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Abstract— A single-stage, AC/DC driver for High Brightness 

Light-Emitting Diodes (HB-LED) with galvanic isolation is 

presented in this paper. The driver is based on a Dual Inductor 

Current-fed Push-Pull (DICPP) converter with each inductor 

operating in Boundary Conduction Mode (BCM). The 

interleaving between the two inductors makes possible for the 

converter to reduce the high input current ripple of a BCM. 

Moreover, it is fully compliant with IEC 1000-3-2 Class C, and it 

is also able to achieve high Power Factor (PF). Moreover, the low 

component count, simplicity and overall outstanding 

characteristics make this topology suitable for medium power 

range HB-LED drivers in low cost applications.  

Finally, the proposed topology has been tested on a 90W 

prototype for the full range of the US single-phase line voltage, 

feeding several strings of HB-LED, with an output voltage of 48V 

at full load. The prototype achieves a maximum efficiency of 92% 

with 0.99 power factor, 8% THD at full load and guarantees good 

quality light. 

Keywords—Single phase, Ac-dc power conversion, Power Factor 

Correction, HB-LED driver 

I.  INTRODUCTION 

High-Brightness Light-Emitting Diodes (HB-LED) are 
increasingly becoming the main source of artificial light in our 
homes, offices and streets due to their reliability, long life, 
energy efficiency and low maintenance requirements. However, 
the driving of HB-LED with primary access to single phase AC 
requires the use of a converter that achieves high efficiency, 
Power Factor Correction (PFC) in order to comply with the 
regulation for both residential and commercial lighting and  a 
long lifespan comparable to that of the HB-LEDs.  High Power 
Factor (PF) is required to maximize the power transferred by the 
grid. Energy Star® [1], requires 0.7 PF for residential lighting 
and 0.9 PF for commercial lighting. Furthermore, the low-
frequency harmonic content of the line current, must comply 
with IEC 1000-3-2 Class C [2]-[4], which establishes very strict 
harmonic content for the line current, for lighting equipment of 
more than 25 W. Therefore, the line current needs to have a 
sinusoidal shape following that of the input voltage. 
Traditionally, HB-LED drivers are based on a high-performance 
AC/DC PFC converter, followed by a dc-dc converter (in most 
situations with galvanic isolation), that provides constant current 
to the HB-LED, in order to comply with the aforementioned 
regulation.  

Nonetheless, in most scenarios, the cost of the HB-LED 
driver is the main concern and a single-stage has to be used, 

especially in medium power range HB-LED drivers, where 
galvanic isolation is recommended for safety requirements. For 
that reason, isolated buck-boost topologies, like the flyback 
working in Discontinuous Conduction Mode (DCM), which 
achieve unity PF naturally are widely used [5]-[7]. Although, 
these topologies have a low component count, they suffer from 
having low efficiencies (<90%) and the inability to remove the 
bulk capacitor needed in PFC. Nevertheless, the removal of the 
bulk capacitor is not always possible in a single-stage without 
including more active components [8]-[11] or distorting the 
input current [12] [13] due to the pulsating input power of the 
grid.  

Another topology that is able to achieve unity PF naturally, 
by means of control, is the boost converter. The boost converter 
is normally used as a front-end AC/DC PFC converter operating 
either in Boundary Conduction Mode (BCM) or with a 
Multiplier-Based Control (MBC) [14] [15] with a cascaded step-
down converter normally with galvanic isolation. The isolated 
variations of the boost family converters are suitable to be used 
in a single-stage PFC. It should be noted that current-fed based 
isolated converters have some issues, such as, having a complex 
transformer design or having the need of a demagnetizing path 
for the main inductance, as has been stated in previous literature 
[16]. 

Nevertheless, in previous literature, there have been some 
works dedicated to single-stage AC/DC PFC current-fed based 
isolated converters, such as the push-pull [17] or the full-bridge 
[18]. These topologies are based in the boost converter, hence 
they can achieve unity PF by working in BCM. However, BCM 
has an important drawback regarding the size increase of the 
EMI filter due to the high input current ripple and the variable 
frequency, which can be reduced by interleaving two or more 
boost converters in parallel [19]. Therefore, the interleaving of 
two isolated boosts can reduce the input current ripple of the 
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Fig. 1. Proposed single-stage HB-LED driver, DICPP. 
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converter, as stated in [20]. However, this topology requires four 
MOSFET, whereas the Dual Inductor Current-fed Push-Pull 
(DICPP) (see Fig. 1) proposed in [21], [22] achieves the same 
input current reduction with the use of only two MOSFET and 
only one transformer. The DICPP uses the same amount of 
switches when compared to the classic Current-fed Push-Pull 
(CPP) [22], and the transformer is a one winding to one winding 
which is simpler to design and build than the classic CPP 
transformer. This is particularly important to reduce the parasitic 
components that may cause an inadequate behaviour of the 
topology due to resonances in the output current or the losses in 
the passive snubbers that will decrease the efficiency of the 
single-stage.  

Hence, this work proposes the optimization of the DICPP 
and enhances the scope of the topology in order to make it 
suitable for PFC with a simple control method. The operation in 
BCM makes the DICPP as a plausible solution for single-stage 
PFC in HB-LED drivers, which reduces the size of the EMI filter 
when compared to other topologies working in BCM and 
achieves high efficiency (92%). However, it is not able to 
eliminate the classic bulk capacitor in PFC if a non-flicker 
behaviour needs to be guaranteed on the HB-LEDs. In that sense 
a high efficiency post-regulator stage can be used to remove the 
bulk capacitor and to individually control each HB-LED 
string[X]. 

This work is divided in several section: Section II, will 
analyze the proposed topology, as well as, discuss the most 
important features of the proposed driver with a dedicated 
subsection for the transformer and inductor design. Section III, 
will be dedicated to the most representative experimental results 
that were obtained with the proposed driver. 

II. WORKING PRINCIPLE 

A. Static Analysis 

The concept of the HB-LED driver presented in this work 
(i.e. DICPP) is based on [21], where it was proposed as a dc-dc 
converter working in CCM. Hence, this paper proposes to 
increase the scope of the topology to work as a PFC. The CPP 
converter is equivalent to a boost converter with galvanic 
isolation.  

In order to achieve good quality rectification in the input 
current, a Loss Free Resistor (LFR) [23] behaviour is required. 
It is well known that a boost converter operating in BCM can 
achieve a LFR behaviour naturally. Therefore, the DICPP 
should also be able to achieve PFC naturally by working in 
BCM. 

The operation of the HB-LED driver is summarized in Fig. 
2 and 3 for BCM. Fig. 2 shows the three different stages that the 
topology undergoes during its operation, while Fig. 3 shows the 
most important waveforms to understand its operation. Fig. 2 (a) 
depicts the conduction from [t0, t1] and [t2, t3] when both 
switches are closed and the primary of the transformer is short-
circuited. Hence, both inductors are being magnetized by the 
input voltage (vIN). In Fig. 2 (b), it can be seen the stage [t1, t2] 
when S1 is closed and S2 is open, during this time LIN1 keeps 
getting magnetized whereas, LIN2 is demagnetizing and power is 
given to the load. The time interval from t2 to t3 is depicted by 
Fig. 2 (a) once again. Fig. 2 (c) shows the stage [t3, t4] when S1  

Fig. 3. Most representative waveforms of the topology. (a) Averaged at 

switching frequency. (b) Time domain waveforms. 

  

 

Fig. 2. Stages of the proposed single-stage HB-LED driver, DICPP. (a) [t0, 

t1] [t2, t3] Both switches are closed. (b) [t1, t2] S1 is closed and S2 is open. 

(c) [t1, t2] S2 is closed and S1 is open. 

S1  



is open and S2 is closed, therefore magnetizing LIN2 and 
demagnetizing LIN1 while giving power to the load. 

Fig. 3 (a) shows the input and output currents averaged at 
line frequency in green, whereas Fig. 3 (b) shows the time 
domain waveforms to analyze the topology in detail (i.e. at 
switching frequency). As can be seen in Fig. 3 (b), the time LIN1 
is getting magnetized is equal to the on time of switch S1 and the 
magnetizing time for LIN2 is equal to the on time of switch S2, 
being LIN1 magnetization, independent from the on time of S2 
and LIN2 magnetization independent from the on time of S1. 
Therefore, the topology can be modelled as two independent 
boost converters interleaved with a 180 degrees phase-shift and 
galvanic isolation. This fact, will have an impact on the EMI 
input filter as has been reported in [26] for interleaved boost 
converters. 

 Hence, the control of the switches (S1 and S2) is based on 
generating the control signal for vS1, and phase shifting this same 
signal 180 degrees to control vS2, by means of a Phased Locked 
Loop (PLL). It should be taken into account that the duty cycle 
(d) of this converter should always be higher than 50% due to 
the fact that when both switches S1 and S2 are open there is no 
demagnetizing path for LIN1 or LIN2, which could cause the 
switches destruction due to overvoltage. Hence, the need of a 
stage (Fig. 2 (a)), that overlaps both control signals. 

 By considering the stages from Fig. 2 and 3, the converter 
relationship between output voltage and input voltage in BCM 
can be obtained by means of studying the volt-second balance 
on one the inductors. Therefore, the converter gain can be 
defined by, 

 𝑚 =
𝑣𝑜

𝑣𝑔(𝑡)
=

𝑁2

𝑁1(1 − 𝑑(𝑡))
  , (1) 

where vo is the output voltage, vg is the input voltage, N2 

and N1 are the turns number of the secondary winding and 

primary winding respectively.  

From the previous analysis, it can be seen that in the DICPP 

each inductor works independently. S1 controls the magnetizing 

of LIN1 and S2 controls the magnetizing of LIN2. Therefore, it can 

be assumed that if both LIN1 and LIN2 are equal (L), the variation 

of the inductor peak current (iLIN1,peak and iLIN2,peak) can be 

defined as, 

 𝑖𝐿𝐼𝑁1,𝑝𝑒𝑎𝑘(𝑡) =
𝑣𝑔𝑝

𝐿
sin (𝜔𝑡)𝑡𝑜𝑛, (2) 

 𝑖𝐿𝐼𝑁2,𝑝𝑒𝑎𝑘(𝑡) =
𝑣𝑔𝑝

𝐿
sin (𝜔 (𝑡 −

𝑇𝑠

2
)) 𝑡𝑜𝑛, 

(3) 

by studying the voltage balance in the inductors during the 

stage [t1,t2] for LIN1 and [t3,t4] for LIN2. vgp is the peak value of 

the input voltage, ton is the on-time of each driving signal, which 

coincides with the magnetizing time of each inductor, ω is the 

angular frequency of the line voltage and TS is the switching 

period. If (2) and (3) are averaged in a switching period, 

equations (4) and (5) can be yield as, 

 𝑖𝐿𝐼𝑁1,𝑎𝑣𝑔(𝑡) =
𝑣𝑔𝑝

2𝐿
sin (𝜔𝑡)𝑡𝑜𝑛, (4) 

 
𝑖𝐿𝐼𝑁2,𝑎𝑣𝑔(𝑡) =

𝑣𝑔𝑝

2𝐿
sin (𝜔 (𝑡 −

𝑇𝑠

2
)) 𝑡𝑜𝑛 . 

(5) 

Therefore, branches (iLIN1,avg and iLIN2,avg) demand a 

sinusoidal current, in this case phase shifted 180º from the point 

of view of the switching period (Ts). Then, the input current 

demanded by the HB-LED driver is going to be sinusoidal, 

since it is the sum of the two sinusoidal waveforms, considering 

that the delay between them is negligible, as can be seen in Fig. 

3 (a). Therefore, the average input current at switching 

frequency (iIN,avg) can be expressed as, 

 

𝑖𝐼𝑁,𝑎𝑣𝑔(𝑡) = 𝑖𝐿𝐼𝑁1,𝑎𝑣𝑔
(𝑡) + 𝑖𝐿𝐼𝑁2,𝑎𝑣𝑔

(𝑡) = 

=
𝑣𝑔𝑝

2𝐿
𝑡𝑜𝑛𝑠𝑖𝑛(𝜔𝑡) +

𝑣𝑔𝑝

2𝐿
𝑡𝑜𝑛𝑠𝑖𝑛 (𝜔 (𝑡 −

𝑇𝑠

2
)) ≅ 

≅  
𝑣𝑔𝑝

𝐿
𝑡𝑜𝑛𝑠𝑖𝑛(𝜔𝑡) . 

(6) 

For the correct operation in BCM, ton needs to be kept 

constant at a certain value that guarantees that the converter is 

going to demand a certain amount of power and the off-time of 

the driving signal (toff) is going to vary depending on the 

demagnetizing time of each the inductors until it reaches the 

zero current value. The zero current value is detected by a Zero 

Current Detection circuit (ZCD) based on a comparator. 

Considering that the average input current is going to be a sine 

wave, as stated in (6), by multiplying it to the input voltage then 

the input power can be defined by, 

 𝑝𝑔(𝑡) =  
𝑣𝑔𝑝

2

𝐿
𝑡𝑜𝑛𝑠𝑖𝑛2(𝜔𝑡) , (7) 

 By averaging (7) a relationship between ton and well known 

design parameters can be made, 

 

 𝑡𝑜𝑛 =  
2𝑃𝐺𝐿

𝑣𝑔𝑝
2

  , (8) 

where PG is the input power of the driver. Hence, by 

applying voltage balance on one of the inductors, (9) can be 

obtained as, 

 𝑣𝑔𝑝

𝐿
𝑡𝑜𝑛 =  

𝑁1

𝑁2
𝑣𝑜 − 𝑣𝑔(𝑡)

𝐿
𝑡𝑜𝑓𝑓(𝑡). 

(9) 

From this equation the variation of the switching period 

over time can be obtained and the switching frequency, 

 𝑇𝑠(𝑡) = 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓(𝑡) =

=  

𝑁1

𝑁2
𝑣𝑂

𝑁1

𝑁2
𝑣𝑂 − 𝑣𝑔𝑝|𝑠𝑖𝑛(𝜔𝑡)|

𝑡𝑜𝑛  , 
(10) 

 

𝑓𝑠(𝑡) =  

𝑁1

𝑁2
𝑣𝑂 − 𝑣𝑔𝑝|𝑠𝑖𝑛(𝜔𝑡)|

𝑁1

𝑁2
𝑣𝑂

1

𝑡𝑜𝑛

  , (11) 

From (11), the maximum and minimum frequency values 

can be obtained, which are of importance for the correct design 

of the topology and selection of the main switches. 



B. Design Criteria of the HB-LED driver 

In order to design the HB-LED driver correctly some steps 

need to be followed. 

 First of all the transformer relation needs to be obtained 

from (1), considering vgp as the maximum value of the input 

voltage range (i.e. Vgpmax), vo as the output voltage at the full 

dimming value and dmin as the minimum duty cycle acceptable, 

which should be around 55%. 

After obtaining the transformer relation, the duty cycle 

needs to be calculated in nominal conditions, with that duty 

cycle and the desired switching frequency is possible to 

calculate the inductors required from (8). If the inductor value 

is feasible, (11) should be used to check if the frequency range 

is suitable. If not, then the inductance value needs to be adjusted 

to suit the designer specifications. Guaranteeing that the lowest 

frequency value is higher than 20 kHz is a good practice to 

avoid any noise in the converter. 

After having calculated all the previous parameters, the next 

step would be to select the main switches. For that reason is 

necessary to know the maximum current and voltage that they 

are going to endure, from (1) and (7), 

 
𝑉𝑆𝑚𝑎𝑥 =  

𝑁1

𝑁2

𝑣𝑜   , (12) 

 
𝐼𝑆𝑚𝑎𝑥 =  

𝑃𝑔

𝑉𝑔𝑝𝑚𝑖𝑛

, (13) 

where Vgpmin is the voltage peak of the minimum voltage in 

the range. As can be seen, the maximum voltage is completely 

reliant on the output voltage and the transformer relation. 

Considering that the transformer turns ratio is calculated based 

on the maximum input voltage, European/Universal range 

would require the use of switches with a higher breakdown 

voltage (i.e. 1200 V). 

For the sake of selecting the high frequency diodes (D5-

D8), the maximum values that need to be taken into account are 

shown, 

 
𝑉𝐷𝑚𝑎𝑥 =  𝑉𝑜 −

𝑁2

𝑁1

𝑉𝑔𝑝𝑚𝑖𝑛 , (14) 

 
𝐼𝐷𝑚𝑎𝑥 =

𝑁1

𝑁2

𝐼𝐿𝐼𝑁1,𝑝𝑒𝑎𝑘,𝑚𝑎𝑥  , (15) 

 

where ILIN1,peak,max is the maximum input current of the HB-

LED driver. As it can be seen, the breakdown voltage of the 

high frequency diode bridge can be low enough to guarantee the 

use of very low knee-voltage diode in order to improve the 

efficiency of the driver. 

Finally, in order to be able to demagnetize both inductors in 

case of having the need to shut down the HB-LED driver, 

another winding is added to give a path for the demagnetization 

to occur, as has been done in previous works [16][17].  
Even though, it is not shown in Fig. 2, the HB-LED driver 

also has a clamping snubber implemented to protect both 
switches from overvoltage. 

C. Transformer design 

In push-pull converters, where the current through the 
primary transformer winding is abruptly changed whenever a 
transistor switches, leakage inductance should be as low as 
possible. Otherwise, each switching instant would cause a 
significant voltage spike, making the use of higher voltage rated 
transistors or protective devices such as snubbers. 

Winding interleaving is a well-known procedure for 
reducing the leakage inductance. However, as a side effect of 
adding a high number of thinner sub-windings, a really low 
leakage inductance can only be obtained at the cost of a high 
parasitic capacitance. This proved to be troublesome, when 
voltage spikes due to leakage inductance were close to non-
existent but the transformer resonated due to stray capacitances 
similar to the transistor Coss. This recirculating currents not only 
increase the converter losses but also make the event detection 
for the control more difficult to implement, requiring complex 
filters. 

This resonance has been studied in [27], where it is shown 
that both the leakage inductance and the stray capacitance play 
an important role. A low leakage inductance value is extremely 
important. A common target for a well-designed transformer is 
a leakage inductance at least thousand times lower than the 
transformer magnetizing inductance. The parasitic capacitor is 
nowhere as critical as a low leakage inductance. Nevertheless, it 
should be taken into account when designing the transformer. 

Using planar magnetic technologies is a feasible option, 
whose main advantages are the ease of implementation of 
interleaved windings and the predictability and repeatability of 
the process [28]. However, in order to attain a low leakage 
inductance, a high amount of PCB layers are needed, rapidly 
increasing both its cost and the winding capacitance. Although 
some techniques have been presented in order to reduce parasitic 
capacitance in planar transformers [28] [29], for this paper a 
simpler, traditional transformer is designed. 

 Based on the previously shown design equations and 
specifications, an 11:1 transformer is designed aiming for low 
losses in a quite wide frequency range around 150 kHz. Its 
magnetizing inductance is not critical as long as it is much higher 
than LIN1 and LIN2. An EPCOS RM12 – N49 core is chosen for 
being compact and adequate to the design requirements. Several 
designs were simulated using ANSYS® Maxwell and PExprt. 

As can be seen in Fig. 4 (a), the winding arrangement is kept 
rather simple in order to be able to easily assemble and replicate 
the transformer with regular manufacturing techniques and 
machinery. The primary winding consists of 8 different sub-

 

Fig. 4. Design of the implemented magnetics. (a) Transformer cross section. 

(b) Detail of the transformer secondary subwindings, each color represents a 

different subwinding in the same layer. 
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windings of 66 turns of AWG 35 copper wire, all connected in 
parallel.  

The secondary winding consists of 6 different sub-windings 
of 6 turns. They are arranged in only two layers, interleaved with 
the primary, of three windings each. It is important to note, that 
each winding is built from Litz wire comprising 10 AWG 35 
wires. This way, the total thickness is small enough to evenly 
spread the windings along the window height, thus reducing the 
leakage inductance even more. If a single, thicker winding was 
used on each layer, it would not fit the available winding area. 

Different implementation options were also considered for 
the secondary winding. The use of copper foil is an interesting 
alternative, but the benefit does not justify the increase of the 
manufacturing difficulty, requiring custom foil thicknesses or 
even laser cutting for fitting the required turns in just one layer. 
Simulations did not show significant advantages over the 
preferred, simple designs, so this approach was discarded. 

As the copper windings do not completely fill the winding 
area, PET insulating tape layers are added between them. This 
serves a dual purpose: fixing and insulating the primary and 
secondary layers and creating wider spaces between them, 
lowering the stray capacitance. 

Table I shows the maximum target parasitic values for the 
desired transformer design, the values obtained for different 
implementations using Finite Element Analysis (FEA) 
simulations and the actual measurements from the implemented 
interleaved transformer. It can be seen that the not interleaved 
design does not comply with the desired specifications and the 
foil-based transformer provides a much lower leakage 
inductance at the cost of a highly increased assembly 
complexity. The interleaved transformer is easy enough to 
manufacture and fulfills the desired specifications. 

The design of the input inductors is not as critical as that of 
the transformer, but a custom design is also used for this 
prototype. There is a wide range of commercial inductors which 
fulfill the inductance and frequency requirements with small 
form factors but high losses. An EPCOS RM8 – N97 core is 
chosen, with two AWG 29, 22-turn windings connected in 
parallel. The obtained design is only slightly bigger than 
equivalent commercial inductances but cut conduction losses by 
more than half. 

 

D. Control Strategies 

Figure 5 shows a diagram of the control loop of the HB-

LED driver. The current is sensed at the output of the high 

frequency diode bridge (D5-D8) (iO) with the help of a current 

transformer. The main reason for sensing iO is that it contains 

the information from both inductor currents reaching the zero 

value and it also contains the information of the average output 

current value by applying a low pass filter to iO in order to obtain 

its average value. Meaning that from the same isolated 

measurement all the required information for the control is 

obtained. 
By sensing iO instead of the current in each inductor, as many 

interleaved boost PFC do, the control needs to be able to discern 
which switch to trigger. For that reason, the proposed control 
considers one zero and deprecates the other, meaning it 
generates the signal for S1 and from that signal by phase shifting 
180 degrees taking into consideration the variable Ts (see Fig. 6 
(a)), it generates the signal to control the other switch, S2 (see 
Fig. 6 (b)). This open loop interleaving method is similar to the 
ones proposed in literature based on master-slave techniques 
[30]. The master is selected at converter start-up, being able to 
be either S1 or S2. That switch will not leave the master status 
during the whole operation of the HB-LED driver. It is important 
to know that once a master is selected the next zero detection 
will be deprecated, as can be seen in Fig. 6 (b). 

The output of the low pass filter is going to be the output 
average current (IO) scaled by a constant value α, which will be 
compared with a reference inside the digital control, in order to 
regulate the output current of the driver. Moreover, there needs 
to be a variable to regulate, which in this case is ton, as well as, a 
transfer function that models the converter in order to design the 

 

Fig. 6. Methodology for the zero current detection. (a) Basic control circuit. 

(b) Waveforms used in the zero detection.  

  

 

Fig. 5. DICPP with the output current closed loop. 

  

TABLE I.  TRANSFORMER PARASITICS FOR DIFFERENT 

IMPLEMENTATIONS 

 Stray Capacitance Leakage inductance 

Target 100 pF 21 µH 

No interleaving 10.99 pF 47.589 µH 

Interleaving 20.73 pF 5.498 µH 

Foil-based 58.36 pF 0.606 µH 

Actual prototype 45.80 pF 3.020 µH 

  



regulator. In this case, ton will regulate the amount of power the 
driver demands. The small-signal analysis to obtain the transfer 
function of the converter is carried out similarly to that of an 
interleaved boost [31], by considering the HB-LEDs as a 
dynamic resistance (RLED) in series with a voltage source (VF).  

III. EXPERIMENTAL RESULTS 

The HB-LED driver introduced in the previous sections has 

been designed for a maximum power of 100W, full range of the 

US single-phase line voltage and feeding five strings of 12 HB-

LED (W42180T2-SW) with their respective equalizing 

resistors, that are equivalent to 1.8A/48V at full load. The 

switching frequency of the HB-LED driver varies from 55 kHz 

at the lowest line voltage peak to 225 kHz at the zeroes of the 

maximum line voltage. All the selected components for the HB-

LED driver have been summarized in Table II. It should be 

noted that the selected MOSFET for the test prototype had been 

650V superjunction MOSFET, since they need to withstand 

about 450V in the full US range. As for the high frequency 

diode bridge, it is composed of 60V/10A fast recovery silicon 

diodes with ultra-low forward voltage. In addition, the digital 

control of the whole HB-LED driver has been implemented in 

an FPGA for the simplicity and versatility that this platform 

offers. Nonetheless, an analog control can be also implemented. 

Fig. 8 shows a picture of the prototype that has been built to 

validate the analysis made in the previous sections. 

In Figure 9 (a), there is a snapshot of the oscilloscope for an 

input voltage of 110Vrms/60Hz and measured with no EMI 

filter to exemplify the low high frequency ripple of the input 

current. As it can be seen, the current follows the input voltage 

guaranteeing a LFR behaviour from the input and almost unity 

PF. Moreover, the input current presents low high frequency 

ripple considering that the HB-LED driver has its two inductors 

working in BCM. Therefore, interleaving of the two inductors 

can be deduced. Figure 9 (b) shows a zoom of Figure 9 (a), for 

the peak of the input voltage and Figure 9 (c) shows another 

point of the sinusoid, in this case at 75V. It can be observed, 

how VS1 triggers every two zeroes of iO and how the frequency 

of the control signal VS1 increases by moving to a lower voltage 

point in the input voltage sinusoid. The same is true for VS2 

demonstrating the correct operation of the proposed control. 

iLIN1 can also be seen in those graphs to illustrate that at least 

one of the inductors are operating in BCM as intended. The 

other inductor is working in BCM as well even though it is not 

shown in the graphs. 

 

Fig. 8. Experimental prototype of the proposed DICPP.  

  

TABLE II.  COMPONENTS OF THE EXPERIMENTAL PROTOTYPE 

Fig. 1 reference Value 

D1-D4 1N4007 

D5-D8 FSV1060V 

S1-S2 IPP65R225C7 

FPGA XC7A100T-1CSG324C 

CO 60V, 2.2mF Electrolytic Capacitor 

  

 

Fig. 9. Experimental input waveforms. (a) Input current and voltage, iO at 
110Vrms. (b) Zoom at the peak of the sine. (c) Zoom at 75V.  

  



Fig. 10, shows a snapshot of both the output voltage and 

current with the required electrolytic capacitor in order to 

reduce the output current ripple due to the well-known effect of 

the pulsating power in PFC. 

 In order to validate the HB-LED driver in nominal 

conditions, several waveforms under different conditions had 

been extracted from the oscilloscope as data and processed with 

MATLAB® to correctly analyze them. The parameters that are 

going to be extracted are: efficiency, THD, PF, compliance with 

Class C IEC 1000-3-2 [2-4].  

The efficiency, THD and PF of the HB-LED driver are 

shown in Fig. 11 versus a variation of the line voltage. For the 

nominal conditions presented in Figure 9 (a), the efficiency is 

around 92%, the THD is about 8% and the PF is 0.99, which 

complies with the Energy Star® regulation [1]. It should be 

noted, that the efficiency does not go below 90% for the worst 

case scenario, at full load.  

Fig. 12 shows the efficiency in dimming conditions for the 

nominal input voltage (110 Vrms). As can be seen, the efficiency 

of the HB-LED driver stays over 90% from full load to half 

load. However, at low output current the converter suffers an 

efficiency drop. 
The input waveforms have also been used to extract the 

harmonics by using the Fourier series on them. Afterwards, 
these measurements are compared with Class C IEC 1000-3-2 
harmonic limits. As can be seen in Fig. 13, the HB-LED driver 
complies with the regulation. 

To limit the biological effects and detection of flicker in 
general illumination, the Modulation (%) should be kept within 
the shaded region defined in [24], [25], where the 
Modulation(%) calculation can be define as follows: 

 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (%) = 100 ∙
(𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛)

(𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛)
, (16) 

where Lmax and Lmin correspond to the maximum and 

minimum luminance of each harmonic of the ac component of 

the output current, respectively. 

The luminance of the HB-LEDs have been measured for the 

driver under study, being the waveforms for all the points under 

study extremely similar. After obtaining the luminance 

waveforms, all the harmonics have been obtained from 60Hz, 

which is the frequency of the fundamental harmonic, to 3 kHz 

and compared with the graph proposed in the standard (see Fig. 

14). As can be seen, all the harmonic content for both drivers 

falls within the shaded region, even the ones below 90Hz which 

are the most crucial. Therefore, good light quality and non-

harmful effects can be assured for the proposed HB-LED driver 

topology. The price to pay to achieve good light quality in this 

topology is the use of an electrolytic capacitor to reduce the 

output current ripple and therefore the luminance ripple.  

IV. CONCLUSIONS  

A simple, single-stage, single-phase, isolated, high PF, HB-

LED driver with two switches referenced to the same ground 

has been reported and experimentally proven in this work. The 

HB-LED driver under study provides not only high PF and low 

THD, but it also provides a flicker free behaviour and high 

efficiency for a single-stage with galvanic isolation. In spite of, 

not being able to dispose of the traditional bulk capacitor in 

PFC. The proposed topology diminishes the size of the EMI 

filter by using the well-known interleaving method in BCM. 
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