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ROC curve generalization for non-monotone
relationships

Pablo Martı́nez-Camblor,∗†‡ Norberto Corral,‡ Corsino Rey¶‡ Julio Pascual,§‡
Eva Cernuda-Morollón§‡

The ROC curve is a popular graphical method frequently used in order to study the diagnostic capacity of
continuous markers. It represents in a plot the true-positive against the false-positive rates. Both the practical
and theoretical aspects of the ROC curve have been extensively studied. Conventionally, it is assumed that the
considered marker has a monotone relationship with the studied characteristic; i.e., the upper (lower) values of
the (bio)marker are associated with a higher probability of a positive result. However, there exist real situations
where both the lower and the upper values of the marker are associated with higher probability of a positive result.
We propose a ROC curve generalization, Rg, useful in this context. All pairs of possible cut-off points, one for
the lower and another one for the upper marker values, are considered selecting the best of them. The natural
empirical estimator for the Rg curve is considered and its uniform consistence and asymptotic distribution are
derived. Finally, two real-world applications are studied.
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1. Introduction

Receiver operating characteristic (ROC) curve is a popular and valuable tool commonly used in order to study the
diagnostic performance of a particular marker. It displays in a plot the false-positive rate (FPR) or 1-specificity (1− SP )
i.e., the inability of the test to recognize a negative subject (frequently healthy) as negative against the sensitivity (SE) or
true-positive rate (TPR) i.e., the capacity of a diagnostic criterion/test to identify a positive subject (frequently diseased)
as positive.

As classifying individuals into groups is a common problem in a variety of contexts, the ROC curve has received great
attention in the specialized literature. There exists a huge number of papers which deal with both the theoretical and
practical aspects of the ROC curve and its related problems (see, for instance, Martı́nez-Camblor [1] for a recent review).
The book of Zhou, Obuchowski and McClish [2] provide a deep study of different ROC curve issues.

Conventionally, without loss of generality (wlg), it is assumed that larger values of the marker indicate the larger
confidence that a given subject is positive (diseased). Therefore, let χ and ξ be two continuous random variables
representing the values of the diagnostic test for the negative (without the studied characteristic/normal) and the positive
(with the characteristic/diseased) subjects, respectively, for a fixed point t (FPR), the ROC curve is defined by

R(t) =1− Fξ(F−1χ (1− t))
=P{ξ > F−1χ (1− t)} = P{1− Fχ(ξ) ≤ t} = F1−Fχ(ξ)(t), (1)
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where Fχ and Fξ denote the cumulative distribution functions (CDF) for the variables χ and ξ, respectively. Although
other different parametric (Hanley [3]), semi-parametric (Hsieh and Turnbull [4]) and non-parametric estimators (Zou,
Hall and Shapiro [5]) have been proposed, the empirical estimator, based on replacing the involved unknown CDFs for
their respective empirical cumulative distribution functions (ECDF) is the most popular one. Hence, let X and Y be two
random samples drawn from ξ and χ respectively, for each t ∈ [0, 1] the empirical ROC curve estimator is defined by

R̂(t) = 1− F̂n(X, F̂−1m (Y, (1− t)), (2)

where F̂n(X, ·) is the ECDF referred to the sample X (with size n) and F̂−1m (Y, ·) = inf{s ∈ R / F̂m(Y, s) ≥ ·} (with size
m). Both the uniform consistence and the asymptotic behaviour of R̂ have been investigated under weak and standard
assumptions (see, for instance, Hsieh and Turnbull [4]). In particular, if (i) both Fχ and Fξ have continuous densities, fχ
and fξ, fξ(Fχ(t))/fχ(Fχ(t)) is bounded in any subinterval (a, b) of (0, 1) and (ii) n/m→ λ as min(n,m)→∞, there
exists a probability space on which one can define independent sequences of Brownian bridges, {B(m)

1 (t)}{0≤t≤1} and
{B(n)

2 (t)}{0≤t≤1}, such that, for each t ∈ [0, 1],

√
n · (R̂(t)−R(t)) = λ1/2 · r(t) ·B(m)

1 (1− t) +B
(n)
2 (1−R(t)) + o(1) a.s. (3)

where r(t) = ∂R(t)/∂t. However, sometimes not only the larger (lower) marker values are associated with disease, but
both the lower and larger values are related with the presence of the studied feature. For instance, in haemodialysis
population, both the high and low levels of serum iPTH, calcium and phosphate are associated with higher risk of mortality
[6]. Also, in the intensive care units, leukocyte counts greater than 20,000 (leukocytosis) or below 5,000 (leukopenia) are
associated with bad prognosis in critically ill patients.

Obviously, this topic has already been pointed out. Hilden [7] exposed the following theoretical example: the
(bio)marker values (T ) for half of the diseased subjects are less than 80 and the other half have values greater than
120 while the (bio)marker values for the healthy patients are always between 80 and 120. Zhou, Obuchowski and
McClish [2] reduced this problem to the right-size one by performing the transformation T ′ = |T − 100|. In this case, this
transformation solves the problem. However, it is not always possible to find, easily, a suitable transformation, specially,
when the marker distribution for the diseased or for the healthy subjects is skewed.

Figure 1 depicts the density functions for the negative and the positive populations (left) and the resulting right-side
ROC curve (right). Note that, in this case, the sole difference between the negative and the positive subjects is the
variability. Although not so extreme, the depicted situation is similar to that described by Hilden [7]. From the usual
right-side approach, the classification based on the point B obtains a higher percentage of false-positives (97.7%), than
true-positives (81.4%). However, if a subject with a marker value lower than -2 or greater than 2 is declared as positive and
it is declared as negative otherwise, the false-positive and the true-positive percentages are 4.6% and 37.1%, respectively.
This criterion is equivalent to use a threshold of 2 on the transformed marker T ′ = |T |.

In this paper, the authors propose a ROC curve generalization useful in the above context. It considers all possible pairs
of cut-off points, one for the lower bound and another one for the upper bound; those obtaining the same specificity and
achieve the largest sensitivity, are selected. The uniform consistence and the asymptotic distribution for its direct empirical
estimator are derived in Section 2. Section 3 is devoted to study the properties of the associated area under the curve,
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Figure 1: Density functions for the negative, fχ, and the positive, fξ, populations (left) and the resulting ROC curve (right).
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AUCg. In Section 4, this methodology is applied to two real data sets. On one hand, we study the association between
the leukocyte count and the mortality risk in critically ill children. And, on the other hand, we study the relationship
between the Calcitonin gene related peptide (CGRP) levels and the response to the OnabotulinumtoxinA treatment for the
chronic migraine in adults. The results which guarantee the uniform consistence and the asymptotic distribution for the
empirical general ROC curve estimator and a R function (Rg) to compute the proposed general ROC curve are provided
as supplementary material.

2. ROC generalization: Definition and properties

For each fixed threshold, x ∈ R, the right-side ROC curve is the pair {1− SP (x), SE(x)} = {1− Fχ(x), 1− Fξ(x)}. If
t = 1− Fχ(x), the well-known ROC curve expression {t,R(t)} is obtained. When different thresholds drive to the same
specificity, the one which maximizes the sensitivity is taken (in the usual right-side convention, the minimum of all possible
thresholds). When both the larger and lower values of the marker are associated with a higher probability of disease, two
thresholds xl, xu ∈ R (xl ≤ xu) are necessary in order to make a diagnosis. A subject is classified as positive when
its marker value is below xl or greater than xu; therefore, the specificity is defined by SP (xl, xu) = Fχ(xu)− Fχ(xl).
For arbitrary t ∈ [0, 1], let beFt = {(xl, xu) ∈ R2 such that xl ≤ xu and Fχ(xl) + 1− Fχ(xu) = t}, the generalized ROC
curve is defined by

Rg(t) = sup
(xl,xu)∈Ft

{Fξ(xl) + 1− Fξ(xu)}.

Obviously, for each (xl, xu) ∈ Ft there exists a γ ∈ [0, 1] such that Fχ(xl) = γ · t, and then xl = F−1χ (γ · t). Due to
(xl, xu) ∈ Ft, then Fχ(xu) = 1− [1− γ] · t, and xu = F−1χ (1− [1− γ] · t). Therefore,

Rg(t) = sup
γ∈[0,1]

{Fξ(F−1χ (γ · t)) + 1− Fξ(F−1χ (1− [1− γ] · t))},

or equivalently,
Rg(t) = sup

γ∈(0,1)
{1−R(1− γ · t) +R([1− γ] · t)} . (4)

If γt = arg supγ∈[0,1]{1−R(1− γ · t) +R([1− γ] · t)} (if it is not a unique value, we take the minimum among all
possibilities) the above expression is equivalent to,

Rg(t) = {1−R(1− γt · t) +R([1− γt] · t)}.

The γt value determines the optimum proportion of false positives, γt · t, committed by the left (negative subjects with a
marker below xl), and by the right, [1− γt] · t (negative subjects with a marker larger than xu). Logically, under symmetry
(Figure 1), the optimum value is 1/2 for all t ∈ [0, 1].

Directly, Rg generalizes the usual right-side (left-side) ROC curve. When lower (upper) marker values are associated
with normal subjects, for each t ∈ [0, 1], γt = 0 (γt = 1) and Rg = R (Rg(t) = 1−R(1− t)). Note that, in the Hilden
case, enunciated above,Rg = 1 when γt = 1/2 for all t ∈ [0, 1]. In addition, taking into accountRg is mainly based on the
usual ROC curves, it inherits most of its properties, for instance, the invariance for monotone increasing transformations
[4].

Figure 2 represents the Rg construction for the populations considered in Figure 1. In this case, R(t) = 1−R(1− t)
and the optimum value for γ is 1/2 for all t ∈ [0, 1]. The set of all possible trajectories of the curve, 1−R(1− γ · t) +
R([1− γ] · t) for γ ∈ [0, 1], defines the gray zone. In this case, this area coincides with the difference between the area
under the right-side (left-side) ROC curve and the area under the Rg curve.

Conventionally, letX and Y be two independent random samples drawn from the random variables ξ and χ respectively,
then for each t ∈ [0, 1], the empirical general ROC curve estimator is,

R̂g(t) = sup
γ∈[0,1]

{
1− R̂(1− γ · t) + R̂([1− γ] · t)

}
, (5)

where R̂ is the empirical ROC curve estimator defined in equation 2. The R̂g estimator has good asymptotic properties.
In particular, in the current manuscript, results to guarantee both the uniform consistency and the asymptotic distribution
are included as supplementary material.
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Figure 3 is similar to Figure 2 but empirical curves based on independent random samples of positive and negative
populations (sharing the same sample size, 100) were used instead of the theoretical ones. Here and onwards, the values
of γt were computed numerically. For t = 1/2, the observed R̂g value was 0.89. This value was obtained for γt = 0.481

(R̂(1− γt · t) = R̂(0.759) = 0.60 and R̂([1− γt] · t) = R̂(0.259) = 0.49). In this case, the minimum observed value for
{1− R̂(1− γ · t) + R̂([1− γ] · t)} was 0.42, obtained for γ = 1 (usual left-side ROC curve).

Additionally, empirical results, based on simulations (results not shown), suggest that the convergence ratio of the R̂g to
its target is similar to the convergence ratio for the empirical ROC curve estimator. However, it is worth to point out that,
when the diagnostic capacity of the marker is poor (close to the main diagonal), R̂g over-estimates the marker diagnostic
capacity.

3. Area under the curve

The area under the ROC curve (AUC) is the most commonly used global index of diagnostic accuracy (Fluss, Faraggi
and Reiser [8]). It ranges between 0.5 and 1 and represents the overall performance of a diagnostic test, in terms of its
accuracy, at all relevant diagnostic thresholds (cut-off points) used to discriminate subjects with or without the considered
characteristic. Moreover, in the usual right-side (left-side) assumption the AUC (labeled by A) is

A =

∫ 1

0

R(t)dt =1−
∫
Fξ(u)dFχ(u) = P{ξ > χ}.

Therefore, in this case, the AUC has a direct probabilistic interpretation. In particular, the AUC is the probability that the
value of the marker in a randomly chosen positive subject will be higher than the value of the marker in a randomly chosen
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Figure 2: Rg construction for the populations considered in the Figure 1 (left). In gray, the set of all possible trajectories
of {1−R(1− γ · t) +R([1− γ] · t)} for γ ∈ [0, 1] and the Rg curve, in black (right).
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Figure 3: R̂g construction for two samples of negative and positive populations (n = 100, m = 100) drawn from the
populations considered in the Figure 1 (left). In gray, all possible trajectories of {1− R̂(1− γ · t) + R̂([1− γ] · t)} for
γ ∈ [0, 1] and the R̂g curve, in black (right).
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Table 1: Descriptive statistics for the leukocyte count in the low and high mortality risk (MR) groups. In particular, sample
size (N), mean and standard deviation (mean ± sd), percentile 25 (P 25), 50 (P 50) and 75 (P 75) are provided.

N Mean ± sd P 25 P 50 P 75

Low MR 176 14,290.7 ± 6,588 9,725 13,400 17,875
High MR 12 18,325.8 ± 20,343 7,250 11,400 22,850

negative subject. Of course, the area under the general ROC curve can also be directly computed and it can be read as
the sensitivity average for the different specificities. Its value can still be used in order to summarize the accuracy of the
studied test by a single number; but, unfortunately, it loses the probabilistic interpretation, even for γt constant, due to the
relationship between the marker and the studied characteristic is not monotone.

The direct non-parametric estimator for the area under the generalized ROC curve, AUCg, is

Âg =
∫ 1

0

R̂g(t)dt. (6)

Theorem 2 (see supplementary material) guarantees that
√
n · (Âg −Ag) (Ag =

∫ 1

0
Rg(t)dt) is, asymptotically, normal

distributed with mean zero. The variance depends on the first derivative of the γt function and, in general, it is not possible
to derive expressions useful in practice; therefore, some resampling method must be used in order to perform inferences.
By using the traditional naive bootstrap method [9], the precision of the results, obtained via Monte Carlo simulations,
was similar to that of the usual AUC estimator (results not shown). In the supplementary material, the explicit expression
for the variance of

√
n · (Âg −Ag), when γ′t = 0∀t ∈ (0, 1), is derived. Unfortunately, the simulation results suggest that

this expression is not useful for general situations. In particular, when γt is replaced by
∫
γtdt and a plug-in method

is employed for estimating all the unknown parameters, the observed estimations for the variances were really unstable
(results not shown).

4. Real data applications

4.1. Association between leukocyte count and mortality risk in critically ill children

Having available tools to determine the risk of mortality at admission to the Paediatric Intensive Care Unit (PICU), or
during the first 24 hours after admission, is a clinical necessity [10]. Leukocyte count measurement constitutes a routinely
determination when a patient is admitted to the PICU. Classically, low leukocyte or high leukocyte counts are described
as one of the criteria for the diagnosis of sepsis, a severe systemic infection [11]. Recently, low leukocyte count was found
as an independent risk factor of mortality in critically ill children with sepsis [12] as well as in adults with necrotizing
pneumonia [12]. Therefore, the objective of our study was the investigation of leukocyte count in a well defined cohort
of consecutive PICU patients to test the hypothesis that low or high leukocyte counts would be associated with increased
prediction of mortality risk scores in critically ill children. We designed a prospective observational study set in two
PICUs of university hospitals (8-bed PICU of Hospital Universitario Central de Asturias in Oviedo and 11-bed PICU of
Hospital Universitario Gregorio Marañón in Madrid). The study protocol was approved by the Hospital Ethics Committee
of Hospital Universitario Central de Asturias. The study was conducted in a number of consecutive patients, age below
18 years, who were admitted to one of these PICUs. Patients were divided in two groups according to mortality risk
scores. Higher score risk mortality group (high MR) included patients with a PIM 2 and PRISM III scores greater than
percentile 75 (N = 12); lower score risk mortality group (low MR) included patients with a PIM 2 and/or PRISM score
below percentile 75 (N = 176). The interested reader is referred to Rey, Garcı́a-Hernández, Concha et al. [10] for more
information about this cohort. Leukocyte count routine determinations were performed during the first 12 hours after
admission.

A total of 188 (61.7% women) patients were included in the study. Twelve of them were classified within the high
mortality risk group (high MR) and 176 in the low mortality risk group (low MR). Patients in the high MR were younger
(mean ± standard deviation: 31.67± 42.38 months) than patients in the low MR, 67.32± 59.88 (the Student-Welch test
provided a p-value of 0.016). Table 1 shows some descriptive statistics for the leukocyte count in both the low and high
mortality risk groups.

Note that, in the high MR group the observed variability of the leukocyte count was really large. In addition, in the low
MR group, P25 was larger and P75 lower than in the high MR group. When an usual right-side (left-side) ROC curve is
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plotted, it crosses the diagonal line and obtains a low AUC value. In particular, the observed AUC for the left-side ROC
curve was 0.520 with a 95% (naive) bootstrap (based on 5,000 iterations) confidence interval of (0.275-0.693). The general
ROC curve detects that both the lower and the higher values of the marker are associated with the high MR group and
achieved an Ag of 0.740 with a 95% (naive) bootstrap (based on 5,000 iterations) confidence interval of (0.658-0.884).
If the children with leukocyte count lower than 24,900 (10.12 in logarithmic scale) and greater than 10,200 (9.23 in
logarithmic scale) were classified within the low MR group (optimal thresholds in the Youden index sense) the observed
TPR and the TNR were 0.750 and 0.636, respectively. Figure 4 depicts the kernel density estimation for the leukocyte
count in logarithmic scale for both the high (black) and low (gray) mortality risk groups and the right-side, the left-side
and the general ROC curves.

A moderate increase in the number of leukocytes is the normal stress response of the body when it suffers an injury
being considered one of the main elements in the systemic response syndrome. This inflammatory response favours the
recovery of the patient. However, when the response is very intense (large increase in leukocyte count) or very poor
(decrease in leukocyte count) the recovery of the patient is compromised. Therefore, mortality risk, especially in critically
ill patients, increases.

4.2. Relationship between the response to the OnabotulinumtoxinA treatment for the chronic migraine headaches and
the CGRP levels in women

The OnabotulinumtoxinA is the first and only FDA-approved (United State food and drug administration), preventive
treatment for chronic migraine in adults (see, for instance, Dodick et al. [14]). On the other hand, serum CGRP levels are
increased in chronic migraineurs indicating a chronic activation of the trigemino-vascular system, and it is proposed as the
first biomarker for this entity [15]. For this reason, we explored the relationship between basal levels of CGRP, determined
as it was previously described, and the response to the OnabotulinumtoxinA in 70 women (age ranges between 20 and 63
years, mean ± standard deviation: 46.4 ± 10.3) meeting chronic migraine criteria. The study was approved by the ethic
review board of the Hospital Universitario Central de Asturias (HUCA) and the patients gave written consent. Migraine
patients are usually considered as responders when attack frequency is decreased by 50%, so we adopted this criterion and
we checked it by the use of monthly headache calendars in all patients.

The observed response percentage was 78.6% (55/70). Table 2 shows the main descriptive statistics for the CGRP
levels in the response and non-response groups. The values in the response group were, in general, higher than in the
non-response group. However, the minimum value in the response group (11.44) was lower than the minimum value in
the non-response group (27.44).

Figure 5 depicts, at left, the kernel density estimations for both the response (black) and the non-response (gray) groups
for the CGRP levels in logarithmic scale. At right, the right-side (R̂(t)), the left-side (1− R̂(1− t)) and the general ROC
curves. The area under the right-side ROC curve was 0.619 (0.473-0.765) (between brackets a 95% (naive) bootstrap
(based on 5,000 iterations) confidence intervals) while Âg was 0.731 (0.639-0.881). Optimal thresholds (maximizing
TPR-FPR) were (36.51, 66.97); i.e, women with CGRP levels below 36.51 (3.60 in logarithmic scale) and larger than
66.97 (4.20 in logarithmic scale) are the optimal group. Particularly, with these cut-off points, the FPR and the TPR were
0.267 and 0.673, respectively.
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Table 2: Descriptive statistics for the CGRP levels in the response and non-response groups. In particular, sample size (N),
mean and standard deviation (mean ± sd), percentile 25 (P 25), 50 (P 50) and 75 (P 75) are provided.

N Mean ± sd P 25 P 50 P 75

No response 15 57.68 ± 22.01 38.71 50.45 66.91
Response 55 70.97 ± 33.01 45.01 71.04 88.34

The remarkable response in a subset of patients with high CGRP levels supports its value as a biomarker of chronic
migraine and suggests that the inhibition of CGRP release could be a mechanism accounting for the OnabotulinumtoxinA
positive effect in chronic migraine. There are several potential explanations for the fact that a subset of patients with low
CGRP levels seemed to respond to botulinum toxin A treatment. The first could simply be a placebo response, considering
that about one-third of patients with frequent migraine respond to placebo in clinical trials and that this response increases
with injections versus oral medications. Second, some patients with a chronic migraine phenotype and low CGRP levels
could, in fact, suffer from a psychogenic headache instead of a true chronic migraine. Finally, it is also possible that;
for some patients, other pain-producing peptides, such as VIP or PACAP, and not CGRP are released by the activated
trigemino-vascular system.

5. Conclusions

In this paper, we explored a ROC curve generalization for the case where the relationship between the marker and the
studied feature are not monotone i.e., extreme values of the marker are associated with high probability of having the
considered characteristic. In spite of the proposed ROC curve generalization, Rg, does not have a direct probabilistic
interpretation; for a considered (bio)marker, the Rg(t) is (can be read as) the greatest reached sensitivity when the
specificity is, at most, 1− t. The explored approach has the advantage of solving the non-monotonicity problem without
transforming the original data. Note that, a suitable transformation not always exists and, in addition, these transformations
are usually made taking into account information extracted from the sample and then, the same sample is used in order
to calculate the ROC curve. In the cases where such transformation exists, both methods result in the same ROC curve.
In the explored datasets, working with the transformed markers |T − µ0|, |T −m0| and |T − p0| where µ0, m0 and p0
stand for the mean, the median, and the middle point (0.5 · [max−min]) in the control group, respectively, and T is the
original marker (leukocyte count and CGRP level, in the considered examples), the obtained curves improved the original
right-side ones but both were worse than R̂g. The best AUCs were 0.69 and 0.67 for the leukocyte and the CGRP data,
respectively.

Additionally, its direct non-parametric empirical estimator is studied. It is the result of replacing the unknown CDFs for
their usual non-parametric estimators, the respective ECDFs. From the properties of the traditional right-side ROC curve,
both the uniform convergence and the asymptotic distribution are derived. Our simulations (not shown here) suggest that
the quality of estimations provided by R̂g are similar to the usual R̂; although, logically, the new estimator overestimates
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Figure 5: Left, kernel density estimation for the CGRP levels (logarithmic scale) for both the response (black) and non-
response (gray) mortality risk groups. Vertical lines stand for the optimal thresholds. Right, right-side (R̂), left-side
(1− R̂(1− t)) and general ROC curves. In gray, TPR and FNR achieved by the Youden-threshold.
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the diagnostic capacity when that is poor. This problem is shared with the traditional ROC curve analysis if the desired
direction (left or right) is not previously defined.

Probably, the main handicap of the proposed curve is that its associated area under the curve loses the direct probability
interpretation. The AUCg can still be used in order to summarize the diagnostic capacity of the studied biomarker. It still
ranges between 0.5 and 1 and higher values are associated with better diagnostic capacity. In addition, it can be read as the
average of the achieved sensitivity for all possible specificities. The asymptotic normality of the area under the proposed
general ROC curve estimator, Âg, has also been derived. However, the explicit expression for the variance depends on
the first derivative of the function γt and it is not useful in practice. Unfortunately, the result obtained in Theorem 3 (see
supplementary material) is not robust against the unrealistic assumption that γ′t = 0∀t ∈ (0, 1); hence, in order to make
inference, the use of some resampling method is advisable.

Finally, the proposed methodology is used in two real datasets. In the first one, we explored the use of the leukocyte
count in order to predict the mortality risk in critically ill children. In the second one, it is studied the relationship between
the response to the OnabotulinumtoxinA treatment for the chronic migraine headaches and the CGRP levels in 70 Spanish
women. In this problem both, the larger and the lower values of CGRP are associated with higher probability of response.
The proposed general ROC curve allows to detect a potential placebo effect in those women with low CGRP levels.

The customer software used for developing the computes involved in this work (in particular, the R function called
Rg) is included as supplementary material. The authors expect developing additional functions which perform ROC curve
comparison, ROC meta-analysis and other proposed solutions for different problems related with the ROC curve and
uploading all together in a R package.
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