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Stereoselective amination of racemic sec-alcohols 

through sequential application of laccases and 

transaminases 

Lía Martínez-Montero,a Vicente Gotor,a Vicente Gotor-Fernández,*a and Iván 
Lavandera*a 

A one-pot/two-step bienzymatic asymmetric amination of 

secondary alcohols is disclosed. The approach is based on a 

sequential strategy involving the use of a laccase/TEMPO 

catalytic system for the oxidation of alcohols into ketone 

intermediates, and their following transformation into 

optically enriched amines by using transaminases. Individual 

optimizations of the oxidation and biotransamination 

reactions have been carried out, studying later their 

applicability in a concurrent process. Therefore, 17 racemic 

(hetero)aromatic sec-alcohols with different substitutions in 

the aromatic ring have been converted into enantioenriched 

amines with good to excellent selectivities (90-99% ee) and 

conversion values (67-99%). The scalability of the process 

was also demonstrated when two different amine donors were 

used in the transamination step, such as isopropylamine and 

cis-2-buten-1,4-diamine. Satisfyingly, both sacrificial amine 

donors can shift the equilibrium toward the amine formation, 

leading to the corresponding isolated enantioenriched amines 

with good to excellent results. 

Introduction 

Optically active amines are valuable building blocks in the 

synthesis of pharmaceuticals and agrochemicals, also possessing 

multiple applications as resolving agents, chiral auxiliaries, and 

organocatalytic reagents.1 Nowadays, biocatalytic methods provide 

versatile strategies for the stereoselective synthesis of chiral 

amines by using a wide number of enzymes such as lipases, amino 

oxidases, imine reductases and transaminases (TAs), among 

others.2-5 In this context, the use of enzymes for industrial 

applications has been boosted due to the requirements established 

by national regulatory agencies, and the continuous efforts for the 

development of chemical transformations under safer and milder 

reaction conditions.6,7 As an excellent example, it can be mentioned 

a TA-catalyzed stereoselective amination that constitutes the key 

step in the synthesis of the antidiabetic drug Sitagliptin.8 

A current trend in biotransformations is the development of 

concurrent catalytic strategies, which can be performed in a 

cascade or sequential mode.9-14 These strategies allow to minimize 

the number of operational steps and reaction vessels used, 

improving the ‘pot-economy’15 of the processes. These systems 

have recently provided access to enantiopure amines by the proper 

employment of chemoenzymatic or multienzymatic systems.16 

Remarkably, the selective amination of alcohols17 has been 

described through elegant cascades by combining an alcohol 

dehydrogenase (ADH)-catalyzed oxidation of racemic alcohols into 

ketones, and a subsequent biotransamination using TAs18,19 or 

amine dehydrogenases (AmDHs).20,21 However, in the previously 

cited strategies, due to the excellent selectivities commonly shown 

by ADHs when a racemic alcohol is used as starting material, two 

enzymes with opposite stereopreferences are usually compulsory. 

Herein, we propose a one-pot chemoenzymatic approach involving 

the use of an alternative redox system, the laccase from Trametes 

versicolor/TEMPO, for the non-selective oxidation of racemic 

alcohols. Its action will be later combined with a stereoselective 

TA-catalyzed transformation over the corresponding ketone 

intermediates (Scheme 1). 

 
Scheme 1 Synthesis of optically active amines from racemic alcohols through a 

one-pot sequential bienzymatic system using the Trametes versicolor laccase and 

a transaminase. A and B are the substrate enantiomers; I is the ketone 

intermediate; C and D are the product enantiomers. 
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Laccases are blue multicopper oxidases able to catalyze the 

oxidation of low molecular weight phenols as natural substrates at 

the expense of the environmentally friendly four-electron reduction 

of oxygen into water.22-25 Multiple applications have been found for 

these redox enzymes in industrial sectors,26,27 possessing attractive 

possibilities applied to synthetic chemistry.28-30 In order to carry 

out effective oxidations of primary and secondary alcohols, the 

enzyme requires the use of a chemical mediator. Particularly, the 

2,2,6,6-tetramethylpiperidinoxyl radical (TEMPO) is one of the 

most recurrent reagents for efficient protocols.31-33 

On the other hand, transaminases belonging to the transferase 

class, are pyridoxal 5’-phosphate (PLP)-dependent enzymes. These 

biocatalysts have received increasing attention in the last decade 

due to their possibilities in the synthesis of optically active 

amines.34-39 A key issue for this transformation is the use of 

sacrificial amines as donors (i.e. isopropylamine), normally 

employed in a high molar excess for shifting the equilibrium 

toward the amine synthesis.40 

 

Results and Discussion 

The synthesis of enantiopure amines has been envisaged from 

inexpensive racemic alcohols using the Trametes versicolor 

laccase/TEMPO system and different commercially available 

transaminases. The possibility to develop a concurrent one-pot 

process is here discussed searching for compatible enzymatic 

reaction conditions. A panel of 17 racemic (hetero)aromatic 

alcohols was selected in order to design a general and 

stereoselective strategy toward the synthesis of interesting amines 

(Fig. 1). 

 
Fig. 1 Panel of substrates under study. 

Preliminary optimizations of the reaction conditions were 

performed for both laccase- and transaminase-catalyzed reactions. 

The catalytic system composed by the laccase from Trametes 

versicolor and TEMPO (33 mol%) as chemical mediator was studied 

in citrate buffer 50 mM at pH 5 and 30 °C, adapting previously 

optimized conditions for the oxidation of benzylic alcohols.33,41 The 

stirring mode and the use of different organic cosolvents were 

analyzed (see Tables S1 and S2 in the ESI), finding a quantitative 

conversion for the oxidation of 1-(2-fluorophenyl)ethanol (1a) 

after 16 h using magnetic stirring and 50% v/v of methyl tert-butyl 

ether (MTBE). Furthermore, attempting to scale the process under 

more sustainable conditions, lower amounts of TEMPO were 

studied. Gladly, when TEMPO was used in 20 and 33 mol%, 

complete oxidation of 1-(2-bromophenyl)ethanol (6a) was 

achieved in both cases after 16 h. On the contrary, a decrease in the 

conversion was observed for other substrates when employing 20 

mol% of TEMPO. For instance, the oxidation of the racemic alcohols 

1-(2-chlorophenyl)ethanol (4a) and 1-(3-methoxyphenyl)ethanol 

(9a), two substrates that had been quantitatively transformed into 

the corresponding ketones when a 33 mol% had been used, led to 

lower conversion values (66% for 4b and 83% for 9b, respectively) 

when the loading of TEMPO was reduced to 20 mol%. 

For the biotransamination step, while there were already reports in 

the literature for some of the ketones tested,8,42-47 additional 

transaminase activity screenings were performed for the methoxy 

derivatives 8b and 9b (Tables S3 and S4 in the ESI, respectively) 

and for the trifluoromethylated ketones 11b-15b (Table 1 and 

Tables S5-S9 in the ESI). In this study commercially available TAs 

were used, although TAs with well-known sequences could also be 

employed for this reaction. These substrates were selected due to 

the relevance of the synthesized amines. Hence, amine (S)-9c is a 

precursor of Rivastigmine, a drug used in the treatment of 

dementia diseases,44,48 and organofluorinated compounds present a 

broad applicability in medicinal chemistry.49-51 

Table 1 Biotransamination of selected trifluoromethylated ketones.a 

 

Entry Substrate Transaminase c (%)b ee (%)c 

1 2-CF3 and R= Me (11b) ATA-024 91 >99 (R) 

2  ATA-113 95 >99 (S) 

3 3-CF3 and R= Me (12b) ATA-033 77 96 (R) 

4  ATA-251 71 >99 (S) 

5 4-CF3 and R= Me (13b) ATA-025 86 >99 (R) 
6  ATA-251 86 >99 (S) 

7 3-CF3 and R= Et (14b) ATA-415 71 >99 (R) 

8  ATA-237 67 >99 (S) 

9 4-CF3 and R= Et (15b) ATA-025 78 >99 (R) 
10  ATA-237 74 >99 (S) 

a For reaction conditions, see the ESI. b Conversion values were determined 

by GC analysis. c Enantiomeric excess values were determined by chiral GC 

or HPLC analyses from acetamide derivatives of amines 11c-15c, otherwise 

indicated in the ESI. 

All reactions were carried out at 30 °C in phosphate buffer 100 mM 

pH 7.5, using 2.5% v/v of DMSO as cosolvent to enhance the ketone 

solubility. Satisfyingly, both (R)- and (S)-amine enantiomers were 

isolated in optically pure form excepting 1-(3-

trifluoromethyl)phenylethanamine (12c), although the (R)-

enantiomer was obtained in an also remarkable 96% ee (entry 3). 

Methyl ketones 11b-13b displayed a higher reactivity than the 

ethyl ketones 14b and 15b. Particularly the ortho-substituted 11b 

was transformed with the best conversions (91 and 95%). The 

highest reactivity shown by the ortho-substituted derivatives was 



Green Chemistry FULL PAPER 

This journal is © The Royal Society of Chemistry 2012 Green Chem, 2015, 00, 1-3 | 3  

in agreement with a previous study which uses this transaminase 

kit and structurally similar substrates.46 

Aiming to develop a concurrent one-pot methodology, once both 

steps of the bienzymatic approach were individually explored, the 

oxidative transformation was attempted in the presence of the 

amine donor (isopropylamine, iPrNH2). As a positive feedback 

would allow the possibility of carrying out the amination of 

alcohols in a cascade manner, the substrate 1a was oxidized in the 

presence of different amounts of iPrNH2. Its concentration varied 

from a huge excess (1 M), which is usually required for shifting the 

equilibrium toward the amine synthesis, to a 50 mM concentration 

(Table 2). As a consequence of the loss of the activity shown by the 

laccase/TEMPO system in the presence of the amine donor, we 

deduced that iPrNH2 should be added once the oxidation step had 

concluded. Therefore, we envisioned the development of a one-

pot/two-step sequential approach to achieve the stereoselective 

synthesis of amines. 

Table 2 Oxidation of substrate 1a catalyzed by the laccase/TEMPO system 

in the presence of isopropylamine.a 

 

Entry iPrNH2 (mM) alcohol (%)b ketone (%)b 

1 1000 >99 <1 

2 500 >99 <1 

3 200 98 2 

4 100 98 2 

5 75 98 2 
6 50 94 6 

a For reaction conditions, see the ESI. b Percentages of products 

measured by GC. 

Hence, the asymmetric amination of racemic alcohols 1a-17a was 

studied. Firstly, the catalytic system composed by the laccase from 

Trametes versicolor and TEMPO (33 mol%) was used for the 

oxidation step, and subsequently, the transaminases that showed 

better activity and selectivity values for the formation of the amines 

were utilized for the asymmetric biotransaminations. It is 

noteworthy that during the oxidation step at 50 mM substrate 

concentration,52 complete evaporation of MTBE was observed. 

One of the main drawbacks of the combined use of these enzymes is 

the different pHs in which these biocatalysts are active. Meanwhile 

laccases reach their best values at acidic pHs (between 4.5 and 5.5), 

TAs display their best activities at neutral or basic pH values (7-10). 

This limitation was overcome by pH adjustment through addition 

of phosphate buffer 200 mM pH 9 to the reaction medium. This 

addition was made to obtain a final 25 mM substrate concentration, 

optimal conditions for the transaminase-catalyzed reactions. 

The best results for the sequential strategy are shown in Table 3. 

To our delight, in all cases the oxidation step proceeded with 

complete conversion, yielding the ketones 1b-17b that were later 

subjected to amination experiments in a sequential mode. Thus, for 

9 out of 17 substrates, transaminases were found to selectively 

produce both enantiomers of the corresponding amines in more 

than 90% ee (entries 1-8, 10, 11, 13, 14, 19, 20, 22, 23, 25 and 26). 

For the other 8 alcohols, at least one amine enantiomer was 

produced in optically pure form and more than 70% conversion 

(entries 9, 12, 15-18, 21 and 24). 

The methyl ketones bearing substitutions at ortho-position led to 

the best conversion values (87-99%), while the meta-substituted 

ones provided moderate to high conversions (71-82%). Comparing 

the reactivity of meta-trifluoromethylated 12b and para-

substituted 13b, a better conversion was observed for the latter, 

although a slight decrease of selectivity was also detected (entries 

18-20). Otherwise, excellent ee values were observed when 

considering the homologue ethyl ketones 14b and 15b, or the non-

substituted aromatic compound 16b (entries 21-24). Remarkably, 

both enantiomers of 1-(pyridin-2-yl)ethanamine (17c) were 

obtained in almost optically pure form and with very high 

conversions (entries 25 and 26). 

To demonstrate the applicability of this sequential strategy, some 

selected examples were scaled-up using 100 mg of the 

corresponding alcohol. To this purpose, we selected two racemic 

alcohols based on different reasons. On the one hand, chlorinated 

alcohol 4a was considered due to the excellent results obtained at 

smaller scale (entry 7, Table 3). Satisfyingly, the reaction under 

identical oxidative conditions and using ATA-025 in the second 

step led to 99% conversion. The enantiopure amine (R)-4c was 

recovered in 93% isolated yield after a simple extraction protocol. 

On the other hand, we focused on 9a (entry 15, Table 3) since 

amine 9c can serve as a valuable precursor for (S)-Rivastigmine.44,48 

Under similar conditions, the reaction scaled-up with ATA-254 led 

to the desired (S)-9c in 98% ee and 67% conversion. The 

corresponding enantioenriched amine was isolated in 62% yield. It 

must be mentioned that due to its high boiling point, the organic 

cosolvent DMSO was replaced by acetonitrile (MeCN) in the scale-

up biotransaminations in order to facilitate the isolation of the final 

products. 

Recently, we have demonstrated the versatility of sacrificial 

diamines for driving the equilibrium toward amine synthesis when 

using them at almost stoichiometric amounts.53 This is the case of 

cis-but-2-ene-1,4-diamine which presents additional advantages. 

For instance, the compounds of interest are easily isolated through 

simple extraction protocols since, on the one side, the diamine is 

completely soluble in water media, and on the other side, the 

insoluble polypyrrole is formed as by-product. Therefore, 100 mg 

of brominated alcohol 6a reacted with the laccase from Trametes 

versicolor and only 20 mol% of TEMPO, obtaining quantitatively the 

ketone intermediate 6b. Afterwards, it was converted into the 

enantiopure amine (R)-6c using ATA-033 and cis-but-2-ene-1,4-

diamine (1.5 equiv.) in 97% conversion and 91% isolated yield 

after extraction (Scheme 2). 
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Table 3 Sequential bienzymatic transformation of racemic alcohols into optically active amines using a laccase and a transaminase.a 

Entry Substrate R1 R2 X TA ratio (%)b ee (%)c 

      Alcohol 1a-17a Ketone 1b-17b Amine 1c-17c 1c-17c  

1 1a 2-F Me CH ATA-033 <1 <1 >99 >99 (R) 

2     ATA-P1-A06 <1 <1 >99 >99 (S) 

3 2a 2,6-F2 Me CH ATA-013 <1 <1 >99 >99 (R) 
4     ATA-P1-F03 <1 <1 >99 >99 (S) 

5 3a 3-F Me CH ATA-033 <1 21 79 >99 (R) 

6     ATA-P1-G06 <1 23 77 91 (S) 

7 4a 2-Cl Me CH ATA-025 <1 <1 >99 >99 (R) 
8     ATA-P1-A06 <1 <1 >99 >99 (S) 

9 5a 3-Cl Me CH ATA-033 <1 18 82 >99 (R) 

10 6a 2-Br Me CH ATA-025 <1 <1 >99 >99 (R) 

11     ATA-P1-A06 <1 <1 >99 >99 (S) 

12 7a 3-Br Me CH ATA-025 <1 22 78 >99 (R) 

13 8a 2-OMe Me CH ATA-033 <1 5 95 97 (R) 

14     ATA-256 <1 13 87 >99 (S) 

15 9a 3-OMe Me CH ATA-254 <1 26 74 >99 (S) 

16 10a 2-Me Me CH ATA-024 <1 10 90 >99 (R) 

17 11a 2-CF3 Me CH ATA-024 <1 4 96 >99 (R) 

18 12a 3-CF3 Me CH ATA-251 <1 29 71 >99 (S) 

19 13a 4-CF3 Me CH ATA-025 <1 27 73 96 (R) 

20     ATA-251 <1 14 86 90 (S) 

21 14a 3-CF3 Et CH ATA-237 <1 24 76 >99 (S) 

22 15a 4-CF3 Et CH ATA-025 <1 25 75 >99 (R) 
23     ATA-237 <1 33 67 >99 (S) 

24 16a H Et CH ATA-025 <1 28 72 >99 (R) 

25 17a H Me N ATA-033 <1 4 96 >99 (R) 

26     ATA-P1-A06 <1 2 98 98 (S) 

a For reaction conditions, see the ESI. b Ratios of products were determined by GC analysis of an aliquot after the two enzymatic steps. 
c Enantiomeric excess values were determined by chiral GC or HPLC analyses from acetamide derivatives of amines 1c-17c, otherwise indicated in the ESI. 

 
Scheme 2 Preparative synthesis of (R)-6c using the Trametes versicolor laccase, 

TEMPO (20 mol%), ATA-033 and 1.5 equiv. of cis-but-2-ene-1,4-diamine as 

sacrificial amine donor.  

At this point, a simple quantification of the environmental impact of 

this system was calculated using the E-factor concept.54,55 Thus, this 

parameter was calculated employing the EATOS tool56 and it was 

compared to the values obtained for two similar previous strategies, 

which combined the use of an ADH and a TA,18 and of an ADH and an 

AmDH,20 respectively (see ESI for more details). Particularly, we 

focused on the impact of the reaction conditions regarding the 

reagents, catalysts and media employed, as the work-up for the three 

protocols (a liquid-liquid extraction) is identical for all of them. For the 

reaction shown in Scheme 2, an E-factor of 8.3 was obtained 

(excluding solvents),57 while values of 21 and 57 were respectively 

attained for the others. These results can be ascribed to the lower 

conversions achieved with the ADH/TA method, and to the high 

concentration of ammonium formate required for the ADH/AmDH 

system. As a result, these data demonstrate the favorable ecological 

impact of the laccase/TEMPO-TA amination protocol. 

Conclusions 

A practical one-pot/two-step sequential strategy has been 

disclosed for the synthesis of enantioenriched amines starting from 

racemic alcohols under very mild reaction conditions. A laccase-

transaminase bienzymatic system has been used through the 

formation of stable prochiral ketone intermediates, which are later 

stereoselectively transformed into both amine enantiomers 
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depending on the transaminase used. After studying different 

reaction conditions, the addition of isopropylamine after the 

oxidative process was found to be the key to success in the effective 

synthesis of enantioenriched amines. Additionally, scalable 

processes at 100 mg substrate scale were performed for different 

derivatives. Satisfyingly, the applicability of the sequential 

methodology has been proved when a high molar excess of 

isopropylamine, or alternatively, only 1.5 equiv of cis-but-2-ene-

1,4-diamine were used as sacrificial amine donors. Particularly, this 

last example significantly improves the atom efficiency of the 

process. Overall, this sequential strategy is a robust example of a 

multienzymatic process as synthetic tool. Thus, transformations 

that can be challenging under mild and safe reaction conditions by 

other chemical means, have been carried out in an efficient and 

environmentally friendly manner. 

Experimental 

General 

Laccase from Trametes versicolor (0.9 U/mg) was purchased from Sigma 

Aldrich. Codex Transaminase ATA Screening Kit (ATASK-000250) and 

PLP were purchased from Codexis. All other reagents were obtained 

from commercial sources and used as received. 

Sequential reactions were performed in a single sealed tube [(19 x 130 x 

3) mm], otherwise indicated. Oxidation step mediated by 

laccase/TEMPO catalytic system was performed open-to-air using 

magnetic stirring; while for the transamination step, the sealed tube was 

closed and orbital shaking (250 rpm) was used. 

NMR spectra were recorded on a Bruker AV300 MHz spectrometer. All 

chemical shifts (δ) are given in parts per million (ppm) and referenced to 

the residual solvent signal as internal standard. Gas chromatography 

(GC) analyses were performed on an Agilent HP7820 GC chromatograph 

equipped with a FID detector. High performance liquid chromatography 

(HPLC) analyses were carried out in a Hewlett Packard 1100 

chromatograph UV detector at 210 nm. Thin-layer chromatography 

(TLC) was conducted with Merck Silica Gel 60 F254 precoated plates and 

visualized with UV and potassium permanganate stain. Column 

chromatography was performed using Merck Silica Gel 60 (230-400 

mesh). 

General procedure for the sequential one-pot/two-step synthesis 

of enantiopure amines from racemic alcohols 

The enantiopure amines 1c-17c were obtained in a one-pot process 

according to the following procedure after two sequential reactions 

involving a laccase/TEMPO oxidation in a first step, and a transaminase-

catalyzed reaction in a second one, leading to the desired optically active 

amines (S)- or (R)-1c-17c depending on the transaminase selectivity. In 

an open-to-air sealed tube, TEMPO (4.1 mg, 33 mol%) was added to a 

solution of the racemic alcohol 1a-17a (0.08 mmol, 50 mM) in a biphasic 

mixture of oxygen-saturated citrate buffer 50 mM pH 5 and MTBE (50% 

v/v, for a total volume of 1.6 mL). The reaction mixture was stirred for a 

few minutes to dissolve all the reagents, and then the laccase from 

Trametes versicolor (5 U) was added. The reaction was stirred for 16 h at 

30 °C, observing the complete evaporation of MTBE along this time. This 

fact led to a volume reduction from the initial 1.6 mL to 0.8 mL, and in 

consequence, the substrate concentration was increased from the initial 

50 mM to approximately 100 mM. To the resulting reaction crude, 

phosphate buffer 200 mM pH 9 (2.4 mL) containing isopropylamine 

(1.33 M), PLP (1 mM) and DMSO (3.3% v/v) was added, leading to 

approximately 25 mM, 1 M and 2.5% v/v as substrate, isopropylamine 

and DMSO final concentrations, respectively. At the same time, the 

addition of this concentrated buffer to the reaction media, caused an 

increase in the pH from an initial value of 5 to approximately 7.5, 

therefore, further pH adjustment was not required. Finally, the 

corresponding commercially available transaminase (12 mg) was added. 

The sealed tube was closed and the reaction was shaken at 30 °C and 250 

rpm for 24 h. After this time, the reaction was stopped by addition of an 

aqueous NaOH 10 M solution (3 mL). Then, the mixture was extracted 

with EtOAc (5 mL) and the organic layer was separated by centrifugation 

(3 min, 4,900 rpm). This centrifugation protocol was performed twice 

and, finally, the organic layers were combined and dried over Na2SO4. 

Conversion values into the corresponding amines 1c-17c and their 

enantiomeric excess measurements were determined by GC analysis 

(Table 3, see the ESI for further details). 
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