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Abstract

In this paper we propose a visual analytics approach based on data cube methods to provide an insightful analysis of how energy
is being used in a group of public buildings according to many different factors. The analysis is done by means of a web-based
visual interface featuring “live” coordinated views —histograms— that show the distribution of demand data, according to different
attributes, under different scenarios defined by user-driven filters on these attributes. We use the crossfilter.js library to achieve
real-time computation of data cube aggregations for constantly changing user-defined filters, resulting in a fluid visualization of
demand parameters (active power, power factor, total harmonic distorsion, etc.) aggregated according to many different factors or
dimensions such as time (hour, day of week, month, etc.), building or environment (outside temperature).

Keywords: visual analytics, energy efficiency, multiway analysis, data cube

1. Introduction

Energy efficiency and savings policies have become a chal-
lenge of extraordinary strategic importance today. Despite the
huge volumes of energy-related data and information available
today in most buildings, industrial facilities, and even in house-
holds thanks to smart meters, that information is seldom pre-
sented in an intuitive way that the user can assimilate, making
it difficult to obtain useful knowledge about the energy use. As
a result, decisions in energy management are often taken un-
der insufficient or ill-defined information. Thus, it has become
increasingly important to have tools that, based on the large
amounts of data obtained from sensors installed in energy facil-
ities, allow to increase our energy awareness, that is, our per-
ception of how the energy is being spent. In a close approach
to this idea, highly cited works like [1, 2], explicitly highlight
the importance of feedback on energy consumption. Such tools
should also be able to handle large volumes of information of
different kinds, deal with uncertainty, present information in a
clear and intuitive way and also to provide the user with a global
view, in order to suggest strategies to improve energy efficiency.

A promising approach in this scenario is the so called vi-
sual analytics approach. Visual analytics (VA) [3] allows the
user getting insight from data, through an efficient combination
of intelligent data analysis, data visualization and interaction
mechanisms, harnessing the ability of the human visual system
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in detecting interesting patterns quickly and efficiently, and be-
ing an outstanding approach to exploit problem domain knowl-
edge. Moreover, since the user becomes part of the analysis
loop, this approach results in high degrees of confidence in the
results, which favors the adoption of actions. Successful ap-
plications of VA for energy analytics have been presented in
last years, including household and residential demand analyt-
ics [4, 5, 6], as well as analysis of large electric power grids
using network analysis, such as force directed algorithms [7, 8]
and other visualization techniques [9]. Also, the combination of
dimensionality reduction algorithms and data visualization for
insightful analysis of energy demand data in buildings in terms
of 2D maps, has been proposed in [10, 11]. In [12], predic-
tion and clustering-based novelty detection algorithms are com-
puted for later visualization of anomalies in power consumption
data. More recently, in [13], heat map visualizations along pivot
table analysis were proposed to enable cross-buildings compar-
isons on a university campus.

Despite the advantages of VA over pure algorithmic ap-
proaches to provide a natural way to integrate a broad spec-
trum of information types, it is still a rather unexplored topic.
Energy demand analysis in buildings is a multifaceted prob-
lem that involves many qualitatively different factors, including
time factors (periodic, such as day, week, or year patterns and
non-periodic, such as holiday periods, special demand patterns
related to specific activities or singular events), spatial factors
(departments, buildings, areas, regions, etc.) or even environ-
mental or exogenous factors (such as economic or weather con-
ditions), just to mention a few highly relevant for energy anal-
ysis. Despite the previous work on VA approaches for energy
analysis provides great solutions to specific problems, the prob-
lem still requires to address the development of comprehensive
tools allowing to visualize the energy demand from many qual-
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itatively different factors, leading to a multiway analysis prob-
lem. As it will be detailed later, arranging the data into a hy-
percube structure according to the analysis factors, the problem
can be posed in terms of data cube operations [14] that can be
efficiently solved by state-of-the-art software libraries.

This paper proposes the use of coordinated views with in-
teractive histograms that show the distribution of demand data
from several buildings and/or facilities, with respect to different
attributes to allow the user to discover and understand the fac-
tors that affect energy efficiency. Our approach is based on com-
bining a highly interactive (fluid) visualization of histogram-
like barcharts, with real-time computation of aggregated de-
mand parameters (active power, power factor, total harmonic
distorsion, etc.), for user-defined filters and aggregations across
many different factors or dimensions such as time (hour, day
of week, month, etc.), building or environment (outside tem-
perature), using a data cube approach. The rest of the paper is
organized as follows. In section 2 we pose the problem from a
twofold perspective: the requirements for energy demand data
analysis and the requirements for a visual interface. In section
3 we lay out the theoretical framework —namely a data cube
formulation— and operations. In section 4, we describe imple-
mentation aspects, including real-time cube operations, render-
ing of visualizations in the web interface, data preparation and
the description of the web interface. In section 5 we present
and discuss the results and findings of applying the proposed
approach and the interactive visualization tool to the analysis
of one year of demand on 13 buildings of a university campus.
Finally, section 6 provides a general discussion and concludes
the paper.

2. Problem formulation

In this section we shall first introduce the problem from two
different but closely related aspects: the data analysis problem
and the data visualization interface. Then, we shall give a short
description of the specific problem to be addressed later, in the
results section.

2.1. Data cube approach for energy demand analysis
Energy demand information in buildings is often presented

as large tables of data from SQL databases, Excel XLS files,
CSV/TSV text files or from more structured formats such as
XML (eXtended Markup Language) or JSON (JavaScript Ob-
ject Notation). A typical case may consist of a large table,
showing several energy demand variables per building (active
energy, power factor, etc.), having thousands or even millions of
records, sampled at regular intervals (typically, hours or quar-
ters of an hour), for periods of one or more years, involving
several buildings.

In most cases, it is of interest for the user to analyse the
aggregated demand according to different criteria, such as by
hour, week day, month, building or for user-defined ranges of
known variables (e.g. active power, power factor or outside
temperature) just to mention a few. This leads to a multiway
analysis problem, since data can be conceived as a multidi-
mensional array —a data cube—, with as many dimensions

as defining attributes. Data cubes admit many different ways
for summarizing information by means of aggregations accord-
ing to any of their attributes, resulting in simpler summarized
structures that can be easily represented, for instance, as pivot
tables or chart visualizations, and explain different aspects of
the problem.

2.2. Requirements for the data visualization interface

From the point of view of how information is presented to the
user, a suitable analysis of energy data in this scenario should
accommodate to the following requirements:

• It should allow to provide visualizations with summarized
information of the demand behavior, based on the repre-
sentation of aggregated values for groups defined on each
dimension or factor being analyzed. Each dimension can
admit different groupings (attributes). For instance, di-
mension time could be grouped in many ways, such as
hour, weekday, month, quarter, year, etc.

• The user should also be able to filter the results for ranges
in one or more attributes. For instance he/she should be
able to quickly obtain answers to questions like “what is
the aggregated hourly demand for Mondays in building
1?” or “in which hour of the day does the power factor
most often fall below 0.95?”, “can we answer the former
question month by month?”.

• The interface should allow a fluid selection of ranges by
means of brushing gestures. Moreover, the intermediate
results during brushing operation should be displayed “on
the fly”, resulting in lively animated views that provide the
user with immediate feedback, which places the user in the
loop, boosting the analysis process.

• Different kinds of aggregations for each group should be
available, including total energy demand, the hourly av-
erage demand or simply a count of facts that fall on each
group for the current dimensional filter specifications.

• It should establish mental links or connections between
views. This can be achieved by coordinated views that get
simultaneously (and quickly) updated on any user action.

2.3. Case description

The data being object of this study contained electric power
demand information and other related data from a university
campus over a period of exactly one year, from March 2010
to February 2011 with a sampling interval of 2 minutes. The
dataset included measures of active power, power factor (cos φ),
temperature and total harmonic distorsion (THD), but also at-
tributes such as building id, weekday, hour, month, etc., listed
in Table 1, that provide context for analyzing the measures. The
dataset contained information from 13 buildings, listed in Table
2, having a broad spectrum of activities, including educational,
research, services, sports, etc.
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Table 1: dimension attributes used in the interface
id label attribute
1 week week of year
2 hour hour
3 Pact (KW) active power (kW)
4 month month
5 T(C) temperature
6 Edificio building id
7 dayofyear day of year
8 weekday day of the week
9 THD Van (%) THD (%)

10 cosPhi power factor (cos φ)

Table 2: list of buildings
id Building name
5 Filosofı́a

15 Animalario
16 INCAFD
17 Pabellón Deportivo
18 Frontón
19 Biblioteca Central
21 Cafeterı́a II
22 Molecular
23 Complejo Agrı́colas
24 Colegio Mayor
25 Complejo Rectorado
27 Minas
28 Centro Idiomas

3. Methods and techniques

3.1. Data cube terminology and operations

In this section we shall present several definitions and termi-
nology about data cube elements and operations, some of them
adapted from previous work [15, 16] to provide a formal de-
scription of the operations used for the energy demand analysis.

Measures. We shall define measures µ1, µ2, . . . , µp, as scalar
values that are the objects of analysis. Examples of measures
can be active-power, power-factor, temperature, etc.

Universidad	de	Oviedo

3

projec0on

selec0on

Figure 1: Data cube operations seen on a table.

Universidad	de	Oviedo

Dimension	Hierarchy

3

year	
(1)

hour	
(24)

weekday	
(7)

month	
(12)

cos	φ	
(100)

Pact	
(100)

temperature	
(100)

building	
(13)

dayofyear	
(365)

week	
(52)

ro
ll-
up

drill-dow
n

Figure 2: Dimension hierarchy.

Dimensions and attributes. The numeric measures depend on
a set of dimensions which provide context for the measure
[16], such as time, space, temperature, etc. A dimension
may be grouped in different ways, according to one or more
attributes with different levels of aggregation, that in some
cases can be organized into hierarchies, as seen in Fig. 2. For
instance, dimension time can be hierarchically grouped ac-
cording to attributes such as month, week, day, etc., allow-
ing also other interesting transversal categorizations such as
weekday or hour. Also measures can be used as dimensions
(e.g. temperature); a typical way to group continuously dis-
tributed measures is to partition the whole domain into inter-
vals or “bins”, as done in histograms. More formally, attributes
can be defined as sets of groups ai = {gi

1, g
i
2, . . . , g

i
|ai |
}, where

the gi
j denotes the j-th group into which a dimension is parti-

tioned according to attribute ai, and |ai| is the cardinality of the
set ai. Thus, for instance, {Su, Mo, Tu, . . . , Sa} are groups of
attribute weekday of dimension time, while the temperature
ranges { [−20o, 0o), [0o, 20o), [20o, 40o] } can be groups form-
ing an attribute of dimension temperature.

Data cube. We shall define a data cube as a multidimensional
structure

C(a1, a2, . . . , an) (1)

where a1, a2, . . . , an are attributes. The data cube is a hypercube
structure composed of |a1| × |a2| × . . . × |an| cells. Each cell
is defined by its coordinates (g1, g2, . . . , gn), being gk a single
group chosen from attribute ak, and contains the set of records
that belong to the n groups g1, g2, . . . , gn that define the cell
position. Note that a cell can also contain an empty set.

Projection operation. Projection refers to selecting the at-
tributes used to view the cube —see Fig.1. This operation is
roughly equivalent to projection Π in relational databases. Us-
ing the cube definition above

Πai1 ,...,aip
[C(a1, a2, . . . , an)] −→ C(ai1 , ai2 , . . . , aip )

where {ai1 , . . . , aip } ⊂ {a1, a2, . . . , an}. Note that the projection
operation implies reducing the cube dimension by collapsing it
to leave only the attributes ai1 , . . . , aip (that is, “flattening” the
cube), which results in a reduced number of cells in the data
cube, but preserving the total number of records. This means
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that some cells will store larger sets of records that were for-
merly divided according to groups of other attributes.

Selection operation. Let’s define the selection operation

σϕC(a1, · · · , an)

as the result of selecting the records contained in C for which
the predicate ϕ is true. In general, the predicate ϕ can be any
logical expression on the cube attributes as in relational alge-
bra terminology. However, in typical cube operations, ϕ is of-
ten limited to selections of subsets of groups in one or more
attributes1. This results in a dice selection (since it yields a
smaller cube or “dice”; see Fig. 3 for an illustration of the
idea), as described in the data cube literature [15, 16, 14]. For
instance, for a′k = {a, b}, a′j = {p, q, r} we get

σ ak=a′k
a j=a′j

[C(a1, a2, . . . , an)] −→ (2)

−→ C(a1, . . . , {a, b}︸︷︷︸
a′k

, . . . , {p, q, r}︸  ︷︷  ︸
a′j

, . . . , an)

The slice selection is a particular case of the dice selection that
arises when a single group a is selected from a single attribute
ak, that is, a′k = {a}

σak=a′k [C(a1, a2, . . . , an)] −→ C(a1, . . . , {a}︸︷︷︸
a′k

, . . . , an)

Aggregation operation. Let’s define the aggregation function
A as a function that takes the set of records associated to a cell
and yields a single value or object for summarizing purposes2.
Let’s assume that A can be applied to all the cells of the data
cube, producing an aggregated value or object per cell. We
define the aggregation operation as

AggAC(a1, . . . , an)

which returns a n-array of |a1|×|a2|×. . .×|an| aggregated values,
one per cell in the data cube. This array is often the last step
previous to reporting results in the data cube workflow.

The slice and dice selections are often complemented with
projection and aggregation in the data cube workflow for pro-
ducing summaries. An instance of a slice operation can be

AggcountΠPactσmonth=MayC

It selects May from the month attribute (slice), projects the re-
sulting slice on attribute Pact (in this case, actually a specific
partition of measure Pact into “bins” or intervals), resulting in
a reorganization of the records on a 1D cube with the groups
(bins) of attribute Pact, and then counts the number of elements

1This limitation results in “cubic” or “dice” selections of records inside the
cube. Note, however, that despite the more general expressions for ϕ, may
produce arbitrary empty cells in the cube, resulting in “non-cubic” selections
of records, this does not affect the data cube nature and operations.

2In a more general sense, the aggregation result can be an object, for exam-
ple a structure with several summarizing properties.

of each group. In other words, these operations return a his-
togram of Pact for May.

Another example with a dice operation and a different aggre-
gation function can be

Aggavg(cosPhi)Πhourσ building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

which does a dice selection by building, weekday and hour, re-
sulting in a smaller cube (a dice, see Fig. 3) and then a pro-
jection on the hour attribute, resulting in 1D cube with 4 cells,
one per selected hour, that contain all the records regardless the
building and weekday of the dice. Finally, the aggregation im-
plies in this case the computation of the average cosPhi for the
records on each cell, resulting in a 1-array of four values. In
Fig. 3 a picture of this operation along with the following two
operations

Aggsum(Pact)Πbuildingσ building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

Aggavg(Pact)Πweekdayσ building={1,3,4}
weekday={Fr,Sa}

hour={11,12,13,14}

C

is shown.

Roll up and drill down. According to the previous operations,
roll-up and drill-down operations can be defined as recomput-
ing the aggregation on a different attribute of the same dimen-
sion with a different level of aggregation. Suppose two different
attributes of dimension time, namely, year = {2010,2011} and
lower level aggregation attribute quarter = {Q1-10, Q2-10,
Q3-10, Q4-10, Q1-11, Q2-11, Q3-11, Q4-11}, drill-down and
roll-up are achieved by recomputing aggregations of active
power Pact on both attributes

Aggavg(Pact)ΠyearC

drill−down
−→

roll−up
←−

Aggavg(Pact)ΠquarterC

Fig. 2. provides a schematic description of the roll-up and
drill-down relationships among the attributes used in the tool
described in this paper.

4. Implementation

4.1. Data cube implementation

We used Crossfilter.js 3 for implementing efficient client side
data cube operations. Crossfilter is a JavaScript library for ex-
ploring large multivariate datasets in a web browser, that sup-
ports fast data cube operations with datasets containing a mil-
lion or more records.

The Crossfilter library allows to build a data cube object from
an array of javascript objects, using the crossfilter construc-
tor method. The properties for each object in the array can be
selected to define dimension attributes (dimension method),
and specific groupings (group method) can be defined within

3https://github.com/square/crossfilter
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Figure 3: Dice and aggregation operation on a data cube.

attributes, resulting in attribute group sets for further cube op-
erations. Once the data cube, the attributes and the groups have
been defined, the filter method allows to dice the cube by
selecting subsets of groups within one or more attributes (e.g.
for a range of values).

Finally, Crossfilter returns the aggregation values (top and
bottom methods) with count values as default or with user-
defined aggregations using map-reduce methods (reduceAdd,
reduceRemove, reduceInitial), allowing to implement ag-
gregations (e.g. sums and averages) on attribute groups in a
highly efficient way.

4.2. Rendering visualizations

The Crossfilter methods for fast computation of aggregated
values are tightly integrated in a javascript web app that uses
D3.js [17] for rendering the results into coordinated and inter-
active histogram views, one per attribute in the data cube. Each
histogram also includes a vertical red bar showing the mean
value. Each view features a brush behavior, activated by mouse
drag gestures on the view, that allows the user to define a filter,
that defines a selection operation on the corresponding attribute.
The selection can be changed both modifying the limits of the
defined range by dragging the sides of the selection rectangle
and moving the current selection range by dragging the inner
area.

By default, all the views are configured as histograms, since
the default aggregation function is count, which simply counts
the number of elements in each group of the attribute for the
current selection. More precisely, for the view of attribute ai

AggcountΠaiσcurrent selectionC

An input textbox allows the user to modify the behavior of
the views, by setting the type of aggregation (“avg”, “sum”,
or “count”) and the measure being aggregated, using a simple
syntax “attribute,aggregation,measure”. For instance
week,count,samples to define the view for attribute week as

a histogram,

AggcountΠweekσcurrent selectionC

hour,avg,cosPhi show average values of cosPhi per hour

Aggavg(cosPhi)Πhourσcurrent selectionC

During mouse drag operation, all aggregations are recom-
puted and all the views are instantaneously rendered, showing
the updated results for the current selection. This occurs on the
fly, in a fluid manner at rates close to 20 frames per second (us-
ing Safari browser, version 9.0.3, on an 2,4GHz intel core i7
macbookpro retina 8Gb, Early 2013).

In Fig. 4 a detailed description of the elements of a chart are
described for two different aggregation configurations.

4.3. Data preparation
We used python (specially pandas and JSON libraries) for

data import, curation, and organization into a JSON input data
file for the client application. Data originally available in large
binary files were imported into a python/pandas dataframe

structure, and timestamps were generated for every record, be-
ing later downsampled to 1 hour periods using average values.
Missing data within the hour period were ignored and only the
valid samples were used; when no valid data were available for
the hour period, the hourly measure was considered a missing
value. A further imputation method for such missing values
was carried out creating a pivot table with the average values
for the measures, using hour and weekday as pivot dimensions,
from which the missing values were taken.

To allow defining new attributes for meaningful categoriza-
tions of the data, additional helper columns week day, hour,
week of year, day of year and month were created from
the available timestamps. All these helper columns were used
as attributes for cube filtering and aggregation in the web appli-
cation.

Finally, data were restructured into javascript objects, one per
sample record (8760×13 records, a whole year of data for each
building) and packed in a JSON file.
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Figure 4: Description of the elements in a chart.

4.4. The web based interface

Interface layout. The application interface (see Fig. 5) can
be easily run by opening an HTML5 page with any modern
browser (e.g. Chrome, Safari, Firefox) with javascript SVG
render capabilities. The page includes a brief explanation of
the interface and the domain problem, as well as a textbox that
can be used for individual configuration of the views. At the
bottom, a set of 10 coordinated views (see table 1) show the
current aggregated values for the attributes being analyzed.

User changes on the view configuration. Using the small text
box, the user can quickly change the configuration of any view
using a very simple syntax

attribute,aggregation,measure

where attribute stands for the attribute to be represented,
aggregation is the type of aggregation {avg, sum, count}
and measure is the variable being aggregated. This simple
syntax allows the user to quickly change from viewing the
total demanded energy by months <month,avg,Pact>, the
histogram of power factor values <cosPhi,count,samples>
or the average harmonic distorsion on phase “a” by weekday
<weekday,avg,THD Van (%)>.

It must be pointed out that these aggregated values are com-
puted within a context given by the current user-defined fil-
ters on other attributes (allowing, for instance, to condition the
results of aggregation to contexts like “Mondays from 10:00
to 12:00”, for “building 2 on February” or “for temperatures
higher than 30oC on working days”) in a completely straight-
forward manner.

Filtering attributes (brushing). When the user sets the mouse
on a view, he/she can drag the mouse to select a filter range on
this attribute, that is shown by means of a shaded rectangle cov-
ering the selected groups in the associated attribute. This action
modifies the σ operation on the cube. For instance, by selecting

{11, 12, 13, 14} in the view hour and then selecting {Mo,Tu} in
the view weekday, the user makes a selection (filters) on the
attributes hour and weekday, resulting in chained dice and ag-
gregation operations, namely

Aggavg(Pact)Πmonthσ hour={11,12,13,14}
weekday={Mo,Tu}

(3)

Aggsum(Pact)Πbuildingσ hour={11,12,13,14}
weekday={Mo,Tu}

(4)

The previous aggregations describe, respectively, the average
power aggregated by month and the accumulated energy de-
mand aggregated by building, both evaluated on Mondays and
Tuesdays at peak hours —from 11:00 to 14:00. These opera-
tions, therefore, recompute the aggregated values for all views
from the “diced” cube that results from user’s brush-filtering
gestures.

Note that, unless otherwise stated, the charts provide infor-
mation aggregated from all buildings, all hours, all weekdays,
etc. However, if specific information were needed for, say, the
library, it could be easily obtained by filtering this building, e.g.

Aggavg(Pact)Πmonthσbuilding={19} (5)

that would display the monthly average demand of the library.

Fluid interaction. A key factor in the interface is that the pre-
vious dice and aggregation operations are literally computed
“on the fly” during the brush gesture, with a very low latency,
resulting in coordinated animated transitions of all the views,
while the user drags the mouse. This behavior favours a high
degree of involvement of the user in the analysis loop. Indeed,
the mere posibility of seeing immediately the results for ev-
ery action that the user does on the interface boosts the ability
of elaborating hypothesis based on problem domain knowledge
and immediately testing them with a rapid increase of the prob-
lem knowledge on every action.
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Figure 5: Application snapshot.

5. Results: study of cases

Through this section we will consider a series of particular
configurations of the tool for the given dataset that focus on
specific cases from a broad spectrum of cases occurred in the
campus during the whole year under analysis. Each case of
analysis is defined by a specific configuration of the tool, which
in turn is described by

1. The filters that the user has defined (i.e. their range), and
the attributes to which they apply.

2. The kind of aggregation (count, avg, sum) considered for
the representation of each dimension.

For the dataset under analysis, given the two previous con-
figuration coordinates, the outcome of the tools (that is, all the
displayed bar charts) is fully specified.

5.1. Comparison of the overall consumption of the buildings
and temporal behavior

This operation can be easily done by setting the sum ag-
gregation to the building chart (attribute id=6), just typing
“Edificio,sum,Pact (KW)” in the input textbox. The result
is shown in Fig. 5. Upon entering the text, the user can quickly
observe a change in the building barchart that now shows the
overall power consumption in kW for every building.

Additional filters can be added, with interesting results. For
instance, by setting a range for dayofyear, the user can see the
overall consumption in the buildings for this period. By drag-
ging the selection, the user can move this range and the results
are smoothly updated, revealing the temporal behavior of the
building demands. As a particular case, for instance, a signif-
icant increase of the demand in the library (building id=19) is
shown when the range contains the month of July, revealing an
extended schedule due to a heavy examination period occurring
this month.

5.2. Correlation between outside temperature and demand

In certain buildings like Molecular (building id=22) the pres-
ence of air conditioning and cooling systems shows a strong
correlation between the active power Pact and the outside tem-
perature T (C). Such a strong correlation emerges for ranges of
small overall active powers, as shown in Figure 7. This behav-
ior can be explained since cooling systems are working perma-
nently, thereby causing a “latent demand” that is isolated when
the user excludes the remaining “variable demand” by filtering
by low overall active powers.

It is noteworthy that such low values of active power demand
occur mainly at low activity periods, that is, early in the morn-
ing (from 0:00 to 8:00), late night (from 22:00 to 0:00) and on
weekends (weekday = {5, 6}).
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Figure 6: Selected snapshots of some case studies: (a) large power consumptions; (b) harmonic distorsion in sports facilities; (c) special demand behavior of the
library; (d) special demand behavior of the cafeteria II. Label “F” indicates a user filter action; label “V” indicates that the user “views results” of the previous filter
action.
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Figure 7: Filtering by low values of Pact (“latent demands”) in Molecular build-
ing (id=22) reveals a strong correlation between outside temperature and active
power, due to cooling systems.

5.3. Large power consumptions
Filters.

Pact > 100 kW

Aggregations. All aggregations set to count (histograms)

Analysis. With this configuration, the user restricts the analysis
to cases in which the hourly demand has been larger than 100
kW. Not having set any other filter, no further restrictions apply,
so the analysis applies to all buildings, all months, all hours, etc.
Many observations can be done —see Figure 6 (a):

• The count/histogram of hour shows the bimodal con-
sumption profile typical from activity in Spain, with a
larger bump corresponding to peak hours centered at
12:00, and a smaller bump corresponding to afternoon
hours centered at 16:00.

• The count/histogram of weekday shows larger demands
on {Mo,Tu,We,Th} (={0,1,2,3} in the interface), a slightly
smaller demand on Fr (=4) and lowest demand in {Sa,Su}
(={5,6}).

5.4. Harmonic distorsion in sports facilities
Filters.

THD Van > 5%

Aggregations. All aggregations set to count (histograms)

Analysis. With this configuration the user restricts the analysis
to samples where the THD was very high, comparatively to the
average. Looking at the histograms, one can quickly get these
findings:

1. At the buildings chart, it can be quickly seen that the
large harmonic distorsion condition only occurs in build-
ings 17 and 18 (sports pavillion and pelota court) —see
Figure 6 (b).

2. In the hour chart this occurs from 18:00 to 21:00. This
observation is compatible with the fact that these sports
facilities have a peak activity at evening, at the end of the
day.

3. The histogram of month reveals that this happens mainly
in autumn and winter. Within this period the natural light
is at its lowest levels.

4. A further look on the sports facilities reveals that the
large THD was provoked by nonlinear loads used in light-
ing equipment, that included high-power mercury-vapor
lamps.

5.5. Special demand behavior of the library

Filters.

Pact > 60 kW
building = 19 (library)

additional filters at

month = 6
month = 9

Aggregations. All aggregations set to count (histograms)

Analysis. The library opens continuously during final exam pe-
riods, that include mainly June as the period with largest activ-
ity. Specific details of this can be quickly obtained from the
histograms —see Figure 6 (c):

• In the month histogram the largest peak is found in June,
which confirms the previous fact.

• Adding another filter at month = 6, the user quickly ob-
serve that the demand at weekends is very large, as com-
pared to the weekend demand at other months, when it is
smaller or even zero (library closed). This also happens at
month = 9 (September).

• Filtering by months other than June or September, the ac-
tivity is restricted to {Mo,Tu,We,Th,Fr}, of which Fr is
the day with less demand. Those months that fall out of
exam periods (i.e. {Mar, Apr, Oct, Nov, Dec}) the demand
at weekends is zero or negligible, which means that the
building is closed to the public.

5.6. Special demand behavior of the cafeteria II

Filters

building = 21 (cafeteria II)

Aggregations. All aggregations set to count (histograms)

9



Analysis. The cafeteria II is a singular facility, which was not
open for the general public during the period under analysis, but
was used for singular events, mainly on Thursday afternoons.
Some singular findings were quickly spotted with our tool.

• Looking at the histogram of the power factor (cosPhi),
two highly relevant peaks at very low power factors around
0.42 and 0.51 can be observed. Adding a filter on one
of these factors ([0.40, 0.43]) we find that this occurs: a)
for extremely low active power consumptions; and b) for
three specific periods at April, May-June and July-August.
This happens for periods where the cafeteria was closed to
the public and residual power consumption from certain
devices (emergency lamps, etc.) led to such low values
—see Figure 6 (d).

Interestingly, moving the cosPhi filter to the other peak
[0.50, 0.52], we observe now near-zero power demand
happening at a different period in week or in dayofyear,
that runs mainly from the second half of August to the be-
ginning of October. The reason is probably due to residual
consumptions from different kind of devices this period.

It should be remarked, however, that the previous val-
ues of cosϕ are unusually low, even admitting the afore-
mentioned explanations. Another plausible explanation of
these facts –this would deserve further analysis– could be
a sensor malfunction/misconfiguration. Revealing sensor
malfunction is another potential benefit of our proposed
tool.

• Setting the active power to values larger than only 3.3 kW,
we spot the periods, days and hours of activity, show-
ing activity mainly on Thursdays (weekday = 3) in the
evening (hour from 16:00 to 22:00), being this activity re-
stricted to academic period (month from October to May,
and excluding months from June to September).

5.7. Demand behavior of the residence hall
Filters

building = 24 (residence hall)
Pact > 30 kW

Aggregations. All aggregations set to count (histograms)

Analysis. The residence hall, providing accomodations for stu-
dents and some faculty staff, has also a particular behavior.

• By choosing Pact > 30 the user immediately sees on the
hour chart a couple of peaks, at 14:00 and 21:00, which
are the scheduled food serving times for this building.

• By looking at the month chart, a strong increase of the de-
mand can be appreciated in the cold months (from January
to March), due to intense activity of heating systems

• Conversely, a drastic drop of the demand is observed from
July to September, where students leave to their homes,
added to the fact that this building does not have cooling
systems.

6. Conclusions

In this paper we have proposed a novel approach for energy
analytics in public buildings based on interactive analysis of
multiway data, including electrical demand, time, building and
environmental data attributes. The proposed approach features
fluid interaction for user-driven attribute filtering and definition
of aggregation operators, followed by a real-time updated vi-
sualization of the results on a web application. Information is
presented by means of coordinated barcharts (histograms) that
are updated “on the fly” upon user changes in attribute filters
or in aggregation functions. This allows the user to test any
hypothesis, getting immediate feedback for further reconfigu-
ration, resulting in a highly effective user-in-the-loop analysis
for pattern finding and correlation analysis.

The results show that the approach is highly effective in sev-
eral major tasks:

• Efficient analysis of the temporal behavior can be
achieved by filtering and aggregation according to dif-
ferent attributes of the time dimension (weekday, hour,
month, etc.) that make full sense for the user and there-
fore bear useful insight in the results.

• The approach proved also to be useful in exploring corre-
lations of the demand behavior with environmental vari-
ables by filtering by outside temperature, allowing to spot
and quantify the effects of temperature in the demand in
different scenarios such as buildings with heat and/or cool-
ing systems.

• It also provides insight in comparing buildings allowing
aggregation of demand parameters.

• It allowed to spot special behaviors by focusing on spe-
cific attributes such as the THD (Total Harmonic Distor-
sion) or the power factor (cosϕ), revealing the influence
on the demand of special equipment, such as mercury-
vapor lighting in sports facilities.

• Also, any combination of the former analyses are pos-
sible, since the user can create and modify as many filters
as attributes, allowing, for instance, to explore the demand
for a temperature range, a certain building and/or a week-
day or hour range.

Finally, it’s worth to note that the information provided by
this tool gives the best results if combined with available social
science knowledge about the kind and nature of the activities
that take place in the buildings.
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