely, i) the methods that guarantee

reaching Bayes-optimal predictions are significantly better than ε-A(.25) and

GS (or BS(1) or ε-A(.5)) for α = 0.01, and than BS(2) but for α = 0.05. ii) The

predictions of BS become close to optimal predictions as b increases.

Secondly, and with the aim of also including a comparison of the above

methods with the A* algorithm using the heuristic hdl , we perform experiments

taken a linear classifier as base method in PCC. Particularly, logistic regression

with probabilistic output [9] was taken to build the binary classifiers fi. In this

case, only the parameter C was optimized, and it was made using a grid search

over the values of C ∈ {10−3, 10−2, . . . , 102, 103} using the brier loss [1] as target

function estimated through a 2-fold cross validation of five repetitions.

Tables 4 and 5 present the subset 0/1 loss estimated by a 10-fold cross

validation for all the methods (including this time the A* with the heuristic hdl)

and the p-values of the Wilcoxon signed-rank test. Again, the approaches UC, ε-

A(.0) and the A* algorithm using whatever admissible heuristic provide optimal

solutions in terms of the subset 0/1 loss (see the scores in the first column of

the table). In this case, there is just one case (reuters) out of 12 for which

ε-A(.25) obtains a better score than the algorithms which theoretically obtain

optimal solutions and 3 cases for which it equals them. Also, GS (or BS(1)

23

Table 4: Subset 0/1 loss for the methods when a linear classifier (logistic regression) is taken

as base method for PCC. Those scores that are equal or lower than the optimal predictions

are in bold

UC/A* GS/BS(1) BS(2) BS(3)

Datasets ε-A(.0) ε-A(.25) ε-A(.5)

bibtex 81.92 81.95 82.19 81.88 81.92

corel5k 97.48 98.62 98.90 98.30 98.04

emotions 71.16 71.82 72.83 72.16 71.32

enron 83.14 84.26 85.43 83.43 83.37

flags 87.13 87.16 86.13 88.21 87.13

image 68.35 68.35 69.75 68.35 68.35

mediamill* 83.86 84.58 85.80 84.10 83.86

medical 30.37 30.37 30.67 30.37 30.37

reuters 22.73 22.70 23.60 22.69 22.73

scene 31.86 31.86 33.28 31.90 31.86

slashdot 51.80 52.22 54.49 51.77 51.80

yeast 76.95 77.62 79.77 76.83 77.08

or ε-A(.5)) improves the optimal algorithms in one case (reuters). BS(2) does

it in 4 cases (bibtex, reuters, slashdot and yeast) and equals them in 2 cases.

Notice that the wins achieved by BS(2) over optimal methods are much smaller

than its losses. Interestingly, these wins, and most of the losses, disappear when

b = 3, showing that BS converges to the optimal solution when b increases. In

fact, BS(3) gets equal results in 8 cases and it is never better. The Wilcoxon

signed-rank test in this case provides the same conclusions drawn when using

nonlinear classifiers as base methods, but the p-values are slightly greater. The

difference continues being significant for ε-A(.25) at level of α = 0.05 and for

GS (or BS(1) or ε-A(.5)) with α = 0.01. The differences with respect to BS(2)

and BS(3) are not significant.

Comparing the use of linear and nonlinear classifiers as base methods in

24

Table 5: Wilcoxon signed-rank test for the methods when a linear classifier (logistic regression)

is taken as base method for PCC

Optimal methods others p-value

UC/A* ε-A(.0) ε-A(.25) 0.0117

UC/A* ε-A(.0) GS/BS(1) ε-A(.5) 0.0034

UC/A* ε-A(.0) BS(2) 0.1309

UC/A* ε-A(.0) BS(3) 0.1250

PCC, there are 8 datasets out of 12 in which using nonlinear classifiers as base

methods improves the subset 0/1 scores with regard to applying linear classifiers.

Therefore, as expected, this means that there are problems that require more

complex models. This in turn supports the usefulness of the method proposed

in this paper because it is the unique method based on the A* algorithm able

to perform inference with nonlinear PCC.

5.2. Computational analysis

Let now study both heuristics (hdnl and hdl) in terms of number of nodes

explored and computational time. In this case, we restrict the study using

just linear classifiers (logistic regression) as base methods because hdl cannot be

applied with nonlinear models. The rest of the approaches are also included to

provide a broader comparison.

Table 6 shows the number of nodes explored by each method and the average

time spent in performing the predictions taken in milliseconds. Obviously, GS

(or ε-A(.5) or BS(1)) explores the least number of nodes, since it only follows

one path in the tree, then, it explores many nodes as labels have the dataset

(plus one if the root is also considered). Among the methods that do not

guarantee to obtain optimal predictions, ε-A(.25) tends to expand fewer nodes

that BS(2), but at expenses of offering worst scores in terms of the subset 0/1

loss. BS(3) expands the most number of nodes, in spite of getting predictions

close to be optimal. Among the methods that obtain optimal solutions, the

25

Table 6: Averaged number of nodes explored (top) and averaged computational prediction

time in milliseconds (bottom). The number in brackets is the number of labels of the dataset.

Datasets
h1nl

h2nl h3nl h2l h3l ε-A(.0) ε-A(.25)
GS/BS(1)

BS(2) BS(3)
h1l ε-A(.5)

bibtex (159) 283.3 277.7 272.4 278.0 273.2 289.3 184.0 160.0 319.0 477.0

corel5k (374) 1456.9 1440.6 1425.4 1443.1 1431.6 1474.2 517.1 375.0 749.0 1122.0

emotions (6) 9.1 8.0 7.4 8.3 7.8 10.7 10.8 7.0 13.0 18.0

enron (53) 110.3 106.1 102.2 106.5 103.3 114.8 77.3 54.0 107.0 159.0

flags (7) 16.4 10.2 8.7 12.7 10.4 22.6 16.3 8.0 15.0 21.0

image (5) 6.6 6.1 6.0 6.3 6.1 7.3 7.7 6.0 11.0 15.0

mediamill* (101) 188.2 184.8 181.5 185.6 183.7 191.8 142.4 102.0 203.0 303.0

medical (45) 46.6 46.6 46.5 46.6 46.6 46.6 46.6 46.0 91.0 135.0

reuters (7) 8.2 8.1 8.0 8.1 8.1 8.2 8.3 8.0 15.0 21.0

scene (6) 7.2 7.1 7.0 7.2 7.1 7.2 7.3 7.0 13.0 18.0

slashdot (22) 25.0 24.7 24.4 24.9 24.9 25.3 24.9 23.0 45.0 66.0

yeast (14) 23.6 21.4 20.0 22.8 22.4 26.1 26.0 15.0 29.0 42.0

bibtex (159) 19.5 24.8 30.2 31.4 41.1 16.2 9.9 7.9 11.0 15.6

corel5k (374) 168.4 190.8 229.4 257.8 333.3 136.0 16.1 11.0 27.8 40.4

emotions (6) 0.6 0.7 0.7 0.8 0.9 0.6 0.6 0.4 0.5 0.6

enron (53) 8.5 14.5 18.4 14.1 18.5 7.2 3.0 1.9 3.9 5.5

flags (7) 1.1 0.9 0.9 1.4 1.5 1.2 0.7 0.4 0.5 0.7

image (5) 0.5 0.5 0.6 0.6 0.7 0.5 0.5 0.4 0.4 0.5

mediamill* (101) 14.4 18.9 23.3 24.2 32.6 11.5 5.5 3.7 7.2 10.5

medical (45) 3.3 4.6 5.7 5.7 7.7 2.7 2.7 2.7 3.3 4.6

reuters (7) 0.6 0.7 0.8 0.8 1 0.5 0.5 0.5 0.5 0.7

scene (6) 0.5 0.6 0.7 0.7 0.9 0.5 0.5 0.4 0.5 0.6

slashdot (22) 1.8 2.4 2.9 2.9 3.9 1.5 1.4 1.2 1.6 2.2

yeast (14) 1.6 2.0 2.3 2.6 3.4 1.5 1.0 0.6 1.0 1.4

algorithm A* using hdnl is the method that explores the fewest number of nodes

for all values of d, as theoretically expected. In fact, it was shown that hdnl

is the most dominant heuristic. Besides, it is more dominant as the level of

depth d increases. Remarkably, the number of nodes explored by A* using hdnl

is close to that of GS in some situations. However, sometimes the number of

nodes explored by A* using hdnl for d > 0 is quite similar to that of ε-A(.0), UC

or A* using h = 1. The reason may be because the probabilities provided by

the classifiers fi take values close to 0 or 1, then, there may not be so much

uncertainty and the search may be highly directed.

Concerning computational time, it is quite curious that ε-A(.0) and UC are

26

not so much slower than ε-A(.25) and ε-A(.5). Besides, they are quite similar

to BS(2) and BS(3). Also, A* using hdnl with d > 0 is not as faster as ε-A(.0)

(or A* using h0nl), in spite of exploring fewer nodes, due to the computational

time spent in evaluating the heuristic. However, the difference is quite low in

comparison with the heuristic hdl . At this respect, let us include some noise

in the dataset in order to cause uncertainty and disturb the search and then,

avoiding it being so direct.

Figures 6 and 7 show the number of nodes expanded and the computational

time employed in milliseconds for ε−A with ε=0 and for A* using hdl and hdnl for

different values of the parameter d (1, 2, 3) when a percentage of noise ranging

from 0% to 26% is included in the datasets. Only in case of the datasets bibtex,

mediamill and enron, the percentage of noise added has had to be respectively

limited to 4%, 8% and 10%, due to the high computational time involved.

At sight of these figures, one can observe that using the heuristic hdnl hardly

increases the computational time when the percentage of noise increases in case

of datasets with few labels, being the one which presents the least increasing of

computational time for datasets with high number of labels. In this last case,

that is, when the increasing of the noise results in a considerable increasing

in computational time because more nodes must be expanded to obtain an

optimal solution is when the heuristic hdnl clearly shows its main benefit. It is

quite remarkable that computational time spent by hdnl is always lower than

the computational time spent by the heuristic hdl for the same level of depth.

Hence, unlike hdl , the time spent in computing hdnl is not a disadvantage, but

quite the opposite.

6. Conclusions

This paper proposes an admissible heuristic for the algorithm A* for perform-

ing inference in PCC either for linear and nonlinear classifiers as base methods.

The heuristic is based on an exhaustive search, but including a depth parameter

that establishes a balance between the number of nodes explored and the com-

27

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)
0.5

0.6

0.7

0.8

Noise (%)
0 10 20

(a) image (5)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0.6

0.8

1.0

1.2

1.4

Noise (%)
0 10 20

(b) emotions (6)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl
Ti

m
e

(m
ilis

ec
on

ds
)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Noise (%)
0 10 20

(c) scene (6)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

1.0

1.5

2.0

2.5

Noise (%)
0 10 20

(d) flags (7)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0.5

1.0

1.5

Noise (%)
0 10 20

(e) reuters (7)

Figure 6: Computational time employed (ms) for ε−A with ε=0 and for A* using hdl and hdnl

for different values of the parameter d (1, 2, 3) when certain percentage of noise is included in

the datasets. Notice that for d = 1, the results are equal, since they follow the same path.

Different percentages of noise are considered. All the datasets have few labels (from 5 to 7)

28

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

10

20

30

40

Noise (%)
0 10 20

(a) yeast (14)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

100

200

300

400

500

600

700

Noise (%)
0 10 20

(b) slashdot (22)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

50

100

150

200

250

300×103

Noise (%)
0 10 20

(c) medical (45)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

10000

20000

30000

40000

50000

Noise (%)
0 5 10

(d) enron (53)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

100×103

200×103

300×103

Noise (%)
0 5

(e) mediamill (101)

ε-A(0)
h2

l
h3

l

h1
l,nl

h2
nl

h3
nl

Ti
m

e
(m

ilis
ec

on
ds

)

0

50

100

150

200

250×103

Noise (%)
0 2 4

(f) bibtex (159)

Figure 7: Computational time employed (ms) for ε−A with ε=0 and for A* using hdl and hdnl

for different values of the parameter d (1, 2, 3) when certain percentage of noise is included in

the datasets. Notice that for d = 1, the results are equal, since they follow the same path.

Different percentages of noise are considered. The number of labels range from 14 to 159

29

putational time. The method is theoretically shown to provide optimal solutions

in terms of the subset 0/1 loss, since the heuristic is admissible. Besides, the

heuristic is more dominant than other existing heuristics in the literature for the

same purpose, then, it explores fewer nodes among the methods that guarantee

to provide optimal solutions. Moreover, it is a suitable heuristic for any kind

of probabilistic classifiers, including nonlinear classifiers. One of the key aspect

of our proposal is to present an efficient implementation of the heuristic that

significantly reduces the number of models evaluated in its computation.

The experiments confirm the theoretical properties of the proposed heuris-

tic. However, the time spent in evaluating the heuristic can be sometimes a

disadvantage. This is, for instance, for datasets that cause few uncertainty in

the search and, hence, such search is quite directed because the computational

time is slightly higher than that of the ε−A with ε = 0 and hence, the number

of nodes explored are not few enough to compensate that time. Conversely,

when the search is not so directed, for instance, because the prediction problem

is more uncertain, using the heuristic proposed in this paper makes the A* al-

gorithm provide faster predictions than other state-of-the-art methods that also

produce Bayes-optimal predictions, like the ε−A algorithm.

Acknowledgments

This research has been funded by MINECO (the Spanish Ministerio de

Economı́a y Competitividad) and FEDER (Fondo Europeo de Desarrollo Re-

gional), grant TIN2015-65069-C2-2-R (MINECO/FEDER).

References

[1] G.W. Brier, Verification of forecasts expressed in terms of probability,

Monthly weather review 78 (1950) 1–3.

[2] W. Cheng, E. Hüllermeier, Combining instance-based learning and logistic

regression for multilabel classification, Machine Learning 76 (2009) 211–

225.

30

[3] K. Dembczyński, W. Cheng, E. Hüllermeier, Bayes Optimal Multilabel

Classification via Probabilistic Classifier Chains, in: ICML, 2010, pp. 279–

286.

[4] K. Dembczyński, W. Waegeman, W. Cheng, E. Hüllermeier, On label

dependence and loss minimization in multi-label classification, Machine

Learning 88 (2012) 5–45.

[5] K. Dembczynski, W. Waegeman, E. Hüllermeier, An analysis of chaining in

multi-label classification., in: ECAI, volume 242 of Frontiers in Artificial

Intelligence and Applications, IOS Press, 2012, pp. 294–299.

[6] K. Dembczyński, W. Waegeman, E. Hüllermeier, An analysis of chaining

in multi-label classification, in: ECAI 2012, pp. 294–299.

[7] A. Kumar, S. Vembu, A.K. Menon, C. Elkan, Learning and inference in

probabilistic classifier chains with beam search, in: ECML/PKDD 2012,

pp. 665–680.

[8] A. Kumar, S. Vembu, A.K. Menon, C. Elkan, Beam search algorithms for

multilabel learning, Machine Learning 92 (2013) 65–89.

[9] C.J. Lin, R.C. Weng, S.S. Keerthi, Trust region Newton method for logistic

regression, Journal of Machine Learning Research 9 (2008) 627–650.

[10] D. Mena, E. Montañés, J.R. Quevedo, J.J. del Coz, Using a* for inference

in probabilistic classifier chains, in: IJCAI 2015, pp. 3707–3713.

[11] D. Mena, E. Montañés, J.R. Quevedo, J.J. del Coz, An overview of inference

methods in probabilistic classifier chains for multilabel classification, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6 (2016)

215–230.

[12] D. Mena, E. Montañés, J.R. Quevedo, J.J. del Coz, A family of admissi-

ble heuristics for a* to perform inference in probabilistic classifier chains,

Machine Learning 106 (2017) 143–169.

31

[13] E. Montañés, J. Quevedo, J.J. del Coz, Aggregating independent and de-

pendent models to learn multi-label classifiers, in: ECML’11, pp. 484–500.

[14] E. Montañés, R. Senge, J. Barranquero, J. Quevedo, J.J. del Coz,

E. Hüllermeier, Dependent binary relevance models for multi-label clas-

sification, Pattern Recognition 47 (2014) 1494 – 1508.

[15] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley Longman, Boston, MA, USA, 1984.

[16] J. Read, L. Martino, D. Luengo, Efficient monte carlo methods for multi-

dimensional learning with classifier chains, Pattern Recognition 47 (2014)

1535 – 1546.

[17] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-

label classification, in: ECML/PKDD’09, LNCS, Springer, 2009, pp. 254–

269.

[18] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-

label classification, Machine Learning 85 (2011) 333–359.

[19] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pear-

son Education, 2 edition, 2003.

[20] R. Senge, J.J. del Coz, E. Hüllermeier, On the problem of error propaga-

tion in classifier chains for multi-label classification, in: Conference of the

German Classification Society on Data Analysis, Machine Learning and

Knowledge Discovery, 2012.

[21] R. Senge, J.J. del Coz, E. Hüllermeier, Rectifying classifier chains for multi-

label classification, in: Learning, Knowledge, Adaptation 2013.

[22] G. Tsoumakas, I. Vlahavas, Random k-Labelsets: An Ensemble Method for

Multilabel Classification, in: ECML/PKDD’07, Springer, 2007, pp. 406–

417.

32

[23] Q. Wu, M.K. Ng, Y. Ye, X. Li, R. Shi, Y. Li, Multi-label collective classifi-

cation via markov chain based learning method, Knowledge-Based Systems

63 (2014) 1–14.

[24] J.J. Zhang, M. Fang, J.Q. Wu, X. Li, Robust label compression for multi-

label classification, Knowledge-Based Systems 107 (2016) 32 – 42.

33

Algorithm 1 Pseudocode of the implementation of A∗ algorithm using hdnl
1: function A∗

Input: m, d, x, {[W = {wi},β = {βi}], i = 1, . . . ,m} a CC Linear Model

Output: Label combination with highest probability for x

2: v ← Inic(x, [W,β], d) // Probabilities of the hnl for the root node

3: e←Max(CompProbs(12d ,v, d))

4: Q[1]← {[], 0, 1, e,v} // root, empty label set, level 0, g = 1 and v

5: while true do

6: Node←Max(Q)

7: if Node.Level = m then

8: return Node.Labels // Leaf node

9: level← Node.Level + 1

10: P ← Node.v[1] // Probability that the label is 1

11: // Left child

12: g ← Node.g ∗ (1− P)

13: vl← CopyHeuristicV ector(Left,v, d)

14: CompNewProbs(vl, d,x, [W,β], [Node.Labels 0], level)

15: hdnl←Max(JointProbs(12d ,vl, d))

16: Insert(Q, {[Node.Labels 0], level, g, g ∗ hdnl,vl})

17: // Right child

18: g ← Node.g ∗ P

19: vr ← CopyHeuristicV ector(Right,v, d)

20: CompNewProbs(vr, d,x, [W,β], [Node.Labels 1], level)

21: hdnl←Max(JointProbs(12d ,vr, d))

22: Insert(Q, {[Node.Labels 1], level, g, g ∗ hdnl,vr}

34

Algorithm 2 Copy reusable probabilities of the vector v

1: function CopyHeuristicV ector

Input: Child, v, d

Output: An incomplete heuristic vector, copy corresponding values from v

2: v′ ← AllocMemory(2d − 1)

3: l← 2 // Beginning of left part

4: r ← 1 + 2d−1 // Beginning of right part

5: if Child = Left then // Beginning of the part to be copied

6: i← l

7: else

8: i← r

9: v′[1]← v[i] // Probability of the top level

10: i← i+ 1

11: ElementsPerLevel← 1 // the next level has 1 element

12: level← 3

13: while level ≤ d do

14: for j = [1 : ElementsPerlevel] do

15: v′[l]← v[i]

16: l← l + 1, i← i+ 1

17: for j = [1 : ElementsPerlevel] do

18: v′[r]← v[i]

19: r ← r + 1, i← i+ 1

20: ElementsPerLevel← ElementsPerLevel ∗ 2

21: level = level + 1

35

Algorithm 3 Recursive function to compute all the joint probabilities from the

vector of probabilities (v) of a given node

1: function JointProbs

Input: P , v, d // P is the vector of the joint probabilities

Output: Each element of P multiplied by the corresponding probabilities

of v

2: if d = 1 then

3: return [P [1] ∗ (1− v[1]),P [2] ∗ v[1]]

4: else

5: v′ ← v[2 : end]

6: return [(1−v[1])∗JointProbs(P [1 : len(P)/2],v′[1 : len(v′)/2], d−1),

7: v[1]∗JointProbs(P [len(P)/2 + 1:end],v′[len(v′)/2 + 1:end], d−1)]

Algorithm 4 Iterative function to compute the missing probabilities of the

vector v for a new node
1: function CompNewProbs

Input: v, d, Labels, Level, x, {[W = {wi},β = {βi}], i = 1, . . . ,m} a CC

Linear Model

Output: v

2: LabelComb← BinaryPerm(d−1) // All bit patterns of length d−1

3: j ← 1

4: for i = [1 + 2d−1 − 2d−2 : 2d−1] do // Left probabilities

5: v[i]← Prob(x, [W,β], [Labels LabelComb(j)], Level)

6: j ← j + 1

7: j ← 1

8: for i = [1 + len(v)− 2d−2 : len(v)] do // Right probabilities

9: v[i]← Prob(x, [W,β], [Labels LabelComb(j)], Level)

10: j ← j + 1

36

	Introduction
	Multi-label classification and Probabilistic Classifier Chains
	Inference methods in PCC for multi-label classification
	Greedy Search
	-Approximate algorithm
	Beam Search
	Methods based on Monte Carlo sampling
	A* algorithm using an admissible heuristic designed for linear classifiers

	Exhaustive admissible heuristic in the A* algorithm for nonlinear classifiers
	An efficient implementation of the heuristic

	Experiments
	Subset 0/1 scores
	Computational analysis

	Conclusions

