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Abstract

Ensemble methods are widely applied to supervised learning tasks. Based
on a simple strategy they often achieve good performance, especially when
the single models comprising the ensemble are diverse. Diversity can be in-
troduced into the ensemble by creating different training samples for each
model. In that case, each model is trained with a data distribution that
may be different from the original training set distribution. Following that
idea, this paper analyzes the hypothesis that ensembles can be especially
appropriate in problems that: (i) suffer from distribution changes, (ii) it is
possible to characterize those changes beforehand. The idea consists in gen-
erate different training samples based on the expected distribution changes,
and to train one model with each of them. As a case study, we shall focus
on binary quantification problems, introducing ensembles versions for two
well-know quantification algorithms. Experimental results show that these
ensemble adaptations outperform the original counterpart algorithms, even
when trivial aggregation rules are used.
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1. Introduction

Ensemble learning consists in constructing a meta-model that results from
the combination of a set of individual models, using a particular aggregation
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rule. Ensembles get benefited from the existent diversity in the model set,
producing a solution that implicitly represents some sort of agreement be-
tween the individual models. From a practical point of view, they generally
perform better than a single-model solution [1, 2, 3, 4], although this can-
not be guaranteed [5]. An ensemble limits the risk of obtaining a particular
bad response from a single model; formally this is due to the fact that the
ensemble tends to reduce the variance of its base classifier. Intuitively, the
same idea is highly present in the human decision making processes; a set of
opinions is more rich than an isolated opinion, especially when there exist a
high degree of diversity within the opinions.

Let us introduce some notation for ensembles under the framework of
supervised learning. Let X be an input space and Y an output space. There
exist a training set D = {(x1, y1), ..., (xn, yn)} drawn from an unknown dis-
tribution P(X,Y) from the product X × Y . Usually each example, xi, is
represented by an attribute vector (xi,1, xi,2..., xi,d) and a target class yi that
may belong to a discrete set in classification problems or to R in the case of
a regression problem. The objective is to approximate an unknown function
f : X → Y by generating a function h, called hypothesis, defined into some
hypothesis space H. To do so, many algorithms search for the best single
hypothesis h that approximates f taking into account the training set D, the
selected hypothesis space and a target loss function. In contrast, an ensemble
produces a hypothesis h resulting from the combination of a set of m (weak)
hypothesis {h1, h2, ..., hm}, in which each model hj is usually learned using a
subsample Dj generated from D. The combination of the set of hypothesis
or models is performed by means of a particular aggregation strategy.

Supervised learning makes the assumption that the unknown distribution
P(X,Y), from where the examples are drawn independently and identically
distributed (i.i.d. assumption), does not change between the training and
testing or production phases. Or state it differently, it is assumed that the
training set truly reflects the probability distribution of the problem. How-
ever, in practice, this assumption gets often violated in real-world applica-
tions [6, 7]. This situation is referred to as dataset shift in the research
community, and it takes place when P(X,Y) changes from training to test-
ing data [8, 9]. Characterizing those changes in the distribution sometimes
depend on the target application, and even though it can be challenging in
some cases, it is surprisingly simple, even trivial, in other problems.

Our intention in this paper is to present a new scenario in which the
application of ensemble algorithms results appropriate and effective. We
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refer to problems verifying the next properties: (i) are known to suffer from
distribution changes between training and testing phases, (ii) we are able
to characterize the distributional changes beforehand (i.e. we can define
the conditions that make P(X,Y) to change). The objective is to take
advantage of this a priori knowledge and to use it during the training stage.
From an ensemble point of view, we can make the most of this knowledge
in order to introduce diversity into the weak models, a desirable property
to boost its efficacy [10, 11, 12, 13, 14]. The central idea of this paper is to
generate different training samples, with each one representing an specific and
expected distribution change. This approach is different to other propositions
that have been suggested to tackle tasks that present some sort of drift in
the distribution [15], especially concept drift problems [16]. Those methods
are based on removing, modifying or adding new models to the ensemble,
mainly because the concept P(y|x) changes throughout time and it is not
possible to exploit any prior knowledge. Our approach is different in the
sense that, as we know the characteristics of the expected changes, we can
use that knowledge to build an enriched ensemble from the beginning without
the need of subsequent modifications.

In order to prove the validity of our idea, we have applied it to binary
quantification problems. Quantification is defined as the task of estimat-
ing the number of examples belonging to each class (class distribution) in
a test set, using a training set that may have been drawn from a different
distribution [17]. In the case of binary quantification the set of class values
is restricted to two and the objective is to correctly estimate the number
of positive examples (prevalence). Quantification tasks fit perfectly our re-
quirements, since, by definition, the class probabilities may change, and we
are also able to characterize and to restrict ourselves to a certain types of
changes, as we shall see later.

There are many real-world problems that can be solved using quantifi-
cation algorithms. Tentative application scopes include opinion mining [18],
network-behavior analysis [19], quality control [20], monitoring of support-
call logs [21] and credit scoring [22], among others. For instance, there is an
increasing demand for automatic methods to track overall consumer opinions
[23]. The goal is to answer questions like how many consumers are satisfied
with our new product?. This task requieres effective algorithms focused on
estimating the distribution of classes from a sample. Notice that the goal is
not to label individual examples (solved using traditional classification algo-
rithms), but to obtain estimations at aggregated level. This kind of problems
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are related with those aimed at tracking trends over time [24], such as early
detection of epidemics and endangered species, risk prevalence and ecosys-
tems evolution.

In the experimental results section we empirically demonstrate that the
estimates provided by a single quantifier can be improved by using its ensem-
ble version. We have compared the performance of our ensemble quantifier
approach with a baseline quantifier, CC (Classify and Count)[25], and two
state-of-the-art quantifiers, AC (Adjusted Count)[25] and HDy [26]. Never-
theless, we think that the significance of this article goes beyond that fact,
since the proposed approach can be applied to different distribution change
problems, as long as it is possible to characterize those changes beforehand.
Interestingly, several studies characterizing some of these problems have been
published recently [27, 8, 9, 28].

The rest of this paper is organized as follows: Section 2 briefly describes
distribution changes and how to characterize them and Section 3 introduces
the binary quantification problem and the quantification algorithms used in
this paper. In Section 4 the details of our ensemble quantification approach
are presented. The experimental setup and empirical results are shown in
Section 5. Section 6 summarizes the main conclusions.

2. Characterizing problems with changes in data distribution

A categorization and a discussion about problems presenting distribution
changes, or using the current terminology, problems suffering from dataset
shift, can be found for instance in [8, 9]. Supervised learning problems are
defined by a set of covariates, x, a class variable, y, and the examples are
drawn at random from the joint probability distribution of both. To better
understand dataset shift it is important to realize how the data is generated
according to the causal relationship between covariates and the class variable,
since it determines the kind of changes in the distribution that a problem may
suffer from. In this sense, a taxonomy proposed in [29] identifies two types
of problems: X → Y in which the class value y is causally determined by
the covariate values x, and problems Y → X where the covariates x causally
depend on the class label y. Spam detection constitutes an example of the
first type of problems, the mail content determines whether it is spam or not.
On the other hand, medical diagnosis problems are a typical example of the
second; suffering from a determined disease y cause a series of symptoms x
to appear.
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Given an instance x and a class value y, their joint probability P(x, y) can
be written as P(y|x)P(x) in X → Y problems and P(x|y)P(y) in the case
of Y → X problems. Dataset shift arises when any of these elements change
between training and test, that is to say Ptr(x, y) 6= Ptst(x, y). Thus, several
types of dataset shift problems can be identified depending on the elements
that change:

• covariate shift : P(x) changes but P(y|x) remains constant

• prior probability shift : P(y) changes but P(x|y) does not

• concept shift (o drift): P(y|x) changes but P(x) does not (X → Y
problems), or P(x|y) changes but P(y) remains constant (Y → X
problems)

Supervised learning methods generally assume that the joint probability dis-
tribution remains unaltered between training and test. However, in practice,
there are many important applications suffering from changes to a greater
or lesser extent. These kind of problems are interesting from an ensemble
learning point of view because some of the aforementioned changes can be
easily characterized. This is especially true in the case of prior probability
shift problems, that are also referred to as quantification problems in the
literature. A typical application of quantification learning is to estimate the
prevalence of positive and negative opinions. Imagine that we want to track
the opinions about a product in Twitter during a period of time and give just
an estimate on how many are positives (and negatives), without predicting
individual opinions (this would be a classification task). In such a problem,
when the class distribution P(y) changes (e.g. the number of positive opin-
ions increases), the opinions maintain the same distribution when the class
is fixed. The way in which users express their opinions does not change from
one day to another, there would be very good opinions using strong words
expressing that felling, moderately positive comments and so on. When can
assume in that case that P(x|y) is constant.

As we state in the previous section, ensembles have been applied before for
problems that present a shift in the distribution, mainly in concept drift tasks
[30]. The main idea is to build an ensemble with models created at different
moments in time and the goal is to have at least one model representing each
distinct concept. The ensemble maintains a memory of models representing
past concepts because some of them may become useful again in the future
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[31]. Different strategies for training such ensembles can be employed, for
instance, to divide historical sequential data into non overlapping blocks
[32, 33, 34] or using different sized training windows [35, 36, 37]. After the
set of models is trained, adaptivity is achieved by defining a combination
or fusion rule. Basically, the combination rule consists in assigning weights
to the individual models at each point in time. The weights express the
expected competence of the model and may depend on different factors,
typically the estimated performance [33, 37] or historical performance in the
past [34, 35, 36].

However, our approach differs in several aspects with respect to these
concept drift methods. The first difference is due to the fact that the con-
cept does not change in quantification applications. For instance, the concept
of what a positive opinion is does not change for a given sentiment analy-
sis problem. The ensembles in concept drift tasks are usually designed to
maintain a memory of models, representing the evolution of the concept and
allowing to reuse models that were obtained in the past and are valid again.
This approach is not aplicable for quantification tasks because because the
concept is always the same, there are no old and new models in quantifi-
cation. This is particularly true for Y → X problems for obvious reasons.
The second difference is that models for concept drift based on ensembles are
trained with successive samples. In our case, the samples are not given but
are generated according to the expected changes in data distribution.

3. Binary quantification

Given a training set with examples labeled as positives or negatives,
yi ∈ {+1,−1}, the class distribution can be summarized with the actual pro-
portion of positives or prevalence p (the proportion of negatives is n = 1−p).
The binary quantification goal is to induce a model or quantifier able to give
an estimate p′ of the actual prevalence, p = P(y = +1), for a test set T that
may have a significantly different class distribution (see Figure 1). From a
learning point of view, the most important assumption made by quantifica-
tion methods is that the class probability distribution P(y) changes between
training and test, but P(x|y) remains constant.

Intuitively, it seems a less complex problem than classification, since it
is not necessary to give accurate estimations for each example. We could
think of a first trivial approach to quantification by inducing a classifier,
predicting the class of each example, and counting the number of predicted
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Figure 1: Quantification learning

examples for each class, obtaining a class histogram. This method is referred
to as CC (Classify and Count) and has already been proved to perform
poorly [17]. The problem of such approach is that the induced classifier does
not take into account that the distribution may change, which, by problem
definition, will happen. In fact, CC performance tends to notably drop when
p significantly changes, by going down or up a high degree. The main reason
is because the underlying classifier will have a systematic bias, tending to
produce false positives or false negatives. For instance, the derived quantifier
will underestimate the prevalence, p′�p, when p increases and the classifier
tends to produce false negatives. And the opposite, the quantifier will also
overestimate p, p′ � p, when p decreases and the classifier produces more
false positives. Thus, it is impossible for CC to perform well in the whole
prevalence domain.

In this paper we have chosen to work with two quantification methods
following contrasting approaches.

3.1. Adjusted Count

The first one is named AC (Adjusted Count) and was proposed by For-
man [17] in order to reduce the systematic bias of CC inherited from the
underlying classifier. Noticeably, the same idea was presented back in the
70’s for the estimation of class prevalence from screening tests in epidemiol-
ogy [38]. The differences with respect to Forman’s proposal are two: i) no
supervised learning is involved and (ii) the role of the classifier is played by
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a clinical test that has imperfect sensitivity and specificity.
AC is based on estimating the classifier tpr (true positive rate) and fpr

(false positive rate):

tpr =
TP

P
, fpr =

FP

N
(1)

in which P and N represent the count of actual positives and negatives,
while TP and FP represent the count of true positives and false positives
predicted by the model. These two values can be used to correct the preva-
lence estimation given by a classifier. In fact, the probability of a classifier
making a positive prediction, p′ = P(h(x) = +1), in a binary problem can
be expressed as a function of the ground truth prevalence p:

p′ = P(h(x)=+1|y=+1)·P(y=+1) + P(h(x)=+1|y=−1)·P(y=−1)

= tpr · p+ fpr · n
= tpr · p+ fpr · (1− p)
= fpr + p · (tpr − fpr). (2)

Solving for p, the ground truth prevalence can be written depending on p′,
tpr and fpr:

p =
p′ − fpr
tpr − fpr

. (3)

Therefore, in order to obtain a better estimation of the true prevalence p
it will suffice to (i) train a classifier, (ii) estimate its tpr and fpr, (iii) clas-
sify and count the test examples towards obtaining p′ and (iv) obtain the
true prevalence p by substituting the calculated values in (3). The crucial
step, which is the estimation of tpr and fpr, is usually performed using cross-
validation over the training set [17]. It is important to emphasize that such
estimations are independent of the distribution changes, since it was assumed
that P(x|y) remained constant. Notice that theoretically AC should output
perfect quantification estimates as long as this assumption is fullfiled. How-
ever, in practice, inaccurate tpr and fpr estimations and/or the assumption
not getting satisfied often lead to imperfect quantifications.

The AC correction is, in general, applicable to any quantifier built on
top of a classifier, like in the case of quantifiers based on decision trees [39],
on nearest neighbors [40], on structured classifiers that optimize quantifica-
tion measures [41] or even on probabilistic classifiers, with the necessity of
adapting the correction to the probabilistic domain [42].
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Figure 2: HDy Training phase: a probabilistic classifier is learned and applied to obtain
the distribution of D

3.2. HDy

The second method, termed HDy [26], is totally different to the previ-
ously commented approach, since it does not rely on classifying, counting
and correcting. Its core idea consists in measuring distribution similarities.
More precisely, HDy compares training and test distributions and seeks for
the prevalence p′ that would make the training distribution, modified by
p′ and obeying that P(x|y) does not change, the most similar to the test
distribution.

In [26], the authors propose two different methods to represent both dis-
tributions: HDx uses directly the feature vectors x, while HDy employs the
predictions of a probabilistic model induced from the training set. The later
not only outperforms the former, but it also has the advantage of working in
a space with a smaller dimensionality. In fact, the main advantage of HDx is
that it does not require a classification model, but its main limitation is that
its computational complexity increases with the number of features. Thus,
the use of HDx is unfeasible in high dimensional spaces.

In the case of HDy its representational space has just M − 1 dimensions,
being M the number of classes. For a binary problem it has only one di-
mension: the model predicts the probability of an example to belong to the
positive class. The process is quite simple: the range [0..1] is partitioned into
b bins, and a histogram is built with each classified example being assigned
to one of the bins depending on its probabilistic score. In the training stage,
the probabilistic classifier and the actual distribution of the training set are
obtained (see Figure 2).

In the testing phase, the distribution of the test set is obtained following
the same procedure: (i) computing the probabilistic scores of the testing ex-
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amples using the probabilistic classifier, and (ii) calculating the correspond-
ing histogram using the same number of bins b. Then, the idea is to modify
the training histogram to match the testing histogram varying p′. For in-
stance, in the example depicted in Figure 3 in which red color represents the
distribution of the positives, p′ should decrease (and of course n′ = 1 − p′

should increase in the same quantity) with respect to the prevalence of the
training set in order to match the testing distribution.

The strategy followed for modifying the original training set histogram is
a simple linear search. p′ is moved over the range [0..1] in small steps and
the histogram associated is calculated applying the following equation:

|D′i|
|D′|

=

∣∣D+
i

∣∣
|D+|

· p′ +
∣∣D−i ∣∣
|D−|

· (1− p′), (4)

in which |D+| is the number of examples in D belonging to the positive
class and

∣∣D+
i

∣∣ the number of positive examples in D belonging to the i-th
bin. |D−| and

∣∣D−i ∣∣ are analogously referred to the negative class. These
components are pre-calculated in the training phase (Figure 2).

Similarity between both histograms is measured with the Hellinger Dis-
tance metric:

HD(D′, T ) =

√√√√ b∑
i=1

(√
|D′i|
|D′|
−

√
|Ti|
|T |

)2

, (5)

where D′ and T represent the modified distribution of the training set com-
puted using (4) and the testing distribution, respectively. |D′i| is the number
of examples of the modified distribution D′ belonging to the i-th bin and |D′|
is the training set cardinality. |Ti| and |T | refer in the same way to the test
set distribution.

Figure 3 schematically shows the testing phase of HDy. For the differ-
ent values of p′ ∈ [0..1] considered, the Hellinger distance to the test set is
calculated using (5). The p′ value minimizing the distance to the test set
will be the estimated prevalence. Note that, as all the bins of the train set
distribution are altered uniformly using p′, the assumption of P(x|y) being
constant is not violated.

4. Ensembles for problems with characteristic distribution changes

As we have pointed out in previous sections, there exist problems, like
covariate shift or quantification, in which we: (i) are aware of the distribution
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Figure 3: HDy Testing phase: the test distribution is computed using again the proba-
bilistic classifier. The most important step is to compute a modified distribution of D,
varying p′ in (4). Similarity between both distributions is calculated using the Hellinger
Distance (5)

changing between training and test, (ii) are able to characterize the kind of
changes to emerge, or at least (iii) can make a previous assumption about
the nature of such changes. Thus, the core idea in this paper is that we can
take advantage of that knowledge to build ensembles with an appropriate
diversity that are prepared to effectively represent the expected changes in
the distribution. The ensemble learning task is separated into three phases:
(i) sample generation with each one representing an expected distribution
change, (ii) model training on each generated sample and (iii) combination
of the individual estimates to produce the final ensemble prediction.

The most important step is certainly the first one, which must be adapted
depending on the dataset shift problem being tackled. In this article we are
showing a simple adaptation for the binary quantification problem. In other
cases the adaptation may require from additional knowledge about the partic-
ular application nature, as in the case of covariate shift, with P(x) being the
changing component. In the binary quantification case it is more straightfor-
ward. It is important to keep in mind the learning assumption of the problem:
quantification mainly stands for Y → X problems with P(y) changing and
P(x|y) remaining constant. Once the expected distribution changes are de-
fined, the goal is to generate training samples a priori representing them, so
it is possible to effectively react to its presence. Thus, sampling is not aimed
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Figure 4: Training stage of the ensemble. Each sample Dj is generated with a different
prevalence pj

at correctly predicting concrete examples, even though it is a characteristic
to also be considered in the future, but just at representing the expected
distribution changes.

We propose the following procedure in order to generate each training
sample. First, the sample prevalence pj is randomly selected in [0..1]. Then,
simple random sampling with replacement is performed within the positive
class examples until the number of positive examples, given by the chosen
prevalence pj, is obtained. This process guarantees P(x|y) to be constant.
The same operation is repeated for the negative class, with its prevalence
being equal to nj = 1 − pj. By changing the prevalence of each generated
sample we obtain the desired diversity. This procedure is repeated until the
number of defined training samples m is reached. Figure 4 describes this
process.

The next step is to train the base quantifier algorithm over each generated
sample. In the case of the quantifier using the AC correction (3) it is nec-
essary to estimate the tpr and the fpr using each sample Dj. An important
detail to highlight is that the generated samples Dj should have an adequate
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Figure 5: Prediction stage of the proposed ensemble for binary quantification. Each model
hj is applied over test set T , obtained different values for the estimated prevalence (p′j) of
T . These values are combined using a combination strategy to obtain the final estimate
p′

number of examples in order to be able to produce accurate estimates for tpr
and fpr. In our case, we generate samples with the same cardinality as the
original training set but with a different prevalence in general.

Finally, given an unlabeled test set T , each ensemble learned model hj is
applied and an estimate of the test set prevalence, p′j, is obtained. The defini-
tive ensemble prediction is computed by applying a combination function. In
the experiments reported below we have just used a simple aggregation func-
tion, the arithmetic mean. Nevertheless we think that more complex and
powerful methods can be investigated in the future.

We believe that applying ensemble techniques to the quantification prob-
lem results in more benefits than its application in other kind of problems,
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like classification. The advantage of using a combination of models instead of
a single model, with the risk of not performing well in some cases, is generic to
every kind of problem in which ensemble technique is applied to. However, in
the quantification case there are additional benefits. First of all, we actually
know how to explicitly introduce diversity into the ensemble. In the second
place, using multiple models when the base quantifier corrects its estimates
leads to major improvements. The AC correction (3), while theoretically
produces perfect quantifications, is, in practice, risky. When having inaccu-
rate tpr and fpr estimates, the correction will cause inappropriate changes.
As we shall show in the experimental results section, AC manages to pro-
duce very accurate results for some problems, while it significantly drops its
performance for others. It not only depends on the underlying classifier accu-
racy, but principally on the correction quality. Using ensembles reduces both
risks. Not only the diversity itself results in an ensemble specific benefit, but
also the combining strategy lessens more risks than in a typical classification
scenario.

5. Experiments

The goal of the performed experiments was to empirically verify the effec-
tiveness of applying ensembles to a problem noticeably suffering from data
distribution changes, as it is the case of quantification. These experiments
compare the performance of a baseline quantifier, CC, and two state-of-the-
art quantification algorithms, AC and HDy, to the performance of its en-
semble adapted versions, ECC, EAC and EHDy. The aim is to improve the
performance of AC and HDy using ensembles.

5.1. Experimental design

We basically chose AC and HDy as quantifier representatives because
they are based on very contrasting approaches, thus increasing the study sig-
nificance. On the one hand, AC, as an emblematic quantification algorithm
based on classifying and counting with posterior estimate corrections using
tpr and fpr. On the other hand, HDy, even though it also makes use of a
classifier to represent sample distributions, it is based on measuring distri-
bution similarities rather than in classifying, counting and correcting. Addi-
tionally, other three ensemble-based algorithms, named as CC(bag), AC(bag)
and EHDy(bag), were included in the experiments to better study the influ-
ence of the design decisions made to propose EAC and EHDy. These three
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methods use bagging [2] as the underlying classifier, applied with different
base learners.

The algorithms compared can be grouped according to two different crite-
ria. The main criterion depends on the quantification approach: CC methods
(CC, CC(bag) and ECC ), AC methods (AC, AC(bag) and EAC ) and HDy
methods (HDy, HDy(bag) and EHDy). Notice that the difference between
the algorithms in the same group are due to the different classifier or ap-
proach used. But from another point of view, we can group the algorithms
considering the models they use. This is important for the fairness of the
experiments. First, we have those quantifiers that only need a single non-
ensemble classifier. To this group belongs CC, AC and HDy. In the experi-
ments all these methods share the same underlying model in order to perform
a fair comparison between them. The second group is formed by CC(bag),
AC(bag) and EHDy(bag). The bagging classifier is also the same. Finally,
ECC, EAC and EHDy implement the ensemble proposed in the paper, using
samples with a different prevalence. Again, the ensemble is composed by ex-
actly the same models. Hence, the differences in their performance between
the algorithms in the same group according to the second criterion are only
due to the different way in which the predictions made by the classifier are
used; the differences between them are not due to the classifier.

The experiments were carried out over 32 datasets, specifically all of those
used in [40, 26], except iris.1, acute.a and acute.b (perfect quantifiers are ob-
tained, so they are trivial problems), and coil, lettersG and lettersH because
the experiments did not finish in a reasonable time. As we shall see in this
description of the experimental setting used, the experiments reported are
quite complex due to several reasons, mainly the use of ensembles, the grid-
search applied for tuning classifiers’ parameters and the testing phase, which
is more time consuming than in classification problems because we need to
estimate the prevalence for different test sets. The testing phase is even
slower when using ensembles. Table 1 contains the characteristics of the
datasets finally used. Some of them are originally binary, while others are
binary adaptations of multiclass problems. For instance, iris.2 is a binary
problem in which the original class 2 has been mapped to the positive class,
with the remaining classes being mapped to the negative class. In all cases,
the instances with missing values were removed.

We decided to use probabilistic base classifiers because HDy uses the
scores provided by the underlying classifier to represent the distributions.
This decision avoids unbounded predictions and homogenizes the histograms
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Table 1: Summary of datasets

Dataset Identifier Size d P N p

Balance Scale (left) balance.1 625 4 288 337 46%
Balance Scale (balanced) balance.2 625 4 49 576 8%
Balance Scale (right) balance.3 625 4 288 337 46%
Breast Cancer Wisconsin breast-cancer 683 9 444 239 65%
Contraceptive Method Choice (no use) cmc.1 1473 9 629 844 43%
Contraceptive Method Choice (long term) cmc.2 1473 9 333 1140 23%
Contraceptive Method Choice (short term) cmc.3 1473 9 511 962 35%
Cardiotocography Data Set (normal) ctg.1 2126 22 1655 471 78%
Cardiotocography Data Set (suspect) ctg.2 2126 22 295 1831 14%
Cardiotocography Data Set (pathologic) ctg.3 2126 22 176 1950 8%
Pima Indians Diabetes Data Set diabetes 768 8 268 500 35%
Statlog German Credit Data german 1000 24 700 300 70%
Haberman’s Survival Data haberman 306 3 81 225 26%
Johns Hopkins University Ionosphere DB ionosphere 351 34 126 225 36%
Iris Plants Database (versicolour) iris.2 150 4 50 100 33%
Iris Plants Database (virginica) iris.3 150 4 50 100 33%
Mammographic Mass mammographic 830 5 403 427 49%
Page Blocks Classification (5) pageblocks.5 5473 10 115 5358 2%
Phoneme phoneme 5404 5 1586 3818 29%
Semeion Handwritten Digit (8) semeion 1593 256 155 1438 10%
Sonar, Mines vs. Rocks sonar 208 60 97 111 47%
Spambase Data Set spambase 4601 57 1813 2788 39%
SPECTF Heart Data spectf 267 44 55 212 21%
Tic-Tac-Toe Endgame Database tictactoe 958 9 332 626 35%
Blood Transfusion Service Center Data Set transfusion 748 4 178 570 24%
Wisconsin Diagnostic Breast Cancer wdbc 569 30 212 357 37%
Wine Recognition Data (1) wine.1 178 13 59 119 33%
Wine Recognition Data (2) wine.2 178 13 71 107 40%
Wine Recognition Data (3) wine.3 178 13 48 130 27%
Wine Quality Red (6-10) wine-q-red 1599 11 855 744 53%
Wine Quality White (6-10) wine-q-white 4898 11 3258 1640 67%
Yeast yeast 1484 8 429 1055 29%

obtained. Such histograms were generated with 8 bins. The results of HDy
with other values for this parameter were similar (with 4 bins), or worse
(with 12 and 20 bins).

Three different base classifiers were employed to verify that the results
do not depend on a particular classifier. Each base learner is applied in
combination with the nine methods compared. The learners selected were:
(i) Näıve Bayes (NB), the most classical probabilistic classifier, (ii) Logis-
tic Regression (LR), to induce linear models and (iii) SVM with a Gaus-
sian kernel (RBF ) and probabilistic output to produce non linear models.
In the case of LR and SVM-RBF the regularization parameter (C) was
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set through a search in C ∈ [10−3, . . . , 103], by optimizing the geometric
mean in binary classification using a 5-fold cross validation with 2 repeti-
tions (CV5x2). As regards SVM-RBF, the parameter γ was selected within
the values [0.001, 0.005, 0.01, 0.05, 0.1, 1] following the same procedure. NB
uses gaussian distributions to deal with numerical attributes.

Geometric mean measures the ability of a classifier to balance sensitivity
(accuracy on positive examples) and specificity (accuracy on the negative
examples). It was selected to deal with imbalance datasets, see details in
Table 1. Moreover, in the case of LR and SVM-RBF we equally weighted
both classes by using the −w parameter in LibLinear and LibSVM [43]. The
weight of each class multiplies the regularization parameter C, so both classes
have the same influence in the loss term of the optimization problem. Both
decisions are tailored at obtaining well suited classifiers even under impor-
tant class imbalance scenarios, a usual situation in quantification problems.
Without class weighting, and by only optimizing the classifier accuracy, both
CC and AC performed significantly worse and the difference with respect
to the ensemble versions gets accentuated, due to the classifier tending to
predict the majority class in most of the cases.

The estimation of tpr and fpr, a critical step for AC -based approaches,
was obtained through a 10-fold cross-validation over the training examples.
Notice that for EAC, each model of the ensemble requires to estimate its
tpr and fpr. The size of the ensemble approaches was set to m = 30. We
decided to generate samples Dj with the same size as the original training set
D in order to be able to get accurate estimates of the tpr and the fpr when
needed. The prevalence pi was randomly chosen in the interval [5% − 95%]
for each sample. We deliberately avoided values near 0% and 100% because
in these points it may arise difficulties when estimating both tpr and fpr, due
to the lack of examples in one of the classes. Given the selected prevalence
pi, random sampling with replacement (to ensure P(x|y) remains constant)
was used to generate the number of examples required for each class.

The results reported in the next section were obtained using 5-fold cross
validation with two repetitions (CV5x2). For each test partition 100 samples
were generated with replacement, in which the positive class prevalence p was
randomly selected ranging from 0% to 100%. Thus, each result in the tables
represents the mean of 1000 quantifications. The error metric represented is
the mean squared error (MSE). Similar results are obtained by analyzing the
mean absolute error (MAE).
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Table 2: Mean squared error using Logistic Regression as base classifier. The score of the
best performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy

balance.1 0.0031 0.0031 0.0025 0.0025 0.0025 0.0021 0.0014 0.0013 0.0012
balance.2 0.1309 0.1436 0.1123 0.1833 0.2185 0.1328 0.3708 0.3298 0.1530
balance.3 0.0021 0.0021 0.0019 0.0010 0.0010 0.0010 0.0006 0.0006 0.0006
breast-cancer 0.0008 0.0010 0.0009 0.0007 0.0008 0.0006 0.0004 0.0004 0.0004
cmc.1 0.0436 0.0439 0.0451 0.0123 0.0121 0.0114 0.0118 0.0117 0.0105
cmc.2 0.0429 0.0429 0.0432 0.0164 0.0167 0.0148 0.0109 0.0107 0.0100
cmc.3 0.0521 0.0524 0.0538 0.0318 0.0281 0.0238 0.0184 0.0178 0.0156
ctg.1 0.0056 0.0056 0.0059 0.0016 0.0017 0.0013 0.0006 0.0005 0.0007
ctg.2 0.0092 0.0080 0.0110 0.0013 0.0010 0.0010 0.0010 0.0010 0.0011
ctg.3 0.0020 0.0025 0.0024 0.0011 0.0014 0.0013 0.0015 0.0017 0.0014
diabetes 0.0211 0.0208 0.0229 0.0102 0.0071 0.0066 0.0057 0.0051 0.0051
german 0.0274 0.0274 0.0300 0.0091 0.0094 0.0085 0.0070 0.0071 0.0075
haberman 0.0777 0.0757 0.0715 0.0780 0.0773 0.0662 0.0966 0.0856 0.0735
ionosphere 0.0152 0.0236 0.0213 0.0068 0.0088 0.0108 0.0131 0.0148 0.0185
iris.2 0.0448 0.0492 0.0438 0.0677 0.0765 0.0457 0.0329 0.0326 0.0189
iris.3 0.0018 0.0014 0.0015 0.0017 0.0009 0.0009 0.0017 0.0014 0.0011
mammographic 0.0168 0.0163 0.0148 0.0101 0.0077 0.0068 0.0048 0.0042 0.0044
pageblocks.5 0.0078 0.0077 0.0264 0.0046 0.0043 0.0052 0.0016 0.0016 0.0010
phoneme 0.0253 0.0255 0.0254 0.0017 0.0019 0.0018 0.0010 0.0009 0.0010
semeion.8 0.0070 0.0089 0.0082 0.0017 0.0024 0.0046 0.0054 0.0042 0.0037
sonar 0.0230 0.0250 0.0254 0.0357 0.0387 0.0187 0.0362 0.0333 0.0220
spambase 0.0079 0.0050 0.0047 0.0021 0.0004 0.0003 0.0002 0.0002 0.0002
spectf 0.0393 0.0407 0.0408 0.0424 0.0515 0.0278 0.0549 0.0475 0.0332
tictactoe 0.0480 0.0476 0.0492 0.0365 0.0369 0.0289 0.0203 0.0198 0.0172
transfusion 0.0471 0.0441 0.0446 0.0293 0.0239 0.0194 0.0214 0.0234 0.0230
wdbc 0.0066 0.0066 0.0063 0.0037 0.0033 0.0031 0.0023 0.0025 0.0024
wine.1 0.0042 0.0044 0.0037 0.0035 0.0038 0.0026 0.0024 0.0027 0.0021
wine.2 0.0094 0.0067 0.0052 0.0089 0.0057 0.0041 0.0058 0.0041 0.0038
wine.3 0.0016 0.0016 0.0014 0.0021 0.0020 0.0015 0.0009 0.0010 0.0008
wine-quality-red 0.0234 0.0232 0.0238 0.0082 0.0062 0.0069 0.0051 0.0044 0.0047
wine-quality-white 0.0333 0.0326 0.0328 0.0030 0.0027 0.0023 0.0017 0.0016 0.0015
yeast 0.0308 0.0316 0.0321 0.0088 0.0085 0.0072 0.0043 0.0045 0.0039

Average 0.0254 0.0260 0.0255 0.0196 0.0207 0.0147 0.0232 0.0212 0.0139
Average ranking 7.1875 7.2500 7.0625 5.5469 5.3125 3.5156 3.7500 3.1719 2.2031

5.2. Experimental results

Table 2 shows the scores for each method using Logistic Regression as
base classifier. It is worth noting that EAC and EHDy obtains the best
results overall, not only better than those of their counterparts, AC and
HDy, but also better than the scores of the bagging methods (AC(bag) and
HDy(bag)). Analyzing the results from that point of view, it seems that
the use of ensembles helps to produce a slight improvement in performance,
comparing AC vs. AC(bag) and HDy vs. HDy(bag). This improvement is
boosted when the proposals of this paper are applied, as we can see analyzing
the differences between AC(bag) and EAC and between HDy(bag) vs. EHDy.
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If we focus on the comparison between the original quantifiers, AC /HDy,
and the ensemble adapted versions, EAC /EHDy, we can observe the ensem-
ble versions winning most of the times. With respect to the EAC vs AC
comparison, the former wins on 26 occasions, losses just 5 times and there is
only one draw. As concerns EHDy, it wins on 22 occasions to HDy, losses on
6 and there are 4 draws. A more detailed examination reveals that ensemble
versions defeats are usually produced by small margins in low quadratic error
problems, while, in contrast, in more difficult problems generally they get the
victory by relatively large margins. These results are relevant since AC is
supposed to produce, at least theoretically, perfect quantifications indepen-
dently of the classifier accuracy. However, in practice, the correction (3) often
works well in a range close to the training set prevalence, but its effectiveness
drops as the test set prevalence moves away. Using ensembles reduces the
impact of this situation, since the training sample generation process ensures
all the prevalence domain to be represented within the ensemble models.

Finally, the trivial approximation of classifying and counting, provided by
(CC )-based methods, attains worse scores than the other approaches. This
result is in line with the experiments reported in quantification literature,
in which CC is always outperformed by proper quantifiers. Notice that
the performance of CC does not improve even when an ensemble is used as
classifier, in fact, the scores of the three methods (CC, CC(bag) and ECC ) are
quite similar, but ECC obtains the best ranking. The reason for such results
is motivated by the CC approach itself. When the classifier is not perfect, CC
is only able to provide good estimates for a small range of the prevalence, for
the rest of the values the estimates are worse. In the best scenario, bagging
may improve the accuracy of a single logistic regression model, but it cannot
correct the weakness of the CC approach. This behavior shall be analyzed
graphically in the next section.

These results can be analyzed in different ways from an statistical point
of view. First of all, and following [44], we have performed an statistical
comparison in two steps: (i) a Friedman test rejects the hypothesis of all the
methods performing at the same level and (ii) pairwise comparisons using the
Bergmann-Hommel test with α = 0.05 indicate that EHDy and EAC are sig-
nificantly better than CC and AC. The difference between EHDy and HDy is
not significant though. Also between EAC and AC(bag) and between EHDy
and HDy(bag). However, it is important to note that all these comparisons
are deeply influenced by the inclusion of CC approaches, a group of algo-
rithms that systematically perform worse than the other methods, and espe-
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Table 3: Mean squared error using Näıve Bayes as base classifier. The score of the best
performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy

balance.1 0.0288 0.0090 0.0210 0.0135 0.0044 0.0025 0.0031 0.0016 0.0017
balance.2 0.2758 0.2758 0.0979 0.2758 0.2758 0.0935 0.2758 0.2758 0.2753
balance.3 0.0297 0.0085 0.0208 0.0082 0.0037 0.0020 0.0023 0.0019 0.0014
breast-cancer 0.0007 0.0007 0.0006 0.0007 0.0006 0.0005 0.0005 0.0005 0.0004
cmc.1 0.0672 0.0786 0.0498 0.0451 0.0266 0.0137 0.0147 0.0101 0.0097
cmc.2 0.1100 0.1223 0.0431 0.0307 0.0299 0.0126 0.0126 0.0120 0.0109
cmc.3 0.3391 0.3391 0.0641 0.3391 0.3391 0.0485 0.0211 0.0186 0.0147
ctg.1 0.0118 0.0119 0.0073 0.0026 0.0024 0.0018 0.0023 0.0016 0.0016
ctg.2 0.0125 0.0133 0.0089 0.0018 0.0014 0.0015 0.0022 0.0017 0.0018
ctg.3 0.0115 0.0148 0.0052 0.0035 0.0045 0.0030 0.0048 0.0045 0.0036
diabetes 0.0318 0.0360 0.0261 0.0133 0.0144 0.0076 0.0109 0.0090 0.0090
german 0.0852 0.0898 0.0396 0.0704 0.0196 0.0096 0.0166 0.0099 0.0094
haberman 0.2257 0.2895 0.0752 0.2689 0.2746 0.0573 0.0725 0.0856 0.0562
ionosphere 0.0119 0.0126 0.0105 0.0052 0.0055 0.0047 0.0054 0.0053 0.0054
iris.2 0.0054 0.0069 0.0043 0.0066 0.0078 0.0034 0.0035 0.0029 0.0026
iris.3 0.0099 0.0044 0.0044 0.0134 0.0047 0.0040 0.0052 0.0044 0.0040
mammographic 0.0148 0.0145 0.0137 0.0054 0.0056 0.0047 0.0046 0.0034 0.0037
pageblocks.5 0.0437 0.0530 0.0897 0.0162 0.0125 0.0905 0.0120 0.0146 0.1049
phoneme 0.0173 0.0178 0.0278 0.0012 0.0016 0.0011 0.0010 0.0010 0.0012
semeion.8 0.0098 0.0099 0.0072 0.0033 0.0026 0.0028 0.0046 0.0044 0.0030
sonar 0.0223 0.0234 0.0236 0.0235 0.0253 0.0147 0.0196 0.0141 0.0173
spambase 0.0072 0.0067 0.0062 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
spectf 0.0363 0.0341 0.0316 0.0391 0.0356 0.0295 0.0416 0.0394 0.0271
tictactoe 0.1083 0.0684 0.0619 0.1266 0.0322 0.0336 0.0249 0.0181 0.0171
transfusion 0.0703 0.1410 0.0519 0.0398 0.1165 0.0265 0.0316 0.0262 0.0203
wdbc 0.0027 0.0025 0.0022 0.0018 0.0017 0.0012 0.0014 0.0013 0.0014
wine.1 0.0011 0.0013 0.0010 0.0010 0.0014 0.0010 0.0009 0.0013 0.0009
wine.2 0.0016 0.0020 0.0018 0.0014 0.0021 0.0015 0.0017 0.0020 0.0017
wine.3 0.0010 0.0009 0.0008 0.0012 0.0009 0.0007 0.0009 0.0005 0.0006
wine-quality-red 0.0251 0.0229 0.0262 0.0078 0.0061 0.0053 0.0050 0.0062 0.0051
wine-quality-white 0.0367 0.0355 0.0367 0.0031 0.0032 0.0022 0.0024 0.0021 0.0024
yeast 0.0935 0.1018 0.0385 0.0269 0.0169 0.0068 0.0122 0.0077 0.0075

Average 0.0546 0.0578 0.0281 0.0437 0.0400 0.0153 0.0193 0.0184 0.0194
Average ranking 7.4531 7.6562 6.3125 5.6875 5.6562 2.6562 4.0312 3.1406 2.4062

cially because there exist dependencies and correlations between the studied
methods. Table 5 contains the complete results of the Bergmann-Hommel
test comparing EHDy and EAC with the rest of the methods considering
both MAE and MSE.

Having in mind that our objective was to compare the ensemble adapted
versions to its original counterparts, Wilcoxon signed-rank test seems more
appropriate for the experiments performed. This test reveals that EAC per-
forms significantly better than AC (p = 0.0001), with the same behavior
being found for EHDy with respect to HDy (p = 0.0013). Table 6 shows the
p-values for the comparison with all the methods.
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Table 4: Mean squared error using SVM with RBF kernel as base classifier. The score of
the best performer in a group for each dataset is in bold

dataset CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy

balance.1 0.0000 0.0006 0.0003 0.0001 0.0005 0.0002 0.0002 0.0003 0.0002
balance.2 0.2701 0.2758 0.0337 0.3064 0.2758 0.0456 0.0713 0.1328 0.0613
balance.3 0.0001 0.0003 0.0003 0.0001 0.0002 0.0002 0.0001 0.0003 0.0001
breast-cancer 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0004 0.0003 0.0003
cmc.1 0.0444 0.0447 0.0392 0.0063 0.0083 0.0099 0.0104 0.0100 0.0158
cmc.2 0.2283 0.2047 0.0495 0.0504 0.0461 0.0147 0.0216 0.0206 0.0164
cmc.3 0.1195 0.1328 0.0581 0.0404 0.0415 0.0236 0.0197 0.0180 0.0209
ctg.1 0.0103 0.0170 0.0082 0.0020 0.0034 0.0063 0.0073 0.0048 0.0041
ctg.2 0.0265 0.0416 0.0111 0.0025 0.0060 0.0097 0.0315 0.0186 0.0161
ctg.3 0.0142 0.0288 0.0064 0.0045 0.0051 0.0049 0.0200 0.0151 0.0055
diabetes 0.0488 0.0524 0.0309 0.0144 0.0161 0.0134 0.0406 0.0174 0.0265
german 0.0804 0.0797 0.0344 0.0174 0.0206 0.0095 0.0136 0.0115 0.0131
haberman 0.1971 0.1992 0.0684 0.1289 0.1304 0.0402 0.0714 0.0742 0.0547
ionosphere 0.0031 0.0043 0.0032 0.0024 0.0026 0.0023 0.0027 0.0033 0.0022
iris.2 0.0030 0.0032 0.0026 0.0032 0.0039 0.0022 0.0039 0.0039 0.0018
iris.3 0.0018 0.0051 0.0016 0.0018 0.0049 0.0011 0.0019 0.0033 0.0012
mammographic 0.0118 0.0131 0.0129 0.0038 0.0042 0.0040 0.0036 0.0034 0.0035
pageblocks.5 0.2900 0.2645 0.1735 0.2476 0.1576 0.1819 0.1743 0.2410 0.2019
phoneme 0.0094 0.0117 0.0076 0.0005 0.0005 0.0016 0.0024 0.0016 0.0026
semeion.8 0.0055 0.0113 0.0641 0.0007 0.0019 0.0621 0.0081 0.0058 0.1110
sonar 0.0106 0.0113 0.0107 0.0123 0.0144 0.0079 0.0083 0.0060 0.0105
spambase 0.0034 0.0034 0.0049 0.0007 0.0005 0.0012 0.0015 0.0010 0.0020
spectf 0.1213 0.1309 0.0529 0.1473 0.1796 0.0394 0.1025 0.0820 0.0508
tictactoe 0.0004 0.0009 0.0007 0.0004 0.0004 0.0003 0.0005 0.0006 0.0006
transfusion 0.3301 0.2884 0.0646 0.2981 0.1254 0.0520 0.0812 0.0762 0.0573
wdbc 0.0033 0.0033 0.0043 0.0021 0.0022 0.0023 0.0133 0.0131 0.0076
wine.1 0.0107 0.0297 0.0298 0.0150 0.0302 0.0206 0.0078 0.0108 0.0074
wine.2 0.0283 0.0291 0.0240 0.0195 0.0220 0.0179 0.0234 0.0271 0.0231
wine.3 0.0530 0.0793 0.0339 0.0296 0.0369 0.0305 0.0623 0.0540 0.0507
wine-quality-red 0.0215 0.0207 0.0291 0.0079 0.0073 0.0051 0.0053 0.0047 0.0066
wine-quality-white 0.0561 0.0567 0.0357 0.0018 0.0023 0.0027 0.0040 0.0027 0.0068
yeast 0.1087 0.1129 0.0358 0.0118 0.0131 0.0050 0.0080 0.0063 0.0068

Average 0.0660 0.0674 0.0292 0.0431 0.0364 0.0193 0.0257 0.0272 0.0247
Average ranking 6.4531 8.1094 5.8438 3.9219 4.7031 2.7656 4.8906 4.5469 3.7656

Table 3 reports the experimental results when Näıve Bayes is used as
probabilistic classifier. On average it seems that these results are a little
bit worse than those obtained using logistic regression, but the conclusions
are similar. However, there are two interesting changes. In this case, ECC
performs much better than CC and CC(bag). It also occurs in the comparison
between EAC and AC(bag); now the difference is significant.

Studying the results of ensemble versions, they again outperform single
quantifiers. On the one hand, EAC wins 28 times, AC wins just 2 and
there are 2 ties. The difference between EHDy vs. HDy is less pronounced,
with 23 victories for EHDy, 6 ties and 3 victories for HDy. Analyzing the
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Table 5: Average ranking for all methods using different performance measures. Sym-
bols § y † indicate a significant difference (p < 0.05) between EAC and EHDy and the
corresponding method using a Bergmann-Hommel test, respectively

LR CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 7.1875§† 7.2500§† 7.0625§† 5.5469§† 5.3125† 3.5156 3.7500 3.1719 2.2031
MAE 6.9219§† 6.7500§† 7.2812§† 5.7344§† 5.6875§† 3.6094 3.5938 3.2344 2.1875
NB CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 7.4531§† 7.6562§† 6.3125§† 5.6875§† 5.6562§† 2.6562 4.0312 3.1406 2.4062
MAE 7.1562§† 7.0000§† 6.5312§† 5.9531§† 5.8125§† 2.9531 3.9688 2.9688 2.6562
SVM CC CC(bag) ECC AC AC(bag) EAC HDy HDy(bag) EHDy
MSE 6.4531§† 8.1094§† 5.8438§† 3.9219 4.7031§ 2.7656 4.8906§ 4.5469 3.7656
MAE 6.0938§† 7.8594§† 6.2500§† 4.0938 4.7344 2.9375 4.7188 4.4375 3.8750

results statistically using Bergmann-Hommel test, we can see that EAC is
significantly better than CC and its counterpart AC, while EHDy is also
significantly better than these two methods, but it is not with respect to
HDy. Applying a Wilcoxon signed-rank test, we found that EAC performs
significantly better than AC (p = 0.00002), and also EHDy with respect to
HDy (p = 0.0002).

The situation changes when using SVM with RBF kernel as base clas-
sifier, see the scores in Table 4. The ensemble versions still perform better
than their counterparts; EAC vs. AC : 17 wins, 0 ties and 15 losses; EHDy
vs. HDy : 20 wins 2 ties and 10 losses. However, statistical tests reveal that
the differences are no longer significant. In the EHDy-HDy comparison, test
results are near to be significant though (p = 0.078). In our opinion, this
behavior is explained by two facts: (i) SVM with RBF kernel are complex
models and the risk of overfitting increases, and (ii) SVM is not originally a
probabilistic classifier, with the probabilities resulting from an output post-
process. These circumstances have a negative impact on the stability of the
results, leading to some models with a poor performance on one hand, and
accurate models on the other, i.e. a greater model performance variance.
Notice that CC and CC(bag) with SVM-RBF are the worst performing al-
gorithms by far considering the three base learners.

Table 5 contains a summary of the obtained results for all the base classi-
fiers containing both the mean squared error (MSE), and the mean absolute
error (MAE). Interestingly, EAC and EHDy rank most of the times in the
two first positions. The only exception is when logistic regression is the
base learner. The reason is because HDy algorithm clearly outperforms AC
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Table 6: The two algorithms proposed, EAC and EHDy, are compared statistically with
the rest of the methods using Wilcoxon sign-rank tests. The table shows the p-value of
each comparison

LR CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE
EAC 4.097e-08 8.338e-07 1.495e-06 0.0001433 0.0011340 0.4564072 0.2536064
EHDy 1.287e-06 1.429e-07 3.174e-05 4.392e-05 5.642e-05 0.0013742 0.0018011

MAE
EAC 6.519e-09 8.847e-09 4.417e-06 0.0002057 0.0006889 0.2099543 0.1497597
EHDy 1.727e-07 5.122e-08 6.379e-08 1.119e-05 7.716e-06 0.0012973 0.0016667

NB CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE
EAC 7.517e-06 7.517e-06 2.011e-06 2.716e-05 7.653e-05 0.0083313 0.7420193
EHDy 9.761e-06 4.209e-07 6.045e-05 7.935e-05 4.050e-05 0.0002547 0.0110552

MAE
EAC 1.287e-06 1.733e-06 5.122e-08 1.263e-05 4.570e-05 0.0803250 0.7719339
EHDy 1.733e-06 3.512e-06 7.716e-06 2.924e-05 2.479e-05 0.0002778 0.1206512

SVM CC CC(bag) ECC AC AC(bag) HDy HDy(bag)

MSE
EAC 3.736e-05 6.302e-06 2.692e-05 0.1322391 0.0152215 0.0038533 0.0152188
EHDy 6.136e-05 2.312e-06 0.0148032 0.4388932 0.4890153 0.0786387 0.1681790

MAE
EAC 5.433e-05 5.871e-07 6.905e-07 0.1396090 0.0341199 0.0038655 0.0146764
EHDy 0.0001472 3.512e-06 0.0058128 0.6378833 0.6511483 0.2241815 0.4773475

in that case. There are significant differences for Näıve Bayes and logistic
regression, both for MSE and MAE scores.

5.3. Graphical analysis

An additional experiment was performed in order to analyze graphically
the behavior of the quantifiers. The goal was to study the performance at
specific prevalence values. The differences with respect to the first experiment
are twofold: the number of subsamples generated for each test set, 210 instead
of 100, and the values of the prevalence used. In this case, only 21 different
values were considered, those nearest to [0:0.05:1]. Notice that sometimes
it is impossible to obtain some of these values depending of the number of
examples in the test set. In that case, the nearest possible value is used.
Hence, there are 100 results for each prevalence (10 folds and 10 subsamples
per fold, 210 divided by 21 prevalence values). The next figures represent in
different ways such results.

Figure 6 shows the bias error (defined as p−p′) of CC, AC, HDy, EAC and
EHDy over four datasets. Apparently, it seems that the overall performance
of AC, HDy, EAC and EHDy is quite good in terms of bias: the average
value predicted is near the true prevalence. But, notice that negative and
positive biases cancel each other in the computation of bias, thus the graphics
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Figure 6: Analysis of bias when the prevalence varies in [0:0.05:1]. The figure compares
five algorithms: CC, AC, EAC, HDy and EHDy. Each result comes from the prediction
average of 100 sample sets with the same prevalence

do not show the magnitude of the errors in both directions.
However, bias graphics allow us to observe two important facts. First,

CC follows the exact behavior analyzed theoretically by Forman in [17]: CC
attains a perfect quantification at one point of p, and from there, CC under-
estimates the prevalence when p increases, and overestimates the prevalence
when p decreases from CC ’s optimal point. The deviation with respect to
the true prevalence depends on the classifier accuracy. If the classifier is per-
fect, the bias is 0. But the bias increases when the accuracy decreases. This
occurs for spambase and yeast datasets. The bias is smaller in the case of
wine2, and tiny for iris3. The big issue of CC is that it is almost imposible
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Box plots in each group:
1st - AC
2nd - EAC 
3rd - HDy
4th - EHDy

p'

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

spambase

Box plots in each group:
1st - AC
2nd - EAC 
3rd - HDy
4th - EHDy

  0    0.033     0.1  0.133     0.2  0.233    0.3  0.333     0.4  0.433     0.5  0.533     0.6  0.633     0.7  0.733     0.8  0.833     0.9  0.933      1

p'

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

iris3

Figure 7: The figure shows the distribution of the predictions for spambase (39% of posi-
tives in the training set) and iris3 (33%) datasets using a box plot. The horizontal lines
represent the true prevalence for each group. Only four methods are displayed: AC, EAC,
HDy and EHDy. Such methods appear always in the same order for each prevalence: first
AC, then EAC, HDy is the third method and the last one is EHDy
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Figure 8: The figure shows the distribution of the predictions for yeast (29% of positives in
the training set) and wine2 (40%) datasets using a box plot. The horizontal lines represent
the true prevalence for each group. Only four methods are displayed: AC, EAC, HDy and
EHDy. Such methods appear always in the same order for each prevalence: first AC, then
EAC, HDy is the third method and the last one is EHDy
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Figure 9: Results for Sentiment140 dataset. The figure shows the absolute error of HDy
vs EHDy (top) and AC vs EAC (bottom)

to obtain perfect classifiers for real applications. The other interesting aspect
of the bias analysis is that the ensemble versions EAC and EHDy have more
bias than AC and HDy, mainly in the tails. This is in part due to the use of
the mean as the aggregation strategy.

Figure 7 and Figure 8 represent the distribution of the predictions using
box plots. Each box plot comprises a group of 100 predicted test sets for each
prevalence. These graphics demonstrate that the quantification problem is
more difficult that it seems at first glance. The errors are lower in the case
of spambase and iris3 datasets (Figure 7), but quite big for yeast and wine2
datasets (Figure 8). The most interesting fact in these graphics is that the
variability of EAC and EHDy is lower than that of AC and HDy. Notice
that the body of the boxplot is usually smaller, and also they often have
shorter whiskers and less outliers. For instance, these aspects can be easily
observed in the case of EAC vs. AC over spambase dataset. This result
is theoretically expected due to the use of ensembles. It is well known that
ensembles tends to reduce the variance of the underlying classifier.
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5.4. Twitter dataset

In order to test the behavior of the proposed approach over real data,
we compare EAC and EHDy with their counterparts AC and HDy over
Sentiment140 dataset [45]. This dataset is composed by 1, 600, 000 Twitter
messages with emoticons collected from April 6, 2009 to June 16, 2009. The
tweets were labeled using emoticons: for instance, :-) in a tweet indicates that
it contains a positive comment, while :-( indicates that the tweet expresses a
negative sentiment. Tweets are represented using a bag-of-words approach,
after having deleted the emoticons used for labelling purposes. The preva-
lence of the positive tweets vary between 56.21% and 64.41%, excluding the
last day in which the prevalence is just 35.84%.

The base classifier employed was just logistic regression due to the size
of the input space, most appropriate for linear classifiers. The experimental
setup to train the models was exactly the same than that used for the previous
experiments, described in Section 5.1. The quantification models are trained
using the tweets from the two first days. Then, such models are employed
to quantify the prevalence of the positive tweets for the rest of the days,
representing a quite realistic experiment for quantification learning. Figure 9
shows the results in terms of the absolute difference between the estimated
prevalence and the actual prevalence of each day.

Despite the prevalence of the positive comments varies slightly during the
period, the performance of the ensemble versions is promising. EAC pro-
duces better predictions than AC in 24 out of 37 days, but the differences
are not significant using a Wilcoxon sign rank test (p=0.07). In the com-
parison between EHDy and HDY, the differences are greater and significant
(p=0.00016) in favor of the ensemble algorithm. The prevalence predicted
by EHDy is more accurate for 30 days.

6. Conclusions

In this paper we have studied how ensembles behave in a problem char-
acterized by the assumption of data distribution changing between training
and test phases. Our core idea is to take advantage of that assumption and
to use it in order to appropriately introduce diversity into the ensemble; we
generate different training samples with each one representing a particular
expected distribution change. We have experimentally applied our idea to
the binary quantification problem, which is characterized by class prevalence
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P(y) changing, but P(x|y) remaining constant. Training samples are gen-
erated under this assumption, and as a result, the ensemble meta model is
better suited for dealing with unseen prevalence test sets. Experimental re-
sults demonstrate that the ensemble quantifier adapted versions outperform
its original counterparts.

One major contribution of this work is to propose a reasonable approach
for using ensembles in quantification learning that performs better than state-
of-the-art quantifiers. However, we also claim that the significance of this
paper is not only limited to presenting the first ensemble-based quantifiers,
but to introduce an idea that is applicable to other learning problems in
which it is possible to define how the data distribution changes throughout
the time. Moreover, we think that this work opens research problem within
this type of learning tasks, in aspects like diversity inclusion in function of the
expected changes, and model combining strategies. Although we have used
a simple aggregation function, the prevalence mean, more complex strategies
can be designed by taking into account additional information. For instance,
the training prevalence of each individual ensemble model, or the similarity
of its distribution with respect to the test set distribution. Both aspects
represent interesting lines of research towards new ensemble learning studies.
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[6] J. Quiñonero Candela, M. Sugiyama, A. Schwaighofer, N. D. Lawrence,
Dataset shift in machine learning, The MIT Press, 2009.

[7] A. Storkey, When training and test sets are different: characterizing
learning transfer, Dataset Shift in Machine Learning (2009) 3–28.

[8] M. Kull, P. Flach, Patterns of dataset shift, in: First International Work-
shop on Learning over Multiple Contexts (LMCE) at ECML-PKDD,
2014.

[9] J. Moreno-Torres, T. Raeder, R. Alaiz-Rodŕıguez, N. Chawla, F. Her-
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