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Abstract

Metrics between fuzzy values are a topic with interest for different purposes.
Among them, statistics with fuzzy data is growing in modelling and tech-
niques largely through the use of suitable distances between such data. This
paper introduces a generalized (actually, parameterized) L2 metric between
fuzzy vectors which is based on their representation in terms of their support
function and Steiner points. Consequently, the metric takes into account the
deviation in ‘central location’ (represented by the Steiner points) and the
deviation in ‘shape’ (represented by a deviation defined in terms of the sup-
port function and Steiner points). Then, sufficient conditions can be given
for this representation to characterize fuzzy vectors, which is valuable for dif-
ferent aims, like optimization studies. Properties of the metric are analyzed
and its application to quantify the mean (square) error of a fuzzy value in
estimating the value of a fuzzy vector-valued random element is examined.
Some immediate implications from this mean error are finally described.
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1. Introduction

Distances between fuzzy sets are a topic which has received a deep atten-
tion in the literature. On one hand, it has been considered in connection with
studies of similarity between fuzzy sets (see, for instance, Dubois et al. [14],
Beg and Ashraf [2], and Esteva et al. [15]). On the other hand, for statistical
purposes such as classification of fuzzy-valued elements or inferential statis-
tics with fuzzy set-valued random elements, distances play a key role (see,
for instance, Blanco-Fernández et al. [4, 5]).

In several papers (e.g., Bertoluzza et al. [3], Casals et al. [7], Trutschnig
et al. [33]) the suitability of considering metrics between fuzzy vector values
taking into account both their ‘central location’ along with their ‘shape’ has
been pointed out and discussed.

For some practical goals, often related to optimization tasks, it can also
be convenient to use metrics based on representations of fuzzy vector values
for which there exist sufficient conditions characterizing fuzzy vectors.

A well-known distance satisfying the last desirable property is the metric
ρ2 (see Diamond and Kloeden [10]), which is based on the support function
of the involved fuzzy vectors and takes into account the usual inner product
for Hilbert space functional values. When fuzzy vectors reduce to fuzzy
numbers, this metric corresponds to the one based on the infimum/supremum
characterization of fuzzy numbers.

Recently (see Sinova et al. [28]), a new parameterized representation of
fuzzy numbers, along with an associated L2 metric, has been introduced.
This representation describes each fuzzy number by means of an indicator
of its central location and an indicator (in fact, two) of its shape, and there
exist sufficient conditions characterizing fuzzy numbers. This is the essential
difference with Bertoluzza et al.’s metric [3] (see also Trutschnig et al. [33]):
there don’t exist sufficient conditions for the mid-point/spread representation
of fuzzy numbers behind such a metric characterizing fuzzy numbers.

This paper aims to extend the same idea behind this metric to the fuzzy
vectorial-valued case. The rest of the paper is organized as follows: Section 2
recalls some basic concepts on fuzzy vectors and the suggested representation
in terms of the support function and the generalized Steiner points; Section
3 introduces an L2 metric based on the representation in Section 2 and its
properties are examined; Section 4 states a measure of the mean square error
based on the new metric, and some applications are indicated in Section 5.
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2. The representation of fuzzy vectors through
their support function and generalized Steiner point

Let F∗
c (Rp) denote the space of (bounded) fuzzy vectors of Rp, where

a (bounded) fuzzy vector Ũ ∈ F∗
c (Rp) is a fuzzy set of Rp, that is, a

mapping Ũ : Rp → [0, 1] such that it is normal and fuzzy-convex, upper semi-
continuous and its support set is bounded. Equivalently, for all α ∈ [0, 1] the

α-level of Ũ , defined as

Ũα =


{x ∈ Rp : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ Rp : Ũ(x) > 0} if α = 0,

is a nonempty compact subset of Rp.
On the space F∗

c (Rp) one can consider the usual fuzzy arithmetic based

on Zadeh’s extension principle [37]. Given Ũ , Ṽ ∈ F∗
c (Rp) and γ ∈ R, the

sum of Ũ and Ṽ is defined as the fuzzy vector Ũ + Ṽ ∈ F∗
c (Rp) such that

(Ũ + Ṽ )(t) = sup
y+z=t

min {Ũ(y), Ṽ (z)}

or, equivalently and based on Nguyen [23], for each α ∈ [0, 1]:

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα = {y + z : y ∈ Ũα, z ∈ Ṽα}.

The product of Ũ by the scalar γ is defined as the fuzzy vector γ ·Ũ ∈ F∗
c (Rp)

such that

(γ · Ũ)(t) = sup
y∈Rp :y=γt

Ũ(y) =

 Ũ(t/γ) if γ ̸= 0

1{0}(t) if γ = 0

or, equivalently and based on Nguyen [23], for each α ∈ [0, 1]:

(γ · Ũ)α = γ · Ũα = {γ · y : y ∈ Ũα}.

It is well-known that when F∗
c (Rp) is endowed with the two preceding oper-

ations we get a semi-linear but not a linear space, since Ũ + (−1) · Ũ ̸= 1{0}

(neutral element for the fuzzy sum), but in case Ũ reduces to the indicator
function of an element in Rp. As a consequence of this, one cannot state
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an extension of the difference on the space F∗
c (Rp) which can simultaneously

be always well-defined and preserve the properties of the difference with real
numbers in connection with the sum. This concern motivates and strongly
reinforces the interest in having suitable metrics between fuzzy vectors, es-
pecially in developing certain statistics with them.

Elements in F∗
c (Rp) can be characterized by means of their support func-

tion (see, for instance, Liang et al. [21]), which in accordance with the ap-
proach by Puri and Ralescu [24] is the function extending level-wise the
notion of the support function of a set (see Castaing and Valadier [8]).

The support function of Ũ ∈ F∗
c (Rp) is given by the mapping sŨ :

[0, 1]× Sp−1 → R defined so that

sŨ(α,u) = sup
x∈Ũα

⟨u,x⟩

for all u ∈ Sp−1, α ∈ [0, 1], where ⟨·, ·⟩ denotes the inner (dot) product on Rp

and Sp−1 is the unit sphere in Rp. In general, one can state that sŨ(α,u)
represents the ‘oriented’ distance from 0 ∈ Rp to the supporting hyperplane
of Ũα which is orthogonal to u.

It should be recalled (see, for instance, Butnariu et al. [6]) that a real-
valued function s : [0, 1]×Sp−1 → R is the support function of a unique fuzzy

vector Ũ ∈ F∗
c (Rp) (i.e., s = sŨ) if and only if s satisfies that

s.i) for all α ∈ [0, 1], u,v ∈ Sp−1

∥u+ v∥ · s
(
α,

u+ v

∥u+ v∥

)
≤ s (α,u) + s (α,v) ;

s.ii) s(·,u) is non-increasing, left-continuous on (0, 1] and right-continuous
at 0.

Actually, Ũ is the fuzzy vector such that for all α ∈ [0, 1]:

Ũα = {x ∈ Rp : ⟨u,x⟩ ≤ s(α,u) for all u ∈ Sp−1}.

For purposes of quantifying a ‘central location’ of an element in F∗
c (Rp),

one can consider the well-known generalized Steiner point (or centroid) which
has been defined (see, for instance, Diamond and Kloeden [11, 12], Körner [20],
Diamond and Körner [13], Butnariu et al. [6], Vetterlein and Navara [34, 35],
and Liang et al. [21]) by extending level-wise the Steiner points for convex
sets (see Schneider [26]).
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Given a measure µ on the measurable space ([0, 1],B[0,1]) that can be
formalized by means of an absolutely continuous probability measure on [0, 1]
(i.e., a measure for which there exists a nonnegative function η which is
defined, integrable and normalized on [0, 1], and such that dµ(α) = η(α) dα),
and λp denoting the normalized Lebesgue measure on Sp−1, the µ-Steiner

point of Ũ ∈ F∗
c (Rp), if it exists, is given by the vector value

Sµ(Ũ) =

∫ ∫
[0,1]×Sp−1

u · sŨ(α,u) dλp(u) dµ(α).

Then, on the basis of the results by Vetterlein and Navara [34, 35], any
vectorial-valued function S : F∗

c (Rp) → Rp such that

S.i) S(Ũ) ∈ Ũ0,

S.ii) for all Ũ , Ṽ ∈ F∗
c (Rp) we have that S(Ũ + Ṽ ) = S(Ũ) + S(Ṽ ),

S.iii) for all Ũ ∈ F∗
c (Rp) and any Euclidean isometry τ of Rp, i.e., (τ(Ũ))α

= τ(Ũα), we have that S(τ(Ũ)) = τ(S(Ũ)),

S.iv) S is continuous w.r.t. the supremum metric d∞ (and, hence, for most
of the possible metrics that may be considered on F∗

c (Rp) → Rp),

satisfies that there exists an absolutely continuous probability measure µ
on the measurable space ([0, 1],B[0,1]) such that S(Ũ) = Sµ(Ũ) for all Ũ ∈
F∗

c (Rp) (see, for instance, Vetterlein and Navara [34] for a, rather cumber-
some, construction of µ).

On the basis of these two components (namely, the support function and
the Steiner point) we obtain the following representation of fuzzy vectors.

Definition 2.1. Given an absolutely continuous probability measure µ on the
measurable space ([0, 1],B[0,1]), the µ-support/Steiner representation of

Ũ ∈ F∗
c (Rp) is given by the vectorial value

υµ

Ũ
: [0, 1]× Sp−1 → Rp × R,

(α,u) 7→ υµ

Ũ
(α,u) = (Sµ(Ũ), sŨ(α,u)).

For the given measure µ, the υµ function can be stated as the function

υµ : F∗
c (Rp) → Rp ×H2, υµ(Ũ) 7→ υµ

Ũ
= (Sµ(Ũ), sŨ),
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whereH2 = {L2 type real-valued functions defined on [0, 1]×Sp−1 w.r.t. λp, ℓ}
(with ℓ = Lebesgue measure on ([0, 1],B[0,1])).

As an immediate consequence from the already mentioned support func-
tion characterization of a fuzzy vector (see Butnariu et al. [6]) and the def-
inition of the Steiner point, the following result establishes necessary and
sufficient conditions to characterize each fuzzy vector by a support/Steiner
representation. Thus,

Proposition 2.1. If there exist a function s : [0, 1] × Sp−1 → R fulfilling
conditions s.i) and s.ii), and an absolutely continuous probability measure µ

on ([0, 1],B[0,1]), then there exists a unique fuzzy vector Ũ ∈ F∗
c (Rp) such that

υµ(Ũ) = (m, s)

with m =
∫ ∫

[0,1]×Sp−1 u · s(α,u) dλp(u) dµ(α).

More generally, and based on Vetterlein and Navara’s results [34, 35], we
can trivially ensure that

Proposition 2.2. Given an Rp×H2-valued function υ : F∗
c (Rp) → Rp×H2

such that υ = (S, h), where
• h : F∗

c (Rp) → H2 is such that for each Ũ ∈ F∗
c (Rp) the real-valued

function h(Ũ) : [0, 1]× Sp−1 → R satisfies conditions s.i) and s.ii),

• and S : F∗
c (Rp) → Rp is a vectorial-valued function satisfying condi-

tions S.i)− S.iv),

there exists an absolutely continuous probability measure µ on the measurable
space ([0, 1],B[0,1]) such that υ = υµ.

Remark 2.1. The last two propositions indicate that, in contrast to the sup-
port function representation for fuzzy vectors (characterizing them in terms
of their ‘boundaries’), the support/Steiner representation of fuzzy vectors
characterize them through their ‘shape’ and ‘central location’. Furthermore,
sufficient conditions can be given to determine a fuzzy vector what, as already
pointed out, is an essential difference with the so-called mid-point/spread
representation for fuzzy vectors (see Trutschnig et al. [33] with mid sŨ(α,u)
= [sŨ(α,u) − sŨ(α,−u)]/2 and spr sŨ(α,u) = [sŨ(α,−u) + sŨ(α,u)]/2):
there do not exist sufficient conditions for the mid-point/spread representa-
tion to characterize fuzzy vectors (see a detailed discussion about the one-
dimensional case in Sinova et al. [28]).
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3. An L2 generalized metric between fuzzy vectors based
on their support functions and generalized Steiner points

In a recent paper (Sinova et al. [28]), an L2 metric between fuzzy num-
bers has been introduced. This metric is based on a representation for which
there exist sufficient conditions characterizing fuzzy numbers. This represen-
tation takes into account separately a ‘central location’ indicator of the fuzzy
number and, level-wise and as indicators of their ‘shape’, the left and right
deviations of the extreme points w.r.t. the central location.

This metric can be extended to deal with fuzzy vectors by using their
(Puri and Ralescu) support function, for which sufficient conditions to char-
acterize them are well-known (see, for instance, Puri and Ralescu [24], Dia-
mond and Kloeden [12], Liang et al. [21]). The metric considers

• as indicator of the central location of a fuzzy vector, the µ-support
function-based Steiner point;

• and, level-wise, and as an indicator of its shape, the vectorial-valued
deviation w.r.t. the central location.

The family of metrics is now introduced as follows:

Definition 3.1. Given an absolutely continuous probability measure φ on
([0, 1],B[0,1]) with positive mass function on (0, 1), and a parameter θ ∈
(0, 1], the support/Steiner-based L2 metric is the mapping Dφ

θ : F∗
c (Rp)

× F∗
c (Rp) → [0,+∞) such that for Ũ , Ṽ ∈ F∗

c (Rp)

Dφ
θ (Ũ , Ṽ ) =

[
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2

+ θ

∫ ∫
[0,1]×Sp−1

[
s
Ũ
(α,u)− s

Ṽ
(α,u)

]2
dλp(u) dφ(α)

]1/2

=

[
∥Sφ(Ũ)− Sφ(Ṽ )∥2

+ θ

∫ ∫
[0,1]×Sp−1

∥devφ

Ũ
(α,u)− devφ

Ṽ
(α,u)∥2 dλp(u) dφ(α)

]1/2
,

where devφ

Ũ
(α,u) = u · sŨ(α,u)− Sφ(Ũ).

The mapping Dφ
θ can be also expressed in terms of the well-known ex-

tended distance between fuzzy vectors by Diamond and Körner [13], which
is given by

ρφ2 (Ũ , Ṽ ) =

√∫ ∫
[0,1]×Sp−1

[
sŨ(α,u)− sṼ (α,u)

]2
dλp(u) dφ(α).
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More concretely,

Dφ
θ (Ũ , Ṽ ) =

√
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

[
ρφ2 (Ũ , Ṽ )

]2
.

The mapping Dφ
θ is a distance between fuzzy vectors. Thus,

Proposition 3.1. (F∗
c (R),D

φ
θ ) is a metric space.

Proof. Indeed, since the square of Dφ
θ is the sum of a semi-metric plus the

square of a metric defined on F∗
c (R), it is trivially nonnegative (i.e., it satisfies

the separation axiom), it fulfils the identity of indiscernibles (or coincidence

axiom), and it is symmetric. Furthermore, if Ũ , Ṽ , W̃ ∈ F∗
c (Rp), then since

∥ · ∥ is a norm and ρφ2 is a metric,[
Dφ

θ (Ũ , Ṽ )
]2

≤ (1− θ)
[
∥Sφ(Ũ)− Sφ(W̃ )∥+ ∥Sφ(W̃ )− Sφ(Ṽ )∥

]2
+ θ

[
ρφ2 (Ũ , W̃ ) + ρφ2 (W̃ , Ṽ )

]2
=

[
Dφ

θ (Ũ , W̃ )
]2

+
[
Dφ

θ (W̃ , Ṽ )
]2

+2(1− θ)∥Sφ(Ũ)− Sφ(W̃ )∥ · ∥Sφ(W̃ )− Sφ(Ṽ )∥+ 2 θ ρφ2 (Ũ , W̃ ) · ρφ2 (W̃ , Ṽ ),

and, due to the fact that[
(1− θ)∥Sφ(Ũ)− Sφ(W̃ )∥ · ∥Sφ(W̃ )− Sφ(Ṽ )∥+ θ ρφ2 (Ũ , W̃ ) · ρφ2 (W̃ , Ṽ )

]2
=

[
Dφ

θ (Ũ , W̃ )
]2

·
[
Dφ

θ (W̃ , Ṽ )
]2

−θ(1− θ)
[
∥Sφ(Ũ)− Sφ(W̃ )∥ · ρφ2 (W̃ , Ṽ )− ∥Sφ(W̃ )− Sφ(Ṽ )∥ · ρφ2 (Ũ , W̃ )

]2
≤

[
Dφ

θ (Ũ , W̃ )
]2

·
[
Dφ

θ (W̃ , Ṽ )
]2

,

we have that [
Dφ

θ (Ũ , Ṽ )
]2

≤
[
Dφ

θ (Ũ , W̃ ) +Dφ
θ (W̃ , Ṽ )

]2
,

so that Dφ
θ is subadditive, that is, it satisfies the triangle inequality. �

The metricDφ
θ is an extension to the p-dimensional case of the wabl/ldev/rdev

L2 metric defined by Sinova et al. [28] for the one-dimensional case as follows

Dφ
θ (Ũ , Ṽ ) =

[(
wablφ Ũ − wablφ Ṽ

)2
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+ θ

∫
[0,1]

(
1

2

[
ldevφ

Ũ
(α)− ldevφ

Ṽ
(α)

]2
+

1

2

[
rdevφ

Ũ
(α)− rdevφ

Ṽ
(α)

]2)
dφ(α)

]1/2

where the weighted averaging based on levels (see Yager [36], Campos and
González [9], Nasibov [22]) is given by

wablφ Ũ =

∫
[0,1]

mid Ũα dφ(α) = Sφ(Ũ)

with mid Ũα = centre of Ũα = [inf Ũα + sup Ũα]/2,

ldevφ
Ũ
(α) = wablφ Ũ − inf Ũα = −devφ

Ũ
(α,−1),

rdevφ
Ũ
(α) = sup Ũα − wablφ Ũ = devφ

Ũ
(α, 1).

This is due to the fact that S0 = {−1, 1}, sŨ(α, 1) = sup Ũα, sŨ(α,−1)

= − inf Ũα, and λ1(0) = λ1(1) = 1/2.

Both, the parameter θ and the measure φ, do not have a stochastic mean-
ing. Thus, parameter θ in the distance weighs the influence of the ‘deviation
in shape’ between the fuzzy vectors (quantified through devφ) with respect
to the influence of their ‘deviation in central location’ (quantified through
the generalized Steiner point Sφ). The choice of φ allows us to weigh the
influence of each α-level (i.e., the different degrees of ‘compatibility’).

The support/Steiner representation of fuzzy vectors allows us to induce
a parametric family of L2 metrics on F∗

c (Rp). For a given weighting measure
φ, and for any f ∈ H2, α ∈ [0, 1] and u ∈ Sp−1 define

Sφ(f) =

∫ ∫
[0,1]×Sp−1

u · f(α,u) dλp(u) dφ(α).

An inner product in Rp × H2 can be defined as follows: let θ ∈ (0, 1],
and let φ be a weighting measure formalized as an absolutely continuous
probability measure on ([0, 1],B[0,1]) with positive mass function in (0, 1).
For x,y ∈ Rp and f, g ∈ H2, consider the inner product

⟨(x, f), (y, g)⟩φθ =

∫
(0,1]

∫
Sp−1

⟨(x, f(α,u)), (y, g(α,u))⟩θ dλp(u) dφ(α),

where the Euclidean inner product ⟨·, ·⟩θ on Rp×R is based on the weighted
dot product given by

⟨(x1, x2), (y1, y2)⟩θ = (1− θ)x1 · y1 + θ x2 y2.

Then, the following results hold:
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Proposition 3.2. Let φ be an arbitrarily fixed absolutely continuous prob-
ability measure on ([0, 1],B[0,1]), with positive mass function on (0, 1), and
θ ∈ (0, 1] be a weighting parameter. Then,

i) (Rp ×H2, ⟨·, ·⟩φθ ) is a Hilbert space.

ii) Dφ
θ is an L2-type metric, and it is translational invariant and invariant

under opposition (multiplication by −1).

iii) For fixed φ, the υφ function satisfies that

− υφ is an isometry from (F∗
c (Rp),Dφ

θ ) into (Rp ×H2, ⟨·, ·⟩φθ ),
− υφ(Ũ + Ṽ ) = υφ(Ũ) + υφ(Ṽ ) for all Ũ , Ṽ ∈ F∗

c (Rp),

− υφ(γ · Ũ) = γ · υφ(Ũ) for all Ũ ∈ F∗
c (Rp) and γ > 0;

Consequently, the υφ function preserves the semilinearity of F∗
c (Rp)

and relates the fuzzy arithmetic to the vectorial-valued functional arith-
metic, which implies that F∗

c (Rp) can be isometrically embedded into a
convex cone of the Hilbert space (Rp ×H2, ⟨·, ·⟩φθ ).

Proof. Indeed,

i) ⟨·, ·⟩φθ is an inner product on Rp × H2 because of the way it has been
constructed (see details above). Furthermore, it will be proved now
that (Rp ×H2,D

φ
θ (·, ·)), where

Dφ
θ ((x, f), (y, g)) =

[
(1− θ)∥x− y∥2 + θ(ρφ2 (f, g))

2]1/2 ,
is a complete metric space. For fixed θ ∈ (0, 1) and φ, if {(xn, fn)}n is
a Cauchy sequence on Rp×H2, that is, for all ε > 0 there exists Nε ∈ N
such that for all m,n > Nε

Dφ
θ ((xm, fm), (xn, fn)) < ε,

then, let us see that {(xn, fn)}n converges. For all ε∗ > 0, define
ε = min{

√
1− θ,

√
θ} · ε∗ > 0. Using the property above, there exists

Nε∗ = Nε ∈ N such that for all m,n > Nε∗ ,

–
√
1− θ · ∥xm − xn∥ < ε, so ∥xm − xn∥ < ε∗, whence because of

(Rp, ∥ · ∥) being a Hilbert space there exists x ∈ Rp such that
limn→∞ ∥xn − x∥ = 0;

–
√
θ ·ρφ2 (fm, fn) < ε, so ρφ2 (fm, fn) < ε∗, whence because of (H2, ρ

φ
2 )

being a Hilbert space there exists f ∈ H2 such that limn→∞ ρφ2 (fn,
f) = 0.
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Thus, there exists (x, f) ∈ Rp ×H2 such that

lim
n→∞

Dφ
θ ((xn, fn), (x, f)) = 0,

which proves the completeness of the considered metric space.

ii) The proof for this assertion is straightforward, because of the well-
known properties for ∥ · ∥ and ρφ2 .

iii) Obviously, if ∥ · ∥φθ denotes the norm associated with the inner product
⟨·, ·⟩φθ , we have that

Dφ
θ (Ũ , Ṽ ) = ∥υφ(Ũ)− υφ(Ṽ )∥φ

θ

=
[
⟨υφ(Ũ)− υφ(Ṽ ),υφ(Ũ)− υφ(Ṽ )⟩φθ

]1/2
,

so that υφ is an isometry.

Moreover, due to the properties of the generalized Steiner points and
the support functions, the equivariance of υφ w.r.t. the sum and the
multiplication times positive scalars, as well as the preservation of the
semilinearity, are immediately concluded. �

The metric space (F∗
c (Rp),Dφ

θ ) is separable. This assertion is justified by
the fact that Dφ

θ is topologically equivalent (in fact, strongly equivalent) to
the metric ρφ2 , as we will see in the next proposition.

Proposition 3.3. Let θ ∈ (0, 1] be a weight parameter, and let φ be an ar-
bitrarily fixed absolutely continuous probability measure on ([0, 1],B[0,1]) with
positive mass function in (0, 1). The metric Dφ

θ is topologically equivalent to
the metric ρφ2 on F∗

c (Rp). More precisely,

√
θ · ρφ2 (Ũ , Ṽ ) ≤ Dφ

θ (Ũ , Ṽ ) ≤ ρφ2 (Ũ , Ṽ )

for all Ũ , Ṽ ∈ F∗
c (Rp).

Proof. Indeed,

Dφ
θ (Ũ , Ṽ ) =

√
(1− θ)∥Sφ(Ũ)− Sφ(Ṽ )∥2 + θ

[
ρφ2 (Ũ , Ṽ )

]2
≥

√
θ
[
ρφ2 (Ũ , Ṽ )

]2
=

√
θ · ρφ2 (Ũ , Ṽ ).
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On the other hand,

∥Sφ(Ũ)− Sφ(Ṽ )∥2 =
∥∥∥∥ ∫ ∫

[0,1]×Sp−1

u ·
[
sŨ(α,u)− sṼ (α,u)

]
dλp(u) dφ(α)

∥∥∥∥2

≤
∫ ∫

[0,1]×Sp−1

∥u ·
[
sŨ(α,u)− sṼ (α,u)

]
∥2 dλp(u) dφ(α)

=

∫ ∫
[0,1]×Sp−1

∥sŨ(α,u)− sṼ (α,u)∥
2 dλp(u) dφ(α) =

[
ρφ2 (Ũ , Ṽ )

]2
,

whence

Dφ
θ (Ũ , Ṽ ) ≤ ρφ2 (Ũ , Ṽ ). �

As a consequence from this result, Dφ
θ induces on F∗

c (Rp) the same topol-
ogy as

dφ2 (Ũ , Ṽ ) =

√∫
[0,1]

dH(Ũα, Ṽα)2 dφ(α),

where dH denotes the well-known Hausdorff metric on the space of nonempty
compact subsets of Rp. Furthermore, (F∗

c (Rp), dφ2 ) is a separable metric
space. The proofs for the last two assertions can be straightforwardly de-
rived by simply adapting the ones by Diamond and Kloeden [10] (see the
comments after Theorem 2 and the proof of Theorem 3, pp. 244-245) re-
placing dℓ(α) (or, equivalently, dα) by dφ(α). In the same way, one can
ensure that Dφ

θ induces on F∗
c (Rp) the same topology as the metric Dφ

θ by
Trutschnig et al. [33].

The practical computation of Dφ
θ in the case p = 1 is quite simple and

easy to implement in any programming language. Nevertheless, when p > 1
the situation usually becomes much more complex. This is a consequence of
the computational difficulties involved in determining most of the support
functions of fuzzy vectors in practice (see Ghosh and Kumar [17] for some
details about the two-dimensional set-valued case).

As an example illustrating the use of Dφ
θ in one of the simplest fuzzy

vector-valued situations, we are now going to compute the distance of two
conical fuzzy vectors arisen in an approach to the tone and color triangle
designs (see Sugano [29, 30, 31] and Sugano et al. [32]).
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Example 3.1. Sugano and collaborators have developed studies on a system
of the three primary colors RGB presented on a color triangle. The usual tri-
angle involves sixty-six fuzzy inputs on parts of the tone triangle designated
as darkness-blackness, lightness-whiteness and chromaticness. The fuzzy in-
puts are formed by right circular conical fuzzy vectors, and they can mutually
overlap (actually, any fuzzy input overlaps with some other ones). The two
considered (horizontal) dimensions correspond to whiteness and chromatic-
ness, and the extreme labels are No. 1: black, No. 11: white, and No. 66:
red (maximum chromaticness). Of course, one can also consider around each
of the sixty-six inputs many neighbouring colors.

Figure 1 displays the general scheme but only three fuzzy inputs have
been represented, namely:

• No. 1, corresponding to the right cone C̃1 such that for each α ∈ [0, 1]

C̃1
α = circle with centre (0, 0) and radius 10(1− α),

• No. 36, corresponding to the right cone C̃36 such that for each α ∈ [0, 1]

C̃36
α = circle with centre (15

√
3, 65) and radius 10(1− α),

• No. 58, corresponding to the right cone C̃58 such that for each α ∈ [0, 1]

C̃58
α = circle with centre (35

√
3, 45) and radius 10(1− α).

For the rest of the sixty-six main color inputs, only their 0.5-levels have been
graphically displayed.

The support function associated with a right circular conical fuzzy vector
C̃ such that, for each α ∈ [0, 1], the α-level corresponds to C̃α = circle
with centre (x, y) and radius r(1 − α), is given for u = (cos βu, sin βu) ∈ S1

= circumference with centre (0, 0) and radius 1 by

sC̃(α,u) = x · cos βu + y · sin βu + r(1− α).

Consequently, one can obtain the following distances (which in this case,
and because of the ‘shape’ of the α-levels of the three conical fuzzy vectors
coinciding, they are irrespective of the chosen φ)[

Dφ
θ (C̃

1, C̃36)
]2

= (1− θ) ∥(0, 0)− (15
√
3, 65)∥2

13



Figure 1: Conical fuzzy vectors in the usual color triangle

+
θ

2π

∫ ∫
[0,1]×[0,2π)

[10(1− α)− 15
√
3 cos β − 65 sin β − 10(1− α)]2 dβ dφ(α)

= 4900(1− θ),[
Dφ

θ (C̃
1, C̃58)

]2
= (1− θ) ∥(0, 0)− (35

√
3, 45)∥2

+
θ

2π

∫ ∫
[0,1]×[0,2π)

[10(1− α)− 35
√
3 cos β − 45 sin β − 10(1− α)]2 dβ dφ(α)

= 5700(1− θ),[
Dφ

θ (C̃
36, C̃58)

]2
= (1− θ) ∥(15

√
3, 65)− (35

√
3, 45)∥2

+
θ

2π

∫ ∫
[0,1]×[0,2π)

[15
√
3 cos β + 65 sin β + 10(1− α)

−35
√
3 cos β − 45 sin β − 10(1− α)]2 dβ dφ(α) = 1600(1− θ).

Therefore, and whatever the weight θ may be, we can conclude that the fuzzy
inputs No. 36 and No. 58 are closer than No. 1 and No. 36 and than No. 1
and No. 58.

14



4. The mean square error associated with a random fuzzy vector
based on the support functions and generalized Steiner points

In Statistics, distances between data or values represent a valuable tool
often in connection with the quantification of some errors, like the error in
estimating either a parameter of the population distribution or some relevant
values, or in connection with the quantification of the deviation between what
is stated by a hypothesis about such a distribution and what is evidenced by
the available sample information.

Furthermore, due to the nonlinearity of F∗
c (Rp) when it is endowed with

the usual fuzzy arithmetic, a well-defined difference ‘−’ between fuzzy vectors
cannot be established so that Ũ + (Ṽ − Ũ) = Ṽ whatever Ũ , Ṽ ∈ F∗

c (Rp)
may be. It should be noted that, although Hukuhara’s difference satisfy the
last equality, there are many fuzzy vectors for which such a difference is not
defined.

In the real- and vectorial-valued cases, the squared Euclidean 2-norm of
the difference of two values is equivalent to the squared Euclidean distance
between them, so one can think about proceeding in accordance with the
second way in the fuzzy vector-valued case.

In this section, a measure of the mean square error associated with a
fuzzy vector-valued random element is to be introduced and analyzed. This
measure is based on the Dφ

θ metric defined in Section 3. To formalize ad-
equately this concept, it is necessary to consider an appropriate model for
the corresponding random elements. This is given by random fuzzy vectors
(or, more generally, random fuzzy sets, originally coined as fuzzy random
variables by Puri and Ralescu [25]).

Definition 4.1. Given a probability space (Ω,A, P ), a mapping X : Ω →
F∗

c (Rp) is said to be a random fuzzy vector associated with it if, for all
α ∈ (0, 1], the α-level set-valued mapping

Xα : Ω → Kc(Rp) = {nonempty compact convex sets of Rp}, ω 7→ (X (ω))α ,

is a compact convex random set (that is, Xα is a Borel measurable map-
ping w.r.t. A and the Borel σ-field generated by the topology induced by the
Hausdorff metric on Kc(Rp)).

15



In virtue of the fact that Dφ
θ induces the same topology as some other L2

metrics on F∗
c (Rp), and on the basis of the results in previous papers (see,

for instance, González-Rodŕıguez et al. [18]), the notion of random fuzzy
vector can be equivalently formalized as a Borel-measurable mapping. More
concretely,

Definition 4.2. A mapping X : Ω → F∗
c (Rp) is said to be a random fuzzy

vector if X is a Borel measurable mapping w.r.t. A and the Borel σ-field
generated by the topology induced by the metric Dφ

θ on F∗
c (Rp).

A crucial implication from the Borel-measurability in Definition 4.2 is
that one can properly refer to the distribution induced by a random fuzzy
vector and to independent random fuzzy vectors.

A mean square error measure of a fuzzy vector Ũ as an estimate of the
value of a random fuzzy vector X can be quantified as follows:

Definition 4.3. Given an absolutely continuous probability measure φ on
([0, 1],B[0,1]) with positive mass function on (0, 1), a parameter θ ∈ (0, 1],
and a random fuzzy vector X , the support/Steiner-based mean square

error of the fuzzy vector Ũ ∈ F∗
c (Rp) in estimating the value of X is the

real value (or support/Steiner-based mean square error of the random

fuzzy vector X about the fuzzy vector Ũ), if it exists, given by the (real-valued)
expectation

mseφθ (X , Ũ) = E
(
[Dφ

θ (X , Ũ)]2
)
.

For an arbitrary random fuzzy vector X , the support/Steiner-based mean

square error mseφθ (X , Ũ) is minimized at the fuzzy vector Ũ = Ẽ(X ), where

Ẽ(X ) is the Aumann-type fuzzy mean of X defined by Puri and Ralescu [25]
as follows:

Definition 4.4. Given a probability space (Ω,A, P ) and an associated ran-
dom fuzzy vector X such that sX ∈ L1(Ω,A, P ), the (Aumann-type) mean

value of X is the fuzzy value Ẽ(X ) ∈ F∗
c (Rp), if it exists, such that for all

α ∈ (0, 1] (
Ẽ(X )

)
α
= Aumann integral of Xα

=

{∫
Rp

X(ω) dP (ω) for all X : Ω → Rp, X ∈ L1(Ω,A, P ), X ∈ Xα a.s. [P ]

}
.

Equivalently, if sX ∈ L1(Ω,A, P ) then sẼ(X ) = E(sX ), with E here denoting
the functional-valued expectation of a Hilbert space-valued random element.
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Thus,

Proposition 4.1. Let φ be an absolutely continuous probability measure on
([0, 1],B[0,1]) with positive mass function on (0, 1), θ ∈ (0, 1] be a parame-
ter, and X be a random fuzzy vector associated with the probability space
(Ω,A, P ). If sX ∈ L2(Ω,A, P ) and u · sX (α,u) is integrable on Ω× ([0, 1]×
Sp−1), then

Ẽ(X ) = arg min
Ũ∈F∗

c (Rp)
mseφθ (X , Ũ).

Proof. Indeed,

mseφθ (X , Ũ) = (1− θ)E
(
∥Sφ(X )− Sφ(Ũ)∥2

)
+ θ E

(
[ρφ2 (X , Ũ)]2

)
.

On one hand, it is well-known that Ẽ(X ) is the Fréchet mean associated with
ρφ2 (and many other L2 metrics on F∗

c (Rp)), that is,

Ẽ(X ) = arg min
Ũ∈F∗

c (Rp)
E
(
[ρφ2 (X , Ũ)]2

)
.

On the other hand, if X is a random fuzzy vector, then Sφ(X ) is a random
vector (see, for instance, Aletti and Bongiorno [1], in case φ is the Lebesgue
measure on ([0, 1],B[0,1]), result that can be straightforwardly extended for
any φ). Furthermore, if E denotes the vectorial-valued expectation of a
random vector,

E(Sφ(X )) = arg min
Ũ∈F∗

c (Rp)
E
(
∥Sφ(X )− Sφ(Ũ)∥2

)
and, since sufficient conditions allowing us to apply Fubini’s Theorem are
fulfilled, we have that

E(Sφ(X )) =

∫ ∫
[0,1]×Sp−1

E(u · sX (α,u)) dλp(u) dφ(α)

=

∫ ∫
[0,1]×Sp−1

u · E(sX (α,u)) dλp(u) dφ(α).

Since E(sX (·, ·)) = sẼ(X )(·, ·), then

E(Sφ(X )) =

∫ ∫
[0,1]×Sp−1

u · sẼ(X )(α,u) dλp(u) dφ(α) = Sφ(Ẽ(X ))

whence, the result is proved. �
Actually, the last result can be also derived from a result extending the

decomposition of the mean square error of a random variable. Concretely,
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Proposition 4.2. Let φ be an absolutely continuous probability measure on
([0, 1],B[0,1]) with positive mass function on (0, 1), θ ∈ (0, 1] be a parame-
ter, and X be a random fuzzy vector associated with the probability space
(Ω,A, P ). If sX ∈ L2(Ω,A, P ) and u · sX (α,u) is integrable on Ω × ([0, 1]
× Sp−1), then

mseφθ (X , Ũ) = mseφθ (X , Ẽ(X )) +
[
Dφ

θ (Ẽ(X ), Ũ)
]2

.

Proof. Indeed, under the assumed conditions,

mseφθ (X , Ũ) = (1− θ)
{
E
(
∥Sφ(X )− E(Sφ(X ))∥2

)
+E

(
∥E(Sφ(X ))− Sφ(Ũ)∥2

)
+2 [E(Sφ(X ))− Sφ(Ũ)] · E[Sφ(X )− E(Sφ(X ))]

}
+ θ E

{
[ρφ2 (X , Ẽ(X ))]2 + [ρφ2 (Ẽ(X ), Ũ)]2

+2

∫ ∫
[0,1]×Sp−1

[s
Ẽ(X )

(α,u)− s
Ũ
(α,u)] [sX (α,u)− s

Ẽ(X )
(α,u)] dλp(u) dφ(α)

}

= (1− θ)
{
E
[
∥Sφ(X )− E(Sφ(X ))∥2

]
+ ∥E(Sφ(X ))− Sφ(Ũ)∥2

}
+ θ

{
E([ρφ2 (X , Ẽ(X ))]2) + [ρφ2 (Ẽ(X ), Ũ)]2

}
= mseφθ (X , Ẽ(X )) +

[
Dφ

θ (Ẽ(X ), Ũ)
]2

,

whence the result is proved. �
As a consequence from the last two propositions, the ‘avoidable square

error’ in estimating the distribution of X can be quantified when one uses

the metric in this paper by means of the square bias
[
Dφ

θ (Ẽ(X ), Ũ)
]2
.

Following a similar reasoning, and based on the expressions for the Eu-
clidean norm and the product of elements in Rp, one can immediately prove
that the support/Steiner-based mean square error of a fuzzy vector value in
estimating the value of a random fuzzy vector can also be decomposed in
terms of some classical mean square errors as follows:
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Proposition 4.3. Let φ be an absolutely continuous probability measure on
([0, 1],B[0,1]) with positive mass function on (0, 1), θ ∈ (0, 1] be a parameter,

Ũ ∈ F∗
c (Rp) be a fuzzy vector value and X be a random fuzzy vector associated

with the probability space (Ω,A, P ). If sX ∈ L2(Ω,A, P ) and u · sX (α,u) is
integrable on Ω× ([0, 1]× Sp−1), then

mseφθ (X , Ũ) = (1− θ)

p∑
i=1

MSE(Sφ(X ) · ei,Sφ(Ũ) · ei) + θMSE(sX , sŨ),

with ei denoting the i-th element in the standard basis for Rp, and MSE(sX , sŨ)
being intended as the classical mean square error of the H2-valued random
element sX about sŨ w.r.t. the norm ∥ · ∥φ associated with ρφ2 , that is,

∥f − g∥φ =

[∫
(0,1]

∫
Sp−1

[f(α,u)− g(α,u)]2dλp(u) dφ(α)

]1/2
.

The remaining part of this section is to be devoted to examine some of
the most immediate applications of the use of the mean square error based
on the support/Steiner points of random fuzzy vectors.

4.1. A variance measure of a random fuzzy vector

The variance of a random element can be introduced by following Fréchet’s
approach [16], as a measure of the ‘least mean square error’ in approximat-
ing/estimating the values of the random element by a concrete value (or,
conversely, the mean error in approximating/estimating this concrete value
by means of values of the random element).

The variance of a random fuzzy vector can then be viewed as a measure
of how far the corresponding fuzzy vector values are spread out, or how far
they are on the average with respect to their (Aumann-type) mean value.

When considering the metric space (F∗
c (Rp),Dφ

θ ) and the Fréchet ap-
proach, one can state

Definition 4.5. Given an absolutely continuous probability measure φ on
([0, 1],B[0,1]) with positive mass function on (0, 1), a parameter θ ∈ (0, 1], and
a random fuzzy vector X such that sX ∈ L2(Ω,A, P ), the support/Steiner-
based variance of X is the real value given by

varφθ (X ) = min
Ũ∈F∗

c (Rp)
mseφθ (X , Ũ) = E

(
[Dφ

θ (X , Ẽ(X ))]2
)
.
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The support/Steiner-based variance of a random fuzzy vector preserves
the most interesting properties of the variance of a real-valued random vari-
able. Thus, following either straightforward arguments for the mean values
and variances of real-valued random variables, or arguments similar to those
in the proof of Proposition 4.2, we have that

Proposition 4.4. Given an absolutely continuous probability measure φ on
([0, 1],B[0,1]) with positive mass function on (0, 1), a parameter θ ∈ (0, 1], and
a random fuzzy vector X associated with the probability space (Ω,A, P ) and
such that sX ∈ L2(Ω,A, P ), then,

i) varφθ (X ) ≥ 0.

ii) varφθ (X ) = 0 if, and only if, X is degenerate at a fuzzy vector value
(i.e., X is almost surely [P ] deterministic).

iii) varφθ is translational invariant, i.e., varφθ (X + Ũ) = varφθ (X ) whatever

Ũ ∈ F∗
c (Rp) may be.

iv) varφθ (γ · X ) = γ2 · varφθ (X ) whatever γ ∈ R may be.

Furthermore, if u · sX (α,u) is integrable on Ω× ([0, 1]× Sp−1), then

v) varφθ (X ) = (1− θ)

p∑
i=1

Var(Sφ(X ) · ei) + θVarφ(sX ),

with Varφ(sX ) being intended as the classical variance of an H2-valued
random element w.r.t. the norm ∥ · ∥φ.

vi) If X and Y are independent random fuzzy vectors associated with the
same probability space, and u·sY(α,u) is integrable on Ω×([0, 1]×Sp−1),
then varφθ (X + Y) = varφθ (X ) + varφθ (Y).

4.2. Estimating the population mean value of a random fuzzy vector

As for the real-valued case, another immediate application of the support/
Steiner-based mean square error is that of quantifying the goodness of an
estimator of a fuzzy vector-valued ‘parameter’ of the distribution of a fuzzy
random vector.

As a simple and useful example for this, one can think in estimating the
population mean value of a random fuzzy vector X on the basis of a simple
random sample from it, that is, on the basis of the information supplied by
a finite sequence of independent random fuzzy vectors which are identically
distributed as X , say X1, . . . ,Xn. We can then state that
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Proposition 4.5. Let (Ω,A, P ) be a probability space and let X be a ran-
dom fuzzy vector associated with this probability space and such that sX ∈
L2(Ω,A, P ). Let X1, . . . ,Xn be a simple random sample from X . Then,

i) the corresponding sample mean

Xn =
1

n
· (X1 + . . .+ Xn)

is an unbiased estimator of the population mean Ẽ(X ). That is, the
mean value of the estimator Xn over the space of all samples of n in-
dependent observations from X equals Ẽ(X ).

ii) Furthermore, the associated support/Steiner-based mean square error

of the fuzzy statistic Xn in estimating the value of Ẽ(X ) is given by

mseφθ

(
Xn, Ẽ(X )

)
=

varφθ (X )

n
.

4.3. Simulation study

This subsection aims to illustrate empirically the behaviour of the sup-
port/Steiner-based mean square error of a random fuzzy vector about its
Aumann-type mean value. The diversity of random fuzzy vectors makes
almost unfeasible to think about a simulation study for dimensions greater
than 1, so we will constrain our analysis to random fuzzy numbers (i.e.,
p = 1) by estimating their value through the Aumann-type expected value,
that is, by analyzing the behaviour of the corresponding Fréchet variance.

The simulations have been performed following the situations in Sinova
et al. [27]. Thus,

Step 1. A sample of size n = 100000 of trapezoidal fuzzy numbers has been
simulated for each of several different situations in such a way that
• to generate the trapezoidal fuzzy data, we have considered four
real-valued random variables as follows: X = Tra(X1 −X2 −X3,
X1 −X2, X1 + X2, X1 +X2 +X4), with

X1 = midX1 = (inf X1 + supX1)/2,

X2 = sprX1 = (supX1 − inf X1)/2,

X3 = inf X1 − inf X0, X4 = supX0 − supX1;
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• each sample is assumed to be split into a subsample of size n(1−cp)
(where cp denotes the proportion of contamination and is supposed
to range in {0, 0.1, 0.2, 0.4}), associated with a non-contaminated
distribution, and a subsample of size n · cp, associated with a
contaminated one. CD plays an additional contamination role,
measuring how far the distribution of the contaminated subsample
is from the distribution of the non-contaminated one (and ranges
in {0, 1, 5, 10, 100});

• 16 situations for different values of cp and CD have been consid-
ered, and for each of them two cases have been selected, namely,
one in which the random variables Xi are independent (CASE 1)
and another one in which they are dependent (CASE 2). More
specifically, CASE 1 assumes that:

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the non-contaminated

subsample,

•• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the con-

taminated subsample,

whereas CASE 2 assumes that:

•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 for the
non-contaminated subsample (with χ2

1 independent of X1),

•• X1 ∼ N (0, 3)+CD andX2, X3, X4 ∼ 1/(X2
1+1)2+0.1·χ2

1+CD

for the contaminated subsample (with χ2
1 independent of X1).

In any case, the χ2
1 are assumed to be independent from 1/(X2

1 +
1)2.

Step 2. N = 1000 replications of Step 1 have been considered, so that for
each of the 16 situations concerning cp and cD there are 1000 available
samples of size n = 100000.

Step 3. The population Aumann-type mean for the non-contaminated dis-
tribution has been approximated by a Monte Carlo approach on
the basis of the 1000 × 100000 data from the first situation (cp
= CD = 0). For each of the 16 situations, the 1000 sample Auman-
type means as estimates of the population Aumann-type mean for
the non-contaminated distribution are computed. The variance of
the estimator has been approximated by the mean squared distance
between the mixed sample and the approximate population mean for
the non-contaminated distribution.
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Distances have been first computed by considering the L2 metric Dℓ
θ. It

is convenient to recall that, by particularizing Proposition 4.4.v) to p = 1,
one can easily obtain that

varφθ (X ) = Var(wablφ X ) + θ

[
Var(ldevφX ) + Var(rdevφX )

2

]
.

By using the notations

Var1 = Var(wablℓ X ),

Var2 = [Varℓ(ldevℓX ) + Varℓ(rdevℓX )]/2

=
1

2

∫
[0,1]

Varℓ(ldevℓX (α)) dℓ(α) +
1

2

∫
[0,1]

Varℓ(rdevℓX (α)) dℓ(α),

we have that
varℓθ(X ) = Var1 + θVar2.

Outputs for this simulation study have been collected in Table 1.

CASE 1 CASE 2

cp cD Var1 Var2 varℓθ(X ) Var1 Var2 varℓθ(X )

0 0 0.000013 0.000024 0.000013 + 0.000024 θ 0.000010 0.000003 0.000010 + 0.000003 θ

0.1 0 0.000018 0.127471 0.000018 + 0.127471 θ 0.000013 0.000224 0.000013 + 0.000224 θ
0.1 1 0.003465 0.221472 0.003465 + 0.221472 θ 0.003318 0.011735 0.003318 + 0.011735 θ
0.1 5 0.079310 0.923036 0.079310 + 0.923036 θ 0.079117 0.339279 0.079117 + 0.339279 θ
0.1 10 0.334993 2.401429 0.334993 + 2.401429 θ 0.338943 1.363894 0.338943 + 1.363894 θ
0.1 100 32.67662 153.0057 32.67662 + 153.0057 θ 33.47193 141.5996 33.47193 + 141.5996 θ

0.2 0 0.000022 0.515911 0.000022 + 0.515911 θ 0.000019 0.000965 0.000019 + 0.000965 θ
0.2 1 0.013198 0.927163 0.013198 + 0.927163 θ 0.013293 0.046946 0.013293 + 0.046946 θ
0.2 5 0.337334 3.648892 0.337334 + 3.648892 θ 0.324265 1.373463 0.324265 + 1.373463 θ
0.2 10 1.356969 9.576708 1.356969 + 9.576708 θ 1.330505 5.535713 1.330505 + 5.535713 θ
0.2 100 127.7963 616.7394 127.7963 + 616.7394 θ 130.9568 567.5711 130.9568 + 567.5711 θ

0.4 0 0.000031 2.092746 0.000031 + 2.092746 θ 0.000024 0.003353 0.000024 + 0.003353 θ
0.4 1 0.052929 3.657314 0.052929 + 3.657314 θ 0.051238 0.189347 0.051238 + 0.189347 θ
0.4 5 1.330964 14.69655 1.330964 + 14.69655 θ 1.352259 5.224873 1.352259 + 5.224873 θ
0.4 10 5.257282 39.60472 5.257282 + 39.60472 θ 5.313620 21.97364 5.313620 + 21.97364 θ
0.4 100 542.4229 2425.986 542.4229 + 2425.986 θ 534.3272 2280.200 534.3272 + 2280.200 θ

Table 1: Dφ
θ -Variances of the mixed (partially contaminated and non-

contaminated) simulated samples from random fuzzy numbers

On the basis of Table 1, one can empirically conclude that the dispersion
of the random fuzzy number, when measured in terms of the mean square
error about its expected value, is quite sensitive (in the sense of substan-
tially increasing) w.r.t. contamination, especially when the distribution of
the contaminated subsample is very far from the distribution of the non-
contaminated one (i.e., with large cD). The dispersion increases with the
value of the parameter θ, which weighs the effect of the dispersion in ‘shape’
(more concretely, in the left and right deviations about the central location).
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On the other hand, it is also interesting to analyze whether the choice of
Dφ

θ instead of Dφ
θ by Trutschnig et al. [33] leads or not to rather different

mean square errors, where, in case p = 1

Dφ
θ (Ũ , Ṽ ) =

√∫
[0,1]

[mid Ũα −mid Ṽα]
2 dφ(α) + θ

∫
[0,1]

[spr Ũα − spr Ṽα]
2 dφ(α).

To check the possible influence of such a choice, we take into account that

Varℓ(midX ) =

∫
[0,1]

Var(midXα) dℓ(α), Var
ℓ(sprX ) =

∫
[0,1]

Var(sprXα) dℓ(α),

Varℓθ(X ) = Varℓ(midX ) + θVarℓ(sprX ).

Outputs for this simulation study and Dℓ
θ have been collected in Table 2.

CASE 1 CASE 2

cp cD Varℓ(mid) Varℓ(spr) Varℓθ(X ) Varℓ(mid) Varℓ(spr) Varℓθ(X )

0 0 0.000014 0.000023 0.000014 + 0.000023 θ 0.000010 0.000003 0.000010 + 0.000003 θ

0.1 0 0.000019 0.127470 0.000019 + 0.127470 θ 0.000013 0.000224 0.000013 + 0.000224 θ
0.1 1 0.003466 0.221471 0.003466 + 0.221471 θ 0.003318 0.011735 0.003318 + 0.011735 θ
0.1 5 0.079311 0.923035 0.079311 + 0.923035 θ 0.079117 0.339279 0.079117 + 0.339279 θ
0.1 10 0.334994 2.401428 0.334994 + 2.401428 θ 0.338943 1.363894 0.338943 + 1.363894 θ
0.1 100 32.67661 153.0056 32.67661 + 153.0056 θ 33.47193 141.5996 33.47193 + 141.5996 θ

0.2 0 0.000024 0.515910 0.000024 + 0.515910 θ 0.000019 0.000965 0.000019 + 0.000965 θ
0.2 1 0.013199 0.927162 0.013199 + 0.927162 θ 0.013293 0.046946 0.013293 + 0.046946 θ
0.2 5 0.337335 3.648890 0.337335 + 3.648890 θ 0.324265 1.373463 0.324265 + 1.373463 θ
0.2 10 1.356971 9.576707 1.356971 + 9.576707 θ 1.330505 5.535713 1.330505 + 5.535713 θ
0.2 100 127.7962 616.7393 127.7962 + 616.7393 θ 130.9568 567.5710 130.9568 + 567.5710 θ

0.4 0 0.000033 2.092744 0.000033 + 2.092744 θ 0.000024 0.003353 0.000024 + 0.003353 θ
0.4 1 0.052931 3.657312 0.052931 + 3.657312 θ 0.051238 0.189347 0.051238 + 0.189347 θ
0.4 5 1.330965 14.69655 1.330965 + 14.69655 θ 1.352259 5.224872 1.352259 + 5.224872 θ
0.4 10 5.257283 39.60472 5.257283 + 39.60472 θ 5.313621 21.97364 5.313621 + 21.97364 θ
0.4 100 542.4229 2425.985 542.4229 + 2425.985 θ 534.3272 2280.200 534.3272 + 2280.200 θ

Table 2: Dφ
θ -Variances of the mixed (partially contaminated and non-

contaminated) simulated samples from random fuzzy numbers

By comparing Tables 1 and 2, one can easily see, regardless the considered
perturbations cp and cD, that differences between the outputs for Dφ

θ and
Dφ

θ are really small, so there is no essential distinction between them in
computing the mean square error (see Table 3 to clearly corroborate this
assertion).

Nevertheless, we should emphasize once more that, for theoretical and
optimization purposes, there is a clear advantage in favour of Dφ

θ in contrast
to Dφ

θ . This is due to the fact that the first one is based on a representation
for which one has sufficient conditions characterizing fuzzy vectors, what does
not happen for the second one.

24



cp cD varℓθ(X ) − Varℓθ(X ) (CASE 1) varℓθ(X ) − Varℓθ(X ) (CASE 2)

0 0 .00000083(1 − θ) .0000000087(1 − θ)

.1 0 .00000109(1 − θ) .0000000083(1 − θ)

.1 1 .00000100(1 − θ) .0000000093(1 − θ)

.1 5 .00000105(1 − θ) .0000000084(1 − θ)

.1 10 .00000092(1 − θ) .0000000086(1 − θ)

.1 100 .00000102(1 − θ) .0000000087(1 − θ)

.2 0 .00000120(1 − θ) .0000000086(1 − θ)

.2 1 .00000124(1 − θ) .0000000083(1 − θ)

.2 5 .00000118(1 − θ) .0000000080(1 − θ)

.2 10 .00000122(1 − θ) .0000000088(1 − θ)

.2 100 .00000131(1 − θ) .0000000090(1 − θ)

.4 0 .00000164(1 − θ) .0000000089(1 − θ)

.4 1 .00000166(1 − θ) .0000000084(1 − θ)

.4 5 .00000173(1 − θ) .0000000091(1 − θ)

.4 10 .00000170(1 − θ) .0000000084(1 − θ)

.4 100 .00000157(1 − θ) .0000000083(1 − θ)

Table 3: Comparative simulation study on the difference between the sample vari-
ances of random fuzzy numbers based on two different L2 metrics

5. Concluding remarks

In this paper, a parameterized L2 metric between fuzzy vectors has been
introduced. The metric shows the following two main features:

• its weight parameter allows weighing the effect of the deviation in cen-
tral location in contrast to the deviation in shape, and

• it is based on a representation of fuzzy vectors for which there exist
sufficient conditions for characterizing fuzzy vectors.

Furthermore, simulation developments have shown that it behaves in a
very similar way to a previous metric by Bertoluzza et al. [3] (see Trutschnig
et al. [33] for the p-dimensional version), with the added value of the high-
lighted second feature which is not fulfilled for Bertoluzza et al.’s distance.

The decomposability of the mean square error based on this metric, along
with its properties and features, will be useful in future applications. Among
them, it would be interesting to consider how it can be adapted to deal with
regression problems involving fuzzy random vectors.
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Grant BP12012 (de la Rosa de Sáa). Their financial support is gratefully
acknowledged.

References

[1] G. Aletti, E.G. Bongiorno, A decomposition theorem for fuzzy set-valued random
variables, Fuzzy Set Syst. 219 (2013) 98–112.

[2] I. Beg, S. Ashraf, Simmilarity measures for fuzzy sets, Appl. and Comput. Math.,
8(2) (2009) 192–202.

[3] C. Bertoluzza, N. Corral, A. Salas, On a new class of distances between fuzzy num-
bers, Math. Soft. Comput. 2 (1995) 71–84.

[4] A. Blanco-Fernández, M.R. Casals, A. Colubi, N. Corral, M. Garćıa-Bárzana, M.A.
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[17] P.K. Ghosh, K.V. Kumar, Support function representation of convex bodies, its
application in geometric computing, and some related representations, Comp. Vis.
Im. Under. 72(3) (1998) 379–403.
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