Tukey’s biweight loss function for fuzzy
set-valued M-estimators of location
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Abstract The Aumann-type mean is probably the best-known measure for
the location of a random fuzzy set. Despite its numerous probabilistic and sta-
tistical properties, it inherits from the mean of a real-valued random variable
the high sensitivity to outliers or data changes. Several alternatives extending
the concept of median to the fuzzy setting have already been proposed in the
literature. Recently, the adaptation of location M-estimators has also been
tackled. The expression of fuzzy-valued location M-estimators as weighted
means under mild conditions allows us to guarantee that these measures take
values in the space of fuzzy sets. It has already been shown that these con-
ditions hold for the Huber and Hampel families of loss functions. In this
paper, the strong consistency and the maximum finite sample breakdown
point when the Tukey biweight (or bisquare) loss function is chosen are ana-
lyzed. Finally, a real-life example will illustrate the influence of the choice of
the loss function on the outputs.
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1 Introduction

Random fuzzy sets (fuzzy random variables in Puri and Ralescu’s sense [10])
are an appropriate mathematical model to formalize numerous real-life ex-
periments characterized by an underlying imprecision. In order to analyze
them statistically, a wide range of methods has been proposed during the
last years. Unfortunately, most of this methodology is based on the Aumann-
type mean, which is a well-known location measure for random fuzzy sets that
fulfills many convenient properties from both the statistical and probabilistic
points of view, but it presents a high sensitivity to outliers or data changes.
With the aim of providing a more robust central tendency measure, several
extensions of the concept of median have already been published. However,
this paper focuses on the more recent and more general M-estimation ap-
proach.

Kim and Scott [9] have studied M-estimators in the kernel density esti-
mation context, but their theory remains valid for Hilbert-valued random
elements. The space of fuzzy sets can be isometrically embedded into a con-
vex cone of a Hilbert space, which allowed us to adapt some of their results to
the fuzzy-valued case in Sinova et al. [12]. Although only the one-dimensional
case (random fuzzy numbers) has been specified in [12], location M-estimators
can be analogously defined for random fuzzy sets and studied as in this paper.

Sufficient conditions are provided in Sinova et al. [12] to guarantee that
the adaptation of Kim and Scott’s results is valid, that is, that location M-
estimators belong to the convex cone of the Hilbert space. Among the loss
functions satisfying such assumptions, Huber’s and Hampel’s loss functions
were analyzed in [12] to prove the strong consistency of the corresponding
Me-estimators and show that the maximum finite sample breakdown point is
attained. Another well-known family of loss functions, Tukey’s biweight (also
referred to as the bisquare function), is considered in this paper. Apart from
checking that the sufficient conditions also hold for this choice, the strong
consistency of the Tukey location M-estimator is established and its finite
sample breakdown point is derived. Proofs are based on the same sketches
included for the one-dimensional case in Sinova et al. [12].

In Section 2, location M-estimators for random fuzzy sets are introduced
and the Representer Theorem, which expresses them as weighted means under
certain sufficient conditions, is recalled. In Section 3, the choice of Tukey’s
biweight loss function is analyzed in terms of the strong consistency of the
resulting estimator and its finite sample breakdown point. A real-life example
in Section 4 illustrates the influence of the choice of the loss function on the
outputs. Finally, some concluding remarks are provided in Section 5.
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2 Location M-estimators for random fuzzy sets

In this section, location M-estimators are adapted to summarize the central
tendency of random fuzzy sets. M-estimation, firstly introduced by Huber
[7], is a well-established approach that yields robust estimators. The key
idea behind them is to restrict the influence of outliers by substituting the
square of “errors” in methods like least squared and maximum likelihood for
a (usually less rapidly increasing) loss function applied to the errors of the
data. The loss function, denoted by p, is usually assumed to vanish at 0 and
to be even and non-decreasing for positive values.

Let p € N, F(RP) denote the space of bounded fuzzy sets and D repre-
sent a metric defined on F¥(R?) x F*(RP) whose associated norm fulfills the
parallelogram law (which allows the isometrical embedding of F;(RP) into
the convex cone of a Hilbert space).

Definition 1. Let (£2, A, P) be a probability space and X : 2 — F(RP) an
associated random fuzzy set. Moreover, let p be a continuous loss function,
and (Xi,...,X,) a simple random sample from X. Then the fuzzy M-

estimator of location is the fuzzy set-valued statistic g MI(Xy, ..., X)),
given, if it exists, by

(X, ..., X,)] = (X, g
gM[(Xr, ..., X,)] = arg geygrﬁ%p)an 9)

Now, a result by Kim and Scott [9] is adapted to the fuzzy-valued case.
The Representer Theorem (Theorem 1) is crucial for the particularization of
Kim and Scott’s theory about M-estimation for the kernel density estimation
problem to random fuzzy sets. The conditions they assume to ensure the
existence of M-estimates of location allow us to express the M-estimates as
weighted means of the sample elements and, consequently, to assure that the
Me-estimates are indeed fuzzy set-valued statistics.

Theorem 1. Consider the metric space (Ff(RP), D). Let (X1,...,X,) be a
simple random sample from a random fuzzy set X : 2 — Fx(RP) on a prob-
ability space (§2, A, P). Moreover, let p be a continuous loss function which
satisfies the assumptions

e p is non-decreasing for positive values, p(0) = 0 and lim,_,o p(z)/x =0,
o Let p(x) = p'(x)/x and $(0) = lim, 0 ¢(x), assuming that ¢(0) exists and
is finite.

Then, the M-estimator of location exists and it can be expressed as

n
gM[(Xla"'v‘Xn)] = Zwi - X
=1

o~

with w; >0, Y1 | w; = 1. Furthermore, w; o< ¢(D(X;, gM[(X1, ..., X))
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In Sinova et al. [12], the well-known Huber and Hampel families of loss
functions were used to compute M-estimators. Recall that the Huber loss
function [8] is given by

. z?/2 if |z| <a
Pa () =
a(|x] — a/2) otherwise,

with @ > 0 a tuning parameter, while the Hampel loss function [5] corresponds
to

222 if |2] < a
a(|z| —a/2) ifa<|zf<b
pape(®) =< allz]—c)?  alb+c—a) ifb< |z < c
2(b — c) 2 B
w if ¢ < |z,

where the nonnegative parameters a < b < ¢ allow us to control the degree of
suppression of large errors. The smaller their values, the higher this degree.
Note that the Huber loss function is convex and puts less emphasis on large
errors compared to the squared error loss. On the other hand, Hampel’s
loss function is not convex and can better cope with extreme outliers, since
observations far from the center (|z| > ¢) always contribute in the same way
to the loss.

Another well-known family of loss functions is the Tukey biweight or
bisquare [1], given by:

. /6. (1—(1—(x/c)?)?) if x| <ec
pe () = .
c?/6 otherwise,

with tuning parameter ¢ > 0. This loss function shares with Hampel’s one
that it is not convex anymore and the contribution of large errors (|z| > ¢)
to the loss does not change anymore. Therefore, the benefit of the Tukey
loss function is to combine the better performance of Hampel’s loss function
regarding extreme outliers with the simplicity of an expression depending on
just one tuning parameter, like the Huber loss function.

It can be easily checked that the family pl of loss functions fulfills all the
required conditions: they are differentiable, non-decreasing for positive values
and even, they vanish at 0, lim,_,¢ p! (z)/z = 0, ¢1 (0) = lim, 0 ¢! (z) exists
and is finite.

Therefore, all the properties derived from the Representer Theorem in
Sinova et al. [12] also hold when the Tukey biweight loss function is chosen.
In particular, it can be highlighted that Tukey M-estimators of location are
translation equivariant, but not scale equivariant in general. With the aim
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of avoiding the excessive influence of the measurement units on the outputs,
due to the lack of scale equivariance unless p is a power function, the tun-
ing parameters will be selected based on the distribution of the distances to
the center. That is, we first compute an initial robust estimator of location
(e.g., the impartial trimmed mean as in Colubi and Gonzédlez-Rodriguez [2]
or, if p =1, the 1-norm median in Sinova et al. [11]) and then, the distances
between each observation and this initial estimate are calculated. Our rec-
ommendation is to use the 1-norm median as initial estimate when analyzing
random fuzzy numbers, since its computation is not complex and this mea-
sure does not depend on the existence or not of outliers in the sample to
provide us with a good initial estimate. The impartial trimmed mean (see
Colubi and Gonzélez-Rodriguez [2]) presents the disadvantage of requiring
to fix the trimming proportion “a priori” and, in case there are no outliers,
the initial estimate could be a bit far from the real center of the sample
distribution. The choice for the tuning parameters a, b and ¢ will be, along
this paper, the median, the 75" and the 85" percentiles of those distances,
following Kim and Scott’s suggestion [9].

Regarding the practical computation of Tukey M-estimators of location,
recall that the standard iteratively re-weighted least squares algorithm (see,
for example, Huber [7]) can provide us with an approximation as in [12]:
Step 1. Select initial weights wio) €R, fori € {1,...,n}, such that w§0> >0

and Y, wio) = 1 (which is equivalent to choose a robust estimator of

location to initialize the algorithm).

Step 2. Generate a sequence {ﬁ(lka)} ken by iterating the following procedure:
T =M
G =3 by, o D)
2 ) k3 n ~ :
R S (DX 5)
Step 8. Terminate the algorithm when

|% > pe (D(X, §%+1))) - % i PCT(D(Xmﬁf‘;f)))I
T T (DX 5)

for some desired tolerance € > 0.

<e,

3 Specific properties of fuzzy-valued location
M-estimators based on Tukey biweight loss function

The strong consistency of fuzzy number-valued M-estimators of location was
studied in Sinova et al. [12] for specific loss functions: p being either non-
decreasing for positive values, subadditive and unbounded or the Huber or
Hampel loss function (independently of the values of the tuning parameters).
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However, this result can be generalized to cover any bounded loss function
and, in consequence, the Tukey biweight choice.

Theorem 2. Consider the metric space (F.(A),D), with A a non-empty
compact convez set of RP and D topologically equivalent to the mid/spr-based
L? distance Df (see Trutschnig et al. [13] for details concerning this metric).
Let X : 2 — F.(A) be a random fuzzy set associated with a probability space
(2, A, P). Under any of the following assumptions:

e p is non-decreasing for positive values, subadditive and unbounded,

e p, for positive values, has linear upper and lower bounds with the same
slope,

e p is bounded,

and whenever the associated M-location value

gM(X) = arg Suin I {p (D(X, 17))}

exists and is unique, the M-estimator of location is a strongly consistent es-
timator of gM(X), i.e.,

lim D(GM[(Xy,..., &), (X)) =0 a.s. [P]
n—oo

It should be clarified that it is very common in practice to fix a bounded
referential, as is the case for the fuzzy rating scale (see Hesketh et al. [6])
when p = 1.

With respect to the robustness of the location M-estimators based on
the Tukey biweight loss function, their finite sample breakdown point, for
short fsbp (Hampel [4], Donoho and Huber [3]) has been computed. The
fsbp represents the smallest fraction of sample observations that needs to be
perturbed to make the distances between the original and the contaminated
M-estimates arbitrarily large.

Theorem 3. Consider the metric space (Ff(RP),D). Let X : £2 — FX(RP)
be a random fuzzy set associated with a probability space (2, A, P) and let
(Z1,...,2n) be a sample obtained from X . Moreover, let p be a continuous loss
Sfunction fulfilling the assumptions in Theorem 1, upper bounded by certain
C < oo and satisfying

_9|n=1
p( max D(fi,fj)) < o2 C,

1<ij<n n—|2%t -1 .

and such that the corresponding sample M-estimate of location is unique.
Then the finite sample breakdown point of the corresponding location M-
estimator is ezactly L| 5L |, where || denotes the floor function.
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4 Real-life example

A real-life example now illustrates fuzzy-valued location M-estimators.

Ezample. 68 fourth grade students from Colegio San Ignacio (Oviedo, Spain)
have been asked to answer some questions from the joint Student question-
naire TIMSS (Trends in International Mathematics and Science Study) -
PIRLS (Progress in International Reading Literacy Study) survey using a
fuzzy rating scale (Hesketh et al. [6]). To simplify the instructions given to
the nine-and-ten-year-old students, only trapezoidal fuzzy numbers have been
considered. This study is going to be limited to the item that represents the
degree of agreement with the statement “studying mathematics is harder
than any other subject”.

Location M-estimators based on Huber, Hampel and Tukey loss functions
have been computed using the mid/spr-based L? distance D§=1 /30 where ¢
denotes the Lebesgue measure on [0, 1] (see Trutschnig et al. [13]). The 1-
norm median in [11] has been considered as the initial robust estimator for
the selection of the tuning parameters and the initialization of the algorithm
to approximate the M-estimates.

The outputs for the three M-estimates have been displayed in Figure 1.
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As shown in Sinova et al. [12], when analyzing trapezoidal fuzzy numbers,
any loss function fulfilling the conditions stated for the Representer Theorem
provides us with an M-estimate of trapezoidal shape too.

Notice that the aim of this example is just to illustrate the computation of
fuzzy-valued M-estimators and the influence the choice of the loss function has
on the outputs, but not to provide a comparison of the different loss functions.
On one hand, there are no outliers in the answers given by the students and,
on the other hand, the best choice of p also depends on different factors (e.g.,
the weight we wish to assign to the outliers in each specific example or the
selection of the tuning parameters).
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5 Concluding remarks

The Tukey biweight or bisquare family of loss functions has been used in
order to compute fuzzy set-valued M-estimators of location through the Rep-
resenter Theorem. The strong consistency and the robustness of this choice
have been given. In future research, it would be interesting to develop a sen-
sitivity analysis on how the selection of the involved tuning parameters affect
the computation of M-estimators, as well as a deeper study of other families
of loss functions for which the Representer Theorem still holds.
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