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Abstract 

Frequent wildfires in the NW of Spain affect soil organic matter. Soil properties can be 

estimated both spatially and temporally using remote sensing. A wide range of satellite 

and airborne hyperspectral/multispectral sensors are currently available. The spectral 

resolution varies significantly among sensors, making it difficult to identify the most 

suitable sensors and spectral regions for a specific application. This study aims at 

identifying the sensors and wavelengths with the greatest potential for topsoil organic 

C mapping. Total (TOC) and oxidizable organic carbon (OC) content were measured 

in 89 soil samples collected in a mountain region of NW Spain. Reflectance spectra of 

the samples (400-2450 nm) were resampled to the bands of five sensors: Compact 

Airborne Spectrographic Imager (CASI), Airborne Hyperspectral Scanner (AHS), 

Hyperion, Landsat 5 Thematic Mapper (TM), and Moderate Resolution Imaging 

Spectroradiometer (MODIS). Calibration models were obtained using partial least 

squares regression (PLSR). PLSR models proved to be effective for the hyperspectral 

sensors and also for the multispectral sensor MODIS (R2 = 0.75-0.89), which suggests 

that hyperspectral capability is not required to accurately predict topsoil organic C. 

Models based on Landsat performed well, but with an error ~30-45% greater than that 

obtained for the hyperspectral sensors and MODIS. 

Summary 

The spectral characteristics of five  hyperspectral and multispectralsensors were 

evaluated for topsoil organic carbon prediction in burned areas. The spectral resolution 

of both kind of sensors was suitable for the prediction. The most relevant spectral 

regions for topsoil carbon estimation were the visible and short-wave infrared. 

Additional keywords: VIS-NIR-SWIR spectroscopy; PLSR; CASI; AHS; Hyperion; 

Landsat; MODIS.  
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Introduction 

Fire is a major disturbance in many ecosystems around the world (Certini 2005; 

Santin et al. 2008; Santin and Doerr 2016). Wildfires in the Atlantic region of Spain 

usually show a relative high recurrence (Álvarez and Marquínez 2007). The increase 

of erosion following wildfires is widely documented (Wondzell and King 2003; 

Shakesby and Doerr 2006). Several processes are involved in the post-fire erosion, 

mainly erosion by overland flow and inter-rill erosion, and cause the loss of soil organic 

matter (SOM) (Canfield et al. 2005; Rumpel et al. 2006; Shakesby and Doerr 2006). 

Although the recovery of the vegetation cover is not complete in areas with high 

recurrence of wildfires (Fernandez et al. 2005; Marquinez et al. 2008), the rapid 

recovery of the vegetation due to the Atlantic climate characteristics makes it difficult 

to monitor soils affected by wildfires. 

Development of reliable techniques is required to improve the knowledge on C 

stocks (Burras et al. 2001). On the one hand, the use of laboratory spectroscopy in the 

visible (VIS, 400-700 nm), near infrared (NIR, 700-1300 nm), and short wave infrared 

(SWIR, 1300-2500 nm), in combination with multivariate statistical methods such as 

partial least squares regression (PLSR), has been proven to be an accurate technique to 

estimate soil organic carbon (SOC) (Viscarra Rossel et al. 2006; Croft et al. 2012). On 

the other hand, remote sensing can provide estimates of the spatial and temporal 

distribution of C stocks at a regional scale. Remote sensing is well established as a cost-

effective, rapid, and reproducible means of providing quantitative data on soil 

properties (Irons et al. 1989). Although remote sensing has been widely used to map 

soil types, there have been fewer studies on the direct quantification of topsoil SOC 

content because of several constraints, such as atmospheric absorption interfering with 

soil absorption features and low signal-to-noise ratios. Due to these constraints, 
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research has been mainly restricted to agricultural and bare soil surfaces (Selige et al. 

2006; Gomez et al. 2012). 

There has been an increasing number of studies which have used VIS-NIR-SWIR 

hyperspectral airborne imaging in topsoil mapping, but they still remain in the testing 

phases. SOC was estimated over agricultural areas with R2 > 0.74 using PLSR and 

airborne hyperspectral data collected with HyMap (Selige et al. 2006; Patzold et al. 

2008; Hbirkou et al. 2012). The potential of Airborne Hyperspectral Scanner (AHS) 

for SOC prediction was also proved in several studies (Stevens et al. 2008; Stevens et 

al. 2010). Fernández et al. (2016) also used AHS data to map SOC in a mountain area 

partially covered by vegetation and obtained R2 > 0.72. Studies by Stevens et al. (2006) 

and Uno et al. (2005) who used the Compact Airborne Spectrographic Imager (CASI) 

over agricultural areas, obtained an R2 of 0.85 and 0.75, respectively. DeTar et al. 

(2008) used data from AVNIR hyperspectral sensor to map several soil properties, but 

obtained less satisfactory results, for both SOM (R2 = 0.48) and C (R2 = 0.27). 

There have been few studies on the use of satellite hyperspectral data for topsoil 

mapping because only one VIS-NIR-SWIR hyperspectral satellite sensor is currently 

available, Hyperion (Croft et al. 2012). Gomez et al. (2008) used Hyperion data to map 

SOC in agricultural fields and pastures, and obtained R2 = 0.51. Using the same sensor, 

Lu et al. (2013) estimated SOC in bare soils with R2 = 0.63. Relatively fewer studies 

have reported the use of satellite multispectral data for topsoil properties mapping. 

Among the sensors with medium spatial resolution, Landsat was the most used to map 

SOC and SOM: Huang et al. (2007) in glacial till soils, Jarmer et al. (2010) in non-

agricultural arid and semi-arid areas, Nanni and Demattê (2006) in bare soils, and Peng 

et al. (2015) in an area mainly devoted to agriculture (R2 of 0.46, 0.80-0.91, 0.51, and 

0.46 respectively). Data from the Moderate Resolution Imaging Spectroradiometer 
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(MODIS) have been recently used to map SOC in Africa at a spatial resolution of 500 

m (Vågen et al. 2016); the prediction models performed well, with R2 = 0.74. Despite 

the constrains of remote sensing, relative strong predictions were obtained using 

airborne hyperspectral sensors, and moderately satisfactory with hyperspectral and 

multispectral satellite sensors (Croft et al. 2012). 

The number and location of the bands through the spectrum as well as the 

bandwidth vary significantly among the different available sensors, and it is a challenge 

to decide the most suitable sensor and spectral region for mapping topsoil C. This 

research was aimed at identifying suitable sensors and spectral regions for estimating 

topsoil oxidizable (OC) and total organic carbon (TOC). Three hyperspectral (CASI, 

AHS, and Hyperion) and two multispectral sensors (Landsat 5 Thematic Mapper (TM), 

and MODIS) were evaluated in four spectral regions: VIS, NIR, SWIR, and VIS-NIR-

SWIR. Reflectance spectra were simulated for each sensor by resampling the lab VIS-

NIR-SWIR spectra of a set of soil samples, and then the resampled spectra were used 

to estimate SOC using PLSR. 

Material and methods 

Study area 

In order to perform a valid method to monitor SOM in large burned areas of the 

Atlantic region of Spain, a training area of ~6000 ha located in the western part of the 

Cantabrian Range (NW Spain) was chosen (Fig. 1). The study area corresponds to a 

mountain region affected by frequent wildfires and is characterised by an Atlantic mild-

humid climate, with a mean annual temperature of ~8°C and a mean annual 

precipitation of 1500 mm. The altitudes are in the range 200-1200 m. Dominant soil 

types are Lithosols, Regosols and Histosols (FAO 2014), with poor evolved profile, 
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stony, and with high SOM levels related to necromass from partially burned vegetation 

(Fernandez et al. 2005). 

Soil collection, chemical analysis, and laboratory spectral measurements 

Eighty-nine samples of the upper 5 cm of soil were collected in the heathery slopes 

of the study area in 2013 (Fig. 1). Samples were sieved to a size fraction < 2 mm and 

homogenised. Total C and oxidizable C (OC) content of the samples was determined 

using conventional methods; dry-combustion (Heiri et al. 2001) and Walkley-Black 

(Walkley and Black 1934), respectively. The total C corresponds to the Total Organic 

Carbon (TOC), as the soil parent material at the study area is non-calcareous 

(Fernandez et al. 2005). Samples were scanned in the lab using an ASD LabSpec® 

spectrometer with a spectral range of 350-2500 nm, a sampling interval of 1 nm, and a 

spectral resolution of 3 nm at 700 nm and 6 nm at 1400 nm and 2100 nm. A Hi-Brite 

contact probe with built-in light source and a spot size of 10 mm was used. The diffuse 

reflectance spectrum of each sample was obtained by averaging ten spectral 

measurements. Spectra were reduced to 400-2450 nm to remove noise at the edge of 

each spectrum. 

Spectra resampling 

Reflectance spectra were resampled to simulate the response in five sensors: CASI 

and AHS sensors owned by the Spanish National Institute for Aerospace Technology 

(INTA), Hyperion (Pearlman et al. 2003), Landsat 5 TM, and MODIS (Salomonson et 

al. 1989). The overall process is shown in the flowchart in Fig. 2. Landsat 5 TM was 

selected instead of more recent Landsat sensors because the availability of a long-term 

archive for this sensor, with more than 28 years of observations, make it very suitable 

for multitemporal analysis. For each sensor, bands which not overlap the lab spectra, 
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which are usually affected by noise, and those located at wavelengths with strong 

atmospheric absorption, were excluded. In the case of Hyperion, the 155 stable bands 

selected by Datt et al. (2003) were chosen. The number of selected bands, as well as 

the specifications of each sensor, are included in Table 1. 

Spectral response libraries of each sensor were used to resample the reflectance 

spectra. Libraries for CASI and Hyperion were obtained using a Gaussian model with 

mean and standard deviation set to the band wavelength and Full Width at Half 

Maximum (FWHM), respectively. An example of the resampling process for a 

reflectance spectrum is presented in Fig. 3a, where it is shown the gradual degradation 

of the spectral resolution for each sensor. In the ASD spectrum in Fig. 3a, a strong 

absorption feature due to water can be seen at ∼1900 nm (Viscarra Rossel and Behrens 

2010; Croft et al. 2012). 

Modelling of SOC 

The transformation log(1/reflectance) was applied to the reflectance spectra, as the 

ratio of performance to deviation (RPD) increased significantly with this conversion 

(Griffiths and Dahm 2007). TOC and OC were modelled using PLSR under leave-one-

out cross-validation (Haaland and Thomas 1988; Wold et al. 2001; Viscarra Rossel et 

al. 2006). Akaike Information Criterion (AIC) was used to determine the optimal 

number of factors to be included in each model (Akaike 1969; Li et al. 2002). Further 

details of the calibration method can be found in Fernández et al. (2016). 

For each soil property and sensor, four PLSR models were obtained for the 

following regions of the spectrum: VIS, NIR, SWIR, and VIS-NIR-SWIR (Fig. 2). In 

the case of Landsat 5 TM, only the model in the VIS-NIR-SWIR region was obtained 

due to the low number of bands of this sensor. Although the PLSR technique is mainly 
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suitable for sensors with a high number of bands, it was also used for Landsat in order 

to compare the results among sensors using the same modelling technique. 

The important wavelengths of the lab-spectra for SOC prediction were identified 

by using both the PLSR coefficients (b) (Haaland and Thomas 1988) and the Variable 

Importance for Projection (VIP) (Wold et al. 2001), following the methodology 

proposed by Viscarra Rossel et al. (2008). Further details of VIP and its performace as 

a method for identifying relevant predictor variables is given by Chong and Jun (2005). 

According to Wold et al. (2001), the higher the b and VIP are, the more significant the 

variable is. The most important wavelengths were identified by setting thresholds for 

both b and VIP. The thresholds for b were based on their standard deviations (Viscarra 

Rossel et al. 2008), and the thresholds for VIP were set to 1, as suggested by Chong 

and Jun (2005). These thresholds were also used in other recent studies based on PLSR 

and VIS-NIR-SWIR spectra (Gomez et al. 2015). 

Validation of SOC prediction models 

Model quality was analysed using the root mean square error of cross-validation 

(RMSEcv), the coefficient of determination (R2
cv), and the RPD. RPD is the ratio 

between standard deviation of the calibration set and RMSEcv. The model having the 

highest RPD is considered to be the best model. The model prediction ability was 

classified by Chang et al. (2001) in the following categories: good (RPD > 2), 

intermediate (2 > RPD > 1.4), and no prediction capability (RPD < 1.4). 
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Results and discussion 

Summary statistics of SOC 

Mean TOC and OC content of the 89 soil samples is 29.4% and 19.5%, respectively. 

Both soil properties show a wide range of variation (TOC: 4.3-63.2%, OC: 2.7-37.9%), 

which is representative of the study area and in accordance with results obtained in 

previous studies in the same area (Fernandez et al. 2005; Santin et al. 2008). The 

relative high values of C are related to the existence of paleo soils inherited from 

Pleistocene glaciations. These Histosols occupy paleo surfaces in the upper part of the 

hillslopes. The minimum values of C correspond to soils with extremely thin organic 

horizons, which origin is related to the degradation caused by frequent wildfires 

(Fernandez et al. 2005; Menéndez Duarte et al. 2008). The parent material of these 

soils is characterized by stony coarse regolith. TOC and OC are highly correlated and 

show a Pearson’s correlation coefficient R > 0.9. 

SOC prediction models based on laboratory spectra 

Summary statistics of the PLSR models for SOC prediction are shown in Table 2. 

Accurate TOC and OC prediction models were obtained using the laboratory spectra 

(R²cv > 0.78 and RPD > 2.13). Between the two soil properties evaluated, OC was 

estimated with the greatest accuracy. According to Chang et al. (2001), we can state 

that lab spectroscopy can be a reliable technique to measure TOC and OC content. The 

results of these models are similar to those reported by Chang and Laird (2002) (R2 = 

0.89), Martin et al. (2002) (R2 = 0.75, RPD = 1.97), and Mouazen et al. (2010) (R2 = 

0.8). 

The b regression coefficients and VIP of the PLSR models based on the laboratory 

spectra are shown in Fig. 3c and 3d, respectively. The most important wavelengths for 
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TOC and OC prediction, identified by setting thresholds both in b and VIP, are 

presented in Table 3. In the VIS, the regression coefficients were similar for TOC and 

OC. Regions covering 400-413 nm (blue) and 556-570 nm (green) were significant in 

the TOC model. It is in accordance with Viscarra Rossel et al. (2006), who found 

important peaks for organic carbon prediction at 410 and 570 nm; and with Vasques et 

al. (2009), who also found positive regression coefficients between 380 and 430 nm. 

Krishnan et al. (1980) found 564 nm to be an optimal wavelength for SOM prediction. 

The region covering 471-526 nm was also important for TOC prediction, and it is 

consistent with results by Vasques et al. (2009), who also obtained significant negative 

regression coefficients in this region. Besides these regions, two ranges were important 

for OC prediction in the VIS: 651-668 nm, attributed to chlorophyll pigments at around 

664 nm (Ben-Dor et al. 1997), and 692-703 nm (red). These results are in accordance 

with previous studies, in which the VIS region was also important for calibration of C 

and organic matter (Krishnan et al. 1980; Cozzolino and Morón 2006; Mouazen et al. 

2007; Stevens et al. 2010). 

In the NIR, no significant regions were identified, except the region 961-1000 nm, 

important for OC estimation. This region around 970 nm was also important in the 

PLSR models for organic matter prediction by Kooistra et al. (2003). Significant 

regions were found in the SWIR, for both TOC and OC (Table 3). The most important 

regions for TOC were: 2180-2239 nm, which was also identified by Morgan et al. 

(2009) and Vasques et al. (2009) as a relevant region and might be associated to biochar 

components (Bellon-Maurel and McBratney 2011); and 2261-2346 nm, also relevant 

in the models by Vasques et al. (2009). Two additional regions in the SWIR were 

significant for OC estimation: 1390-1431 nm, which was also identified by Kooistra et 

al. (2003) and may be attributed to absorption of O-H bonds (Viscarra Rossel et al. 
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2006); and 2041-2154 nm, also significant in the models by Vasques et al. (2009). In 

the latter region, at 2100 nm, McMorrow et al. (2004) noted absorption features related 

to cellulose. Many researches have also found the SWIR region to be important to 

estimate C, with the best range between 1650 and 2500 nm (Lee et al. 2009; Morgan 

et al. 2009; Vasques et al. 2009; Bellon-Maurel and McBratney 2011). 

SOC prediction models based on resampled laboratory spectra 

Lab-spectra were resampled for the different sensors and the effect of the spectral 

resampling on the estimation of TOC and OC was analysed. In the VIS, the results 

obtained with the three hyperspectral sensors (CASI, AHS, and Hyperion) and ASD 

were very similar, both in TOC (RPD = 2.06-2.12) and OC (RPD = 2.56-2.66) (Table 

2). The best results in the VIS were obtained with AHS. The largest differences among 

sensors were observed in the NIR. The best performance was obtained with Hyperion 

both in TOC (RPD = 1.87) and OC (RPD = 2.18), and was similar to that obtained with 

ASD. The estimation with CASI and AHS had a lower accuracy, and was attributed to 

the distribution of their bands in the NIR, only located in the ~700-1050 nm region 

(Fig. 3b). In the NIR, CASI has more and narrower bands than Hyperion (CASI: 74 

bands with FWHM of 6 nm, Hyperion: 57 bands with FWHM of 10-12 nm), however 

its distribution is less suitable for estimating SOC than it is in the case of Hyperion, 

which bands entirely cover the NIR region, between 700 and 1300 nm. Furthermore, 

CASI bands do not cover the significant region 1390-1431 nm (see Table 3 and Fig. 

3c), which may explain the drop of accuracy. The results obtained in the SWIR with 

AHS and Hyperion were very similar to that obtained with ASD, for TOC (RPD = 2.11-

2.24) and OC (RPD = 2.47). 
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The best estimation with the three hyperspectral sensors was obtained in the VIS-

NIR-SWIR for both soil properties. The results in this region were similar for the 

hyperspectral sensors and ASD, with RPD = 2.11-2.28 for TOC and RPD = 2.75-2.97 

for OC. These models provided accurate predictions according to the classification by 

Chang et al. (2001). 

As for the multispectral sensors, accurate prediction models were obtained for 

MODIS in the VIS, with RPD = 2.00 for TOC and RPD = 2.68 for OC. The 

performance of these models was very similar to that obtained with ASD (Table 2). 

The models based on NIR bands of MODIS had a limited predictive power, both in 

TOC (RPD = 1.43) and OC (RPD = 1.77). A limited performance was also obtained 

for the models based on MODIS SWIR bands. The significant drop of accuracy 

observed when the entire lab spectra were resampled to the MODIS bands in the NIR 

and SWIR was attributed to the low number of bands in these regions: 7 in the NIR and 

only 3 in the SWIR. This drop of performance may also be attributed to the location of 

the bands and their bandwidth, which could be too wide to successfully detect some 

important absorption features for the estimation of SOC. Some significant regions for 

SOC prediction, such as 2041-2154 nm and 2287-2315 nm (see Table 3 and Fig. 3), 

are not entirely covered by MODIS bands. The performance of the models based on 

MODIS bands from the VIS-NIR-SWIR region are similar to that obtained with ASD, 

both in TOC and OC. 

As for Landsat 5 TM, the accuracy of the models in the VIS-NIR-SWIR was lower 

than that obtained with ASD, but according to Chang et al. (2001) model for OC still 

provided accurate predictions, with RPD = 2.03. An intermediate prediction ability was 

observed in the model for estimating TOC (RPD = 1.62). The bands of Landsat 5 TM 

do not entirely cover important regions for SOC prediction, such as 961-1000 nm and 
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1390-1431 nm, and it could explain the drop of accuracy observed with this sensor. 

The wide band of Landsat at 2223 nm with bandwidth of 252 nm brings together the 

information of the three significant regions 2041-2154 nm, 2223-2231 nm, and 2287-

2315 nm, and may not properly describe the variability in this region. 

Considering only the spectral region with best results in Table 2, VIS-NIR-SWIR, 

no significant differences were observed between the accuracy of the models based on 

the entire lab spectra (ASD with 2051 bands) and those based on lab spectra resampled 

to the three hyperspectral sensors (38-155 bands) and MODIS (20 bands). Despite the 

wide difference in the number of bands between lab and these imaging spectrometers, 

both TOC and OC were successfully estimated using PLSR, with less than 10 factors. 

The lowest accuracy was obtained for the models based on Landsat, but these models 

still provided moderately satisfactory results, with an error ~30-45% greater than that 

obtained in the models based on lab spectra for TOC and OC. 

Comparison with other SOC prediction models 

SOC was accurately estimated under controlled lab conditions using PLSR. The 

validation results of the lab models (Table 2) were compared to the results obtained in 

previous studies in which actual airborne/satellite data were used to predict SOC at a 

regional scale. Studies were compared using the R2 and RPD values obtained in the 

validation. The use of the RMSE was discarded, as it is not comparable among studies 

in which soil properties show a different range of variation and are expressed in 

different units. 

Accurate SOC prediction models were obtained in this study using the wavelengths 

associated with CASI (R2 = 0.78-0.87 and RPD = 2.11-2.75). Stevens et al. (2006) and 

Uno et al. (2005) used CASI data to estimate SOC/SOM in agricultural fields and 
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obtained similar R2 values (R2 = 0.75-0.85) and lower RPD values (RPD = 1.57-1.86) 

than those obtained in this study. 

Using the wavebands associated with AHS, we predicted SOC with R2 = 0.81-0.89 

and RPD = 2.28-2.97. Stevens et al. (2008) estimated SOC in agricultural fields using 

PLSR, under lab conditions (R2 = 0.76 and RPD = 2.03) and also at a regional scale 

using AHS data (R2 = 0.54 and RPD = 1.47). The error obtained using AHS data was 

approximately two to three times greater than the value obtained in the lab. Stevens et 

al. (2010) used AHS data to estimate SOC over agricultural fields and obtained R2 = 

0.72 and RPD = 1.89. Stevens et al. (2012) obtained better results in the SOC prediction 

with AHS using a large dataset and performing local models for the different regions 

and soil textures in the study area (R2 = 0.79 and RPD = 2.33). SOC maps of our study 

area were obtained using AHS in a recent work by Fernández et al. (2016). The 

accuracy of these maps was satisfactory, with R2 = 0.72-0.73, RPD = 1.89-1.92, and an 

error similar to that obtained in the lab. 

SOC prediction models based on lab spectra resampled to Hyperion showed R2 = 

0.79-0.87 and RPD = 2.17-2.80 (good prediction ability). These results are better than 

those obtained in previous studies based on actual Hyperion data: Gomez et al. (2008) 

in agricultural fields and pastures (R2 = 0.51 and RPD = 1.43), and Lu et al. (2013) in 

agricultural fields (R2 = 0.63 and RPD = 1.65). The models obtained in both studies 

provided an intermediate prediction ability. The performance of the models by Zhang 

et al. (2013), who also used Hyperion data to estimate SOC/SOM in agricultural fields, 

was intermediate, with R2 = 0.48-0.74 and RPD = 1.48-1.91. Jaber et al. (2011) used 

Hyperion data to predict SOC in agricultural fields, pastures and forests, but their 

models had a low prediction ability (RPD = 0.68). Models using Hyperion spectra were 

less accurate than models based on lab spectra and it was attributed to the presence of 
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different covers within the same pixel (spectral mixing), and to the noise present in the 

image (Gomez et al. 2008; Jaber et al. 2011; Lu et al. 2013). 

Models obtained in this study using the wavelengths associated with Landsat 

showed a good-intermediate prediction ability, with R2 = 0.62-0.75 and RPD = 1.62-

2.03. Comparable or even better R2 values were found in the previous studies in which 

Landsat data were used to estimate SOC/SOM. Nanni and Demattê (2006) estimated 

SOM in bare soils using lab spectra resampled to Landsat 5 TM (R2 = 0.53) and also 

using actual Landsat data (R2 = 0.51). Huang et al. (2007) estimated soil total C content 

in glacial till soils and obtained R2 = 0.46 using Landsat reflectance data, and R2 = 0.62 

when topographical variables were included in the model. Peng et al. (2015) used 

Landsat to estimate SOC in an area mainly devoted to agriculture and obtained R2 = 

0.46 and RPD = 1.3. SOC was accurately estimated in non-agricultural arid and semi-

arid areas using Landsat 5 TM data, with R2 = 0.80-0.91 (Jarmer et al. 2010). 

SOC prediction models obtained in this study for MODIS showed R2 = 0.77-0.88 

and RPD =2.01-2.95. Vågen et al. (2016) used actual MODIS data to map SOC in 

Africa at a spatial resolution of 500 m and obtained a similar R2 value (R2 = 0.74). 

Models for SOC prediction obtained in previous studies based on actual 

airborne/satellite data were typically less accurate than models obtained in this study 

using simulated spectra. The drop in the RPD values was on average 29.4% for CASI, 

27.6% for AHS, and 42.5% for Hyperion. These differences between lab and field 

predictions were attributed to a wide range of factors including the presence of noise 

in airborne/satellite data, the soil surface conditions such as the roughness and moisture 

content, the presence of vegetation and different covers within the same pixel, and the 

lack of a proper atmospheric correction. Among the hyperspectral sensors, the largest 

differences were observed in Hyperion and they were related to the low signal-to-ratio 
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of this sensor (Pearlman et al. 2003) and to its spatial resolution of 30 m. Based on the 

results showed in this section, the hyperspectral sensor with greatest potential to be 

transferred from lab to field scale is AHS. 

As for the multispectral sensors, SOC models based on actual reflectance spectra 

showed R2 values on average 14.6% lower than models based on lab spectra resampled 

for Landsat 5 TM, and 9.2% lower for MODIS. Although better results are expected 

using hyperspectral data, moderately satisfactory predictions were reported in the 

literature for both satellite multispectral sensors, which can be very valuable to map 

topsoil C in homogeneous and extensive bare soil areas, as well as in large areas 

affected by wildfires.  

Conclusions 

Topsoil organic carbon can be accurately estimated using PLSR and VIS-NIR-

SWIR spectra of soils. A high number of narrow contiguous bands is not required to 

obtain accurate predictions of SOC, as the PLSR models proved to be effective not only 

for hyperspectral sensors, but also for multispectral sensors such as MODIS. The 

results suggest that the drop of accuracy in the estimation of SOC using satellite or 

airborne sensors seems to be more related to low signal-to-noise ratios or an inadequate 

atmospheric correction than to a lack of hyperspectral bands. Although previous studies 

based on multispectral sensors provided promising estimations of topsoil organic 

carbon in bare soil areas, further research on their application for soil properties 

mapping is required. 

The location of the bands through the spectrum seems to be more important to 

effectively estimate SOC than the number of bands or their bandwidth. The most 
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significant regions for SOC prediction were the VIS and the SWIR, mainly between 

2000 and 2450 nm. AHS showed the greatest potential to accurately estimate SOC. 
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Table 1. Sensor specifications and number of selected bands in each spectral region 

Sensors are ranked in increasing order of pixel size. HYP: Hyperion; L5TM: Landsat 5 TM; MOD: MODIS. 
ABandwidth values correspond to the Full Width at Half Maximum (FWHM). BTwo bands of MODIS are acquired 

at a spatial resolution of 250 m, 5 at 500 m, and the remaining bands at 1000 m 

 Lab spectra  Resampled lab spectra 

Specifications ASD  CASI AHS HYP L5TM MOD 

Sensor type Lab  Airborne Airborne Satellite Satellite Satellite 

Spectral range (nm) 400-2450  407-1053 443-2326 427-2355 485-2223 413-2130 

Number of bands:        

   VIS (400-700 nm) 301  62 9 27 3 10 

   NIR (700-1300 nm) 600  74 10 57 1 7 

   SWIR (1300-2450 nm) 1150   19 71 2 3 

   VIS-NIR-SWIR 2051  136 38 155 6 20 

Bandwidth (nm)A 3-6  6 17-85 10-12 66-252 10-50 

Spatial resolution (m)   1.5 5 30 30 1000B 

Swath width (km)   1.5 4.1 7.5 185 2330 

Temporal resolution (days)     200 16 1 
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Table 2. Summary statistics of the PLSR models for soil organic C prediction based on laboratory spectra 

HYP: Hyperion; L5TM: Landsat 5 TM; MOD: MODIS. n: 89. NF: number of latent variables or PLSR factors 

Soil 

property 

  Lab spectra  Resampled lab spectra 

Spectral region Parameter ASD  CASI AHS HYP L5TM MOD 

TOC (%) VIS NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

6 

186.6 

0.77 

7.11 

2.10 

 6 

188.1 

0.76 

7.24 

2.06 

6 

185.8 

0.78 

7.05 

2.12 

6 

187.1 

0.77 

7.15 

2.09 

 6 

190.7 

0.75 

7.44 

2.00 

 NIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

6 

196.6 

0.72 

7.96 

1.87 

 8 

211.0 

0.65 

8.95 

1.67 

7 

214.8 

0.59 

9.54 

1.56 

6 

196.8 

0.72 

7.97 

1.87 

 6 

220.7 

0.51 

10.44 

1.43 

 SWIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

4 

181.5 

0.78 

7.02 

2.12 

  

 

6 

180.9 

0.80 

6.67 

2.24 

5 

184.1 

0.77 

7.07 

2.11 

 3 

211.3 

0.55 

10.04 

1.49 

 VIS-NIR-SWIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

7 

187.3 

0.78 

7.01 

2.13 

 8 

189.9 

0.78 

7.06 

2.11 

7 

181.2 

0.81 

6.55 

2.28 

7 

185.7 

0.79 

6.88 

2.17 

6 

209.8 

0.62 

9.23 

1.62 

7 

192.4 

0.75 

7.42 

2.01 

OC (%) VIS NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

5 

133.3 

0.85 

4.00 

2.58 

 5 

134.3 

0.85 

4.04 

2.56 

6 

132.6 

0.86 

3.88 

2.66 

5 

133.0 

0.85 

3.98 

2.59 

 7 

134.0 

0.86 

3.85 

2.68 

 NIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

11 

153.6 

0.82 

4.39 

2.35 

 8 

164.2 

0.75 

5.29 

1.95 

8 

164.4 

0.74 

5.30 

1.95 

10 

158.6 

0.79 

4.75 

2.18 

 6 

168.9 

0.68 

5.83 

1.77 

 SWIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

4 

133.5 

0.84 

4.10 

2.52 

  4 

135.3 

0.84 

4.18 

2.47 

4 

135.2 

0.84 

4.18 

2.47 

 3 

169.4 

0.63 

6.27 

1.65 

 VIS-NIR-SWIR NF 

AIC 

R2
cv 

RMSEcv (%) 

RPD 

9 

130.2 

0.88 

3.53 

2.93 

 8 

133.7 

0.87 

3.75 

2.75 

7 

124.8 

0.89 

3.47 

2.97 

7 

130.3 

0.87 

3.69 

2.80 

6 

157.0 

0.75 

5.10 

2.03 

9 

129.5 

0.88 

3.50 

2.95 
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Table 3. Most significant spectral regions for TOC and OC prediction obtained from PLSR models based on 

laboratory spectra (ASD) 

For each spectral region, the sign of the b PLSR regression coefficients is shown in brackets 

Spectral 

region 

Wavelength (nm) 

TOC  OC 

VIS 400-413 (+)  400-409 (-) 

 420-425 (+)  420-452 (+) 

 471-526 (-)  475-534 (-) 

 556-570 (+)  559-563 (+) 

   574-616 (+) 

   651-668 (-) 

   692-703 (-) 

NIR   961-1000 (+) 

SWIR 1434-1476 (+)  1390-1431 (-) 

 1805-1814 (-)  1906-1908 (-) 

 1819-1892 (-)  2041-2154 (+) 

 1919-1930 (+)  2223-2231 (-) 

 2001-2023 (-)  2287-2315 (+) 

 2180-2239 (-)  2353-2365 (-) 

 2261-2346 (+)  2381-2385 (-) 

   2425-2444 (-) 
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Fig. 1. Location and general view of the study area (NW Spain).  
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Fig. 2. Processing flow chart.  
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Fig. 3. Spectral resampling of the ASD reflectance spectrum of a soil sample for the different sensors (a). Note 

that, for sake of clarity, the resampled spectra plots have been given an offset. HYP: Hyperion; MOD: MODIS; 

L5TM: Landsat 5 TM. Band spectral responses of the sensors (b). Regression coefficients of PLSR models for 

SOC estimation based on the lab spectra measured with ASD (c), and plot of the Variable Importance for 

Projection (d). The dotted horizontal lines in (c) represent the thresholds based on the standard deviation of both 

TOC and OC. The black solid horizontal line in (d) represents the threshold for VIP, set at 1. 


