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1. Introduction 

The design of dynamic kinetic resolutions (DKRs) is an 

attractive manner to afford enantiopure compounds in 

theoretically 100% yield starting from racemates.1 These 

processes usually require the proper combination of a desired 

transformation with the in situ racemization of the slow-reacting 

enantiomer, so the action of mainly chiral auxiliaries, 

organocatalysts and metal-catalysis has been widely explored in 

recent decades.2 Biocatalytic transformations have gained 

increasing attention in the development of sustainable DKR 

processes due to the compatibility of chemical and enzymatic 

catalysts for selected reactions,3 enabling the asymmetrization of 

racemic alcohols, amines and carboxylic acid derivatives using 

mainly hydrolases as biocatalysts.2,4 More recently, the use of 

other classes of enzymes such as alcohol dehydrogenases5 and 

transaminases have opened a myriad of opportunities in the 

development of efficient DKR processes.6 

The design of enzyme-catalyzed DKRs under spontaneous 

conditions is especially attractive as simplifies the overall process 

without requiring the addition of external catalyst (i.e. bases, 

metal-complexes, auxiliaries, etc).7 This fact facilitates not only 

the optimization of the enzymatic process but also the isolation of 

the aimed optically active compound, avoiding undesired 

epimerization processes in some cases. Without any doubt, the 

presence of labile hydrogen atoms in the structural core of the 

racemate determines the possible application of this 

methodology. For instance, our group has recently reported the 

DKR of 1,3-dihydro-2H-isoindole-1-carboxylic acid methyl ester 

taking advantage of a deprotonation-protonation process of the 

achiral intermediate, which occurs under Pseudomonas cepacia 

lipase-catalyzed alkoxycarbonylation conditions (Figure 1 left).8 

Among biologically active compounds, -aminophosphonic 

acids have attracted a special interest in the latest decades.9 These 

analogues of -amino acids possess a phosphonic acid group 

rather than the carboxylic acid functionality. As a result, -

aminophosphonic acids and peptides incorporating them exhibit a 

broad range of biological and pharmacological activities.10 The 

outstanding properties of -aminophosphonic acids and 

phosphonates have stimulated the development of synthetic 

strategies towards the preparation of these compounds,11 being of 

special interest those leading to optically active compounds. 

Herein we wish to explore the enzyme-catalyzed resolution of 

the phosphonic counterpart of 1,3-dihydro-2H-isoindole-1-

carboxylic acid methyl ester, this is dimethyl (1,3-dihydro-2H-

isoindol-1-yl)phosphonate (Figure 1 middle), a phosphoproline 

analogue which is present in the structure of selective irreversible 

inhibitors of dipeptidyl peptidases 8 (DPP8) and 9 (DPP9).12 To 

the best of our knowledge, the biocatalyzed resolution of cyclic 

-aminophosphonic acid derivatives has been only reported in 

the lipase-catalyzed alkoxycarbonylation of dimethyl pyrrolidine-

2-phosphonate (Figure 1 right), finding moderate selectivity 

values after an exhaustive enzymatic study.13 
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Figure 1. Structure of 1,3-dihydro-2H-isoindole-1-carboxylic acid methyl 

ester, dimethyl (1,3-dihydro-2H-isoindol-1-yl)phosphonate and dimethyl 

pyrrolidine-2-phosphonate. 

2. Results and discussion 

The synthesis of racemic dimethyl (1,3-dihydro-2H-isoindol-

1-yl)phosphonate (2) was performed starting from commercially 

available phthalimide. This procedure involves a three-step 

sequence towards the N-Boc protected precursor 1,14 which was 

deprotected under acidic conditions in 90% yield (Scheme 1). 

Prior to develop enzymatic transformations, the allyl and benzyl 

racemic carbamates 4a-b were prepared using allyl chloroformate 

(3a) or benzyl chloroformate (3b) in 70% and 99% isolated yield 

respectively. These racemates were only used for analytical 

purposes in the development of reliable chiral methods for the 

measurement of the enantiomeric excess values once the 

biocatalyzed products were obtained. 

 

Scheme 1. Chemical synthesis of racemic dimethyl (1,3-dihydro-2H-
isoindol-1-yl)phosphonate and related allyl and benzyl carbamates 4a,b. 

Based on the excellent results found in the resolution of 1,3-

dihydro-2H-isoindole-1-carboxylic acid methyl ester,8 the 

resolution of aminophosphonate 2 was attempted through an 

alkoxycarbonylation reaction using a series of lipases that 

includes Pseudomonas cepacia lipase (PSL-C I), Candida 

antarctica lipase type B (CAL-B) and Candida antarctica lipase 

type A (CAL-A). The enzymatic screening was conducted at a 

140 mM substrate concentration in tert-butyl methyl ether 

(MTBE) at 30 ºC (Table 1), initially using commercially 

available diallyl carbonate (5a). In contrast with the excellent 

activity displayed towards the carbamoylation of 1,3-dihydro-

2H-isoindole-1-carboxylic acid methyl ester,8 PSL-C I did not 

display any activity against the homologue phosphonate 2 (entry 

1). Similarly, the racemic starting material was recovered 

untouched in the reaction with CAL-B (entry 2). Satisfyingly, 

CAL-A catalyzed the formation of (R)-4a in 78% ee and 50% 

conversion after 92 h (entry 3), obtaining the remaining 

aminophosphonate (S)-2 in 26% ee. This poor optical purity of 

the substrate at a considerable conversion value suggests its 

racemization in the reaction medium, so the possibility of 

achieving a suitable DKR process was opened at this time. We 

propose a deprotonation-protonation equilibrium through an 

achiral enolate intermediate, as occurs with its 1,3-dihydro-2H-

isoindole-1-carboxylic acid methyl ester analogue.8 

Then, the enzymatic study was continued employing a series 

of carbonates, such as commercially available dibenzyl carbonate 

(5b) and easily to prepare allyl 3-methoxyphenyl carbonate (5c)15 

in combination with CAL-A. On the one hand, the dibenzyl 

carbonate was used although no conversion was observed (entry 

4). On the other hand, high conversions and selectivities were 

observed with the more reactive allyl 3-methoxyphenyl carbonate 

5c (entries 5 and 6), obtaining the (R)-allyl carbamate 4a in 58% 

isolated yield and 96% ee after column chromatography, while 

the substrate was recovered almost in racemic form when the 

reaction was carried out in toluene as solvent. It must be noticed 

that the optical purity of the amino phosphonate decreased at 

prolonged times under air conditions, demonstrating the lability 

of the hydrogen atom in the -position to the phosphonate group. 

In all cases, the remaining amino phosphonate 2 and the 

corresponding carbamate were found as unique products in the 

biotransformation, although a side hydrolysis reaction or 

decomposition are not discarded during the purification step 

using a column chromatography on silica gel. 

  

Table 1. Asymmetric alkoxycarbonylation of racemic aminophosphonate 2 using different lipases (ratio 2:1 lipase:substrate w/w) 

and 2.5 equiv. of alkyl carbonates at 30 ºC and 250 rpm. 

 

Entry Lipase Solvent Carbonate 5a-c t (h) c (%)a eeP (%)b eeS (%)b 

1 PSL-C I MTBE 5a 24 <1 ---- ---- 

2 CAL-B MTBE 5a 48 <1 ---- ---- 

3 CAL-A MTBE 5a 92 50 78 26 

4 CAL-A MTBE 5b 24 <1 ---- ---- 

5 CAL-A MTBE 5c 27 67 87 32 

6 CAL-A Toluene 5c 47 77 96 (58) 9 
a Conversion values determined by 1H-NMR of the reaction crudes. Isolated yields in parentheses. 
b Enantiomeric excess values determined by HPLC analysis. 
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Table 2. Dynamic kinetic resolution of racemic aminophosphonate 2 using CAL-A and allyl 3-methoxyphenyl carbonate in 

toluene at 250 rpm. 

 

Entry CAL-Aa 5c (equiv.) (±)-2 (mM) T (ºC) t (h) c (%)b eeP (%)c 

1 2:1 2.5 140 30 47 77 96 

2 4:1 2.5 140 30 46 62 95 

3 2:1 2.5 140 45 47 68 94 

4 2:1 2.5 280 30 46 59 91 

5 2:1 10 140 30 71 57 85 
a Ratio CAL-A:aminophosphonate (w/w). 
b Conversion values determined by 1H-NMR of the reaction crudes. 
b Enantiomeric excess values determined by HPLC analysis. 

 

Exploring other reaction conditions for the asymmetric 

synthesis of the allyl carbamate (R)-4a, a series of reaction 

parameters were considered such as an increase in enzyme and 

carbonate 5c loadings, and the use of higher substrate 

concentrations and temperatures (Table 2). Doubling the amount 

of enzyme did not affect significantly the reaction, observing a 

slight reduction of the conversion but maintaining the selectivity 

(entries 1 and 2), while the use of higher temperatures did not 

significantly affect the final results (entry 3). A higher substrate 

concentration (280 mM) did not lead to a beneficial impact either 

in the kinetic or the selectivity of the process (entry 4). Finally, 

the DKR was attempted with a significant excess of the carbonate 

5c but the enantiomeric excess of the carbamate and the 

conversion were considerably lower even at prolonged reaction 

times (entry 5). 

Absolute configuration of the allyl carbamate 4a resulting 

from the resolution catalyzed by CAL-A at 30 ºC (entry 6, Table 

1) was determined by 1H-NMR analyses. The synthesis of the 

corresponding Mosher amide derivative 6 was required, firstly 

starting from racemic 2 and later using the allyl carbamate 4a 

obtained in 96% ee under enzyme-catalyzed DKR conditions 

(Scheme 2). Derivatization of the free aminophosphonate (±)-2 

was performed employing the (S)-(+)--methoxy--

(trifluoromethyl)phenylacetyl chloride (MTPA-Cl) in the 

presence of triethylamine. Firstly, the mixture of 

diastereoisomeric Mosher amides (RS,R)-6 was prepared 

(Scheme 2 top), clearly finding two doblet signals in the 1H-

NMR spectrum at 5.87 ppm (2JPH = 9.0 Hz) and 5.99 ppm (2JPH = 

8.9 Hz) corresponding to the CH in α position to the nitrogen 

atom (Figure 2). The doblet signal at higher fields corresponds to 

the (R,R)-6 due to the magnetic anisotropy caused by the phenyl 

ring, while at lower fields the (S,R)-6 diastereoisomer was found 

with the hydrogen atom and the phenyl ring at opposite sides. 

Secondly, the allyloxycarbonyl group of 4a obtained in the 

lipase-catalyzed alkoxycarbonylation was deprotected by reaction 

with 1,3-dimethylbarbituric acid (DMBA), palladium (II) acetate 

and triphenylphosphine (Scheme 2 bottom). Thus, the 

corresponding free aminophosphonate 2 was isolated and 

immediately derivatized using (S)-MTPA-Cl in the presence of 

triethylamine to afford the desired optically active Mosher amide 

6 in good yield. 

Comparison of the 1H-NMR spectra of the diastereoisomeric 

mixture of Mosher amides and the corresponding to the Mosher 

derivative of the optically active product (Figure 3), allowed us 

to define (R)-configuration for the chiral center in the isoindoline 

core, and then a (R,R)-stereochemistry for the Mosher amide 6. 

Partial epimerization was observed after the deprotection-

derivatization sequence (91% diastereomeric excess from a 

starting 96% enantiomeric excess), highlighting the lability of 

this type of compound, although the racemization occurs in a 

little extent in comparison with the homologue methyl ester.8 

 

Figure 2. 1H-NMR spectrum window with representative signals for the 

mixture of diastereoisomeric Mosher amides (RS,R)-6. For simplicity P 
represents the dimethyl phosphonate functionality. 
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Scheme 2. Synthesis of Mosher amide derivatives for the determination of the absolute configurations of allyl carbamate 4a obtained in the biocatalyzed DKR 
using CAL-A. 

 

Figure 3. 1H-NMR spectrum window with representative signals for the 

Mosher amide derivative (R,R)-6 isolated in 91% de. For simplicity P 
represents the dimethyl phosphonate functionality. 

3. Conclusion 

Lipase-catalyzed transformations have been studied for the 

resolution of dimethyl (1,3-dihydro-2H-isoindol-1-

yl)phosphonate. The approach was based on the 

alkoxycarbonylation reaction of the free amino group, developing 

a dynamic kinetic resolution process motivated by the in situ 

racemization of the slower reacting enantiomer in the biocatalytic 

process in the absence of auxiliaries. The combination of 

Candida antarctica lipase type A and allyl 3-methoxyphenyl 

carbonate using toluene as solvent under mild reaction conditions 

led to the recovery of the (R)-allyl carbamate in 58% isolated 

yield and 96% enantiomeric excess. A series of reaction 

parameters were studied searching for a global knowledge of the 

biocatalyzed transformation, although in all cases conversions 

were up to 77% generally obtaining high selectivities. 1H-NMR 

analyses served for the assignment of the absolute configuration 

of the resulting (R)-allyl carbamate, after its convenient 

transformation into the corresponding Mosher amide derivative. 

4. Experimental 

4.1. General 

Pseudomonas cepacia lipase type I immobilized over a 

ceramic support (PSL-C I, Amano, 1019 U/g), was purchased 

from Sigma-Aldrich. Candida antarctica lipase type B (CAL-B, 

Novozyme 435, 7300 PLU/g) was a gift from Novozymes 

(Denmark). Candida antarctica lipase A (CAL-A, 2.6 U/mg 

solid) was purchased from Codexis.  

All other reagents and solvents were used as received from 

commercial suppliers without further purification. Column 

chromatographies were performed using silica gel 60 (230-240 

mesh) purchased from Merck. Melting points were measured in a 

Gallenkamp apparatus, and taken on samples in open capillary 

tubes. IR spectra were recorded on a Varian 1000 FT-IR 

spectrometer using NaCl plates or KBr pellets. 1H, 13C and DEPT 

NMR experiments were performed using AV-300 and DPX-300 

Brüker spectrometers at room temperature (1H, 300.13 MHz and 
13C, 75.5 MHz). The chemical shifts are given in delta () values 

and the coupling constants (J) in Hertz (Hz). High-resolution 

mass spectra were recorded on a Bruker Microtof-Q 

spectrometer. Enantiomeric excess values were determined 

through HPLC analyses using an Agilent 1100 Series 

chromatogram with a 20% of 2-propanol/hexane as eluent with a 

0.8 mL/min flow at 30 ºC. A Chiralcel OJ-H (25 x 4.6 mm i.d.) 

column was used for the allyl carbamate 4a 8.0 minutes for the 

(R)-enantiomer and 9.7 minutes for the (S)-enantiomer and for 

the benzyl carbamate 4b (14.7 and 23.8 minutes), while a 

Chiralpak AS (25 x 4.6 mm i.d.) column was used for the free 

aminophosphonate 2 13.1 minutes for the (R)-enantiomer and 

19.1 minutes for the (S)-enantiomer. 

4.2. Synthesis of dimethyl (1,3-dihydro-2H-isoindol-1-
yl)phosphonate, 2 

A suspension of N-Boc protected aminophosphonate 1 (200 

mg, 0.61 mmol) in an aqueous HCl 3 M solution (10 mL) was 

stirred at room temperature for 6 h until complete solubility of 

the mixture. The solution was basified with an aqueous NaOH 4 

M solution (10 mL) and extracted with CH2Cl2 (3 x 15 mL). The 

organic phases were combined, dried over Na2SO4, filtered and 

the solvent was evaporated under reduced pressure, yielding the 

racemic and free-protected aminophosphonate 2 as a colourless 

viscous liquid (90%). Rf (70% EtOAc/hexane): 0.24. IR (NaCl)  

3417, 1594, 1230, 1034 cm-1. 1H-NMR (CDCl3, 300.13 MHz)  

3.58 (d, 3JPH= 10.3 Hz, 3H, OMe), 3.75 (d, 3JPH= 10.4 Hz, 3H, 

OMe), 4.23-4.44 (m, 2H, H3), 4.78 (d, 2JPH = 7.7 Hz, 1H, H1), 

5.26 (brs, 1H, NH), 7.19-7.29 (m, 3H, Ar), 7.46 (dd, 3JHH = 5.2, 

4JHH = 1.8 Hz, 1H, Ar) ppm. 13C-NMR (CDCl3, 75.5 MHz)  52.5 

(d, 3JPC = 2.4 Hz, CH2, C3), 53.2 (d, 2JPC = 7.3 Hz, CH3, OMe), 

53.6 (d, 2JPC = 7.2 Hz, CH3, OMe), 60.6 (d, 1JPC = 159.3 Hz, CH, 

C1), 122.6 (d, JPC = 2.2 Hz, CH, Ar), 123.9 (d, JPC = 3.3 Hz, CH, 

Ar), 127.1 (d, JPC = 2.9 Hz, CH, Ar), 128.0 (d, JPC = 3.0 Hz, CH, 

Ar), 136.3 (d, 3JPC = 3.9 Hz, C, C3a), 141.7 (d, 2JPC = 7.2 Hz, C, 
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C7a) ppm. HRMS (ESI+, m/z) calcd for C10H14NNaO3P

+ 

(M+Na)+: 250.0604, found: 250.0606. 

4.3. Synthesis of dimethyl [N-(allyloxycarbonyl)-1,3-dihydro-
2H-isoindol-1-yl]phosphonate, 4a 

Pyridine (23.5 µL, 0.29 mmol, 1.11 equiv.) and allyl 

chloroformate (3a, 30.8 µL, 0.29 mmol, 1.11 equiv.) were 

successively added to a solution of racemic aminophosphonate 2 

(60 mg, 0.26 mmol) in dry dichloromethane (1 mL) and under 

inert atmosphere. The solution was stirred at room temperature 

for 2 h, and after this time the solvent was evaporated under 

reduced pressure. The reaction crude was purified through 

column chromatography on silica gel (80% EtOAc/hexane as 

eluent), yielding the racemic carbamate 4a as a white solid (70% 

isolated yield). Rf (80% EtOAc/hexane): 0.30. Mp: 74-76 ºC. 1H-

NMR (CDCl3, 300.13 MHz) δ (dupplicated signals are observed 

for some protons and they have been shown in brackets; asterisks 

indicate those ones corresponding to the minor rotamer) [3.45* 

(d, 3JPH = 10.4 Hz) + 3.52 (d, 3JPH = 10.5 Hz, 3H, OMe)], [3.77* 

(d, 3JPH = 10.7 Hz) + 3.85 (d, 3JPH = 10.7 Hz, 3H, OMe)], 4.59-

4.63 (m, 3H, H3 + H1’), 5.24 (d, 2JHH = 10.4 Hz, 1H, H3’), 5.36 

(dd, 2JHH = 10.4 Hz, 3JHH = 17.1 Hz, 1H, H3’), [5.50* (d, 2JPH = 

6.4 Hz) + 5.54 (d, 2JPH = 6.6 Hz, 1H, H1)], 5.97 (ddt, 3JHH = 16.4, 

10.6, 5.5 Hz, 1H, H2’), 7.26-7.35 (m, 3H, Ar), 7.45-7.56 (m, 1H, 

Ar) ppm. 13C-NMR (CDCl3, 75.5 MHz)  (dupplicated signals 

are observed for most of the carbon atoms and they have been 

shown in brackets; asterisks indicate those ones corresponding to 

the minor rotamer; doblet signals for the methoxy rotamers 

appears overlapped) [52.5 + 52.8* (CH2, C3)], 53.5-53.7 (m, 

2CH3, OMe), 59.8 (d, 1JPC = 158.8 Hz, CH, C1), [66.6 + 66.8* 

(CH2, C1’)], [117.9 + 118.3* (CH2, C3’)], [122.6 + 122.7* (CH, 

Ar)], 124.3 (CH, Ar), 127.7 (CH, Ar), 128.5 (CH, Ar), 132.7 

(CH, C2’), 134.1 (C, Ar), 137.9 (C, Ar), 154.7 (C, C=O) ppm. 

HRMS (ESI+, m/z) calcd for C15H22NNaO5P
 + (M+Na)+: 

334.0815, found: 334.0825. 

4.4. Synthesis of dimethyl [N-(benzyloxycarbonyl)-1,3-
dihydro-2H-isoindol-1-yl]phosphonate, 4b 

Pyridine (23.5 µL, 0.29 mmol, 1.11 equiv.) and benzyl 

chloroformate (3b, 41.4 µL, 0.29 mmol, 1.11 equiv.) were 

successively added to a solution of racemic aminophosphonate 2 

(60 mg, 0.26 mmol) in dry dichloromethane (1 mL) and under 

inert atmosphere. The solution was stirred at room temperature 

for 2 h, and after this time the solvent was evaporated under 

reduced pressure. The reaction crude was purified through 

column chromatography on silica gel (80% EtOAc/hexane), 

yielding the carbamate 4b as a light yellow liquid (99% isolated 

yield). Rf (100% EtOAc): 0.49. IR (NaCl): 1707, 1411, 1359, 

1282, 1031 cm-1. 1H-NMR (CDCl3, 300.13 MHz) δ (dupplicated 

signals are observed for some protons and they have been shown 

in brackets; asterisks indicate those corresponding to the minor 

rotamer) [3.38* (d, 3JPH = 10.4 Hz) + 3.51 (d, 3JPH = 10.4 Hz, 3H, 

OMe)], [3.57* (d, 3JPH = 10.7 Hz) + 3.84 (d, 3JPH = 10.7 Hz, 3H, 

OMe)], 4.59-4.74 (m, 1H, H3), 4.87-5.07 (m, 1H, H3), 5.14-5.29 

(m, 2H, Cbz), [5.49* (d, 2JPH = 6.5 Hz) + 5.56 (d, 2JPH = 5.9 Hz, 

1H, H1)], 7.19-7.54 (m, 9H, Ar) ppm. 13C-NMR (CDCl3, 75.5 

MHz)  (dupplicated signals are observed for most of the carbon 

atoms and they have been shown in brackets; asterisks indicate 

those ones corresponding to the minor rotamer) δ [52.5 + 52.8* 

(CH2, C3)], [53.3* (d, 2JPC = 6.7 Hz), 53.6 (d, 2JPC = 4.3 Hz, CH3, 

OMe),], 53.6-53.8 (m, CH3, OMe), 59.8 (d, 1JPC = 158.8 Hz, CH, 

C1), [67.6 + 67.9* (CH2, Cbz)], [122.5 (d, JPC = 3.0 Hz) + 122.6* 

(d, JPC = 3.1 Hz, CH, Ar)], [124.2* (d, JPC = 3.1 Hz) + 124.3 (d, 

JPC = 3.4 Hz, CH, Ar)], 127.6-127.8 (m, CH, Ar), 128.1 (CH, 

Ar), 128.3 (CH, Ar), 128.3-128.5 (m, CH, Ar), 128.6 (4CH, 

Cbz), [133.8 (d, JPC = 4.0 Hz), 134.0* (d, JPC = 3.5 Hz, C, Ar)], 

[136.2*, 136.4 (C, Cbz)], [137.7* (d, JPC = 5.4 Hz), 137.8 (d, 

JPC = 5.7 Hz, C, Ar)], [154.7*, 154.8 (C, C=O)] ppm. HRMS 

(ESI+, m/z) calcd for C18H20NNaO5P
+ (M+Na)+: 384.0971, found: 

384.0976. 

4.5. General procedure for the lipase-catalyzed dynamic 
resolution of dimethyl (1,3-dihydro-2H-isoindol-1-
yl)phosphonate, 2 

An erlenmeyer flask containing the racemic 

aminophosphonate 2 (100 mg, 0.44 mmol), the allyl 3-

methoxyphenyl carbonate (5c, 228 mg, 1.10 mmol, 2.5 equiv.) 

and CAL-A (200 mg, 2:1 in weight respect to the substrate) was 

stopped with a septum and an inert atmosphere was generated 

with the aid of a needle. Dry toluene (3.1 mL) was added and the 

reaction mixture was shaken at 30 ºC and 250 rpm for 47 h. The 

enzyme was removed by filtration, washed with CH2Cl2 (3 x 5 

mL), and the solvents removed under reduce pressure to reach a 

77% conversion value (1H-NMR of the reaction crude). The so-

obtained reaction crude was purified by column chromatography 

on silica gel to obtain the carbamate (R)-4a (58% isolated yield, 

96% ee) using a 80% EtOAc/hexane eluent, and the remaining 

amiophosphonate (S)-2 (9% ee) when eluting with a 100% 

EtOAc eluent. 20
D –58.3 (c 0.3, EtOH) for 96% ee. 

4.6. General procedure for the synthesis of the Mosher 
derivative (RS,R)-6 

The (S)-Mosher’s acid chloride (10 µL, 0.055 mmol, 1.25 

equiv.) and dry Et3N (8 µL, 0.055 mmol, 1.25 equiv.) were 

successively added to a solution of racemic aminophosphonate 2 

(10 mg, 0.044 mmol) in dry CH2Cl2 (0.5 mL) under inert 

atmosphere. The mixture was stirred for 10 h at room 

temperature and then CH2Cl2 (10 mL) was added. The solution 

washed with H2O (2 x 10 mL), dried with Na2SO4, filtered and 

concentrated under reduced pressure. The resulting residue was 

analyzed by 1H-NMR in order to identify characteristic signals 

for diastereoisomers (R,R)-6 and (S,R)-6. 

4.7. General procedure for the deprotection of the 
allyloxycarbonyl group of (R)-dimethyl [N-
(allyloxycarbonyl)-1,3-dihydro-2H-isoindol-yl]phosphonate, 
4a 

N,N-Dimethylbarbituric acid (27 mg, 0.17 mmol, 2.7 equiv.), 

Pd(OAc)2 (1.5 mg, 0.0064 mmol, 0.10 equiv.) and PPh3 (5.0 mg, 

0.019 mmol, 0.30 equiv.) were successively added to a solution 

of optically active carbamate (R)-4a (20 mg, 0.064 mmol, 96% 

ee) in dry CH2Cl2 (0.8 mL) under inert atmosphere. The mixture 

was stirred at reflux temperature during 1 h, and then it was 

slowly cooled until room temperature. Additional CH2Cl2 (10 

mL) was added to the solution, which was washed with water (2 

x 10 mL). The organic layer was dried with Na2SO4, filtered and 

concentrated under reduced pressure, yielding a reaction crude 

that mainly contains the free aminophosphonate (R)-2. A further 

purification of this reaction crude was discarded to avoid a 

possible racemization of the product. 

4.8. General procedure for the synthesis of the Mosher 
derivative (R,R)-6 

To a solution of the so-obtained residue from the removal of 

the allyloxycarbonyl group reaction (0.064 mmol for a 

theoretically 100% yield) in dry CH2Cl2 (0.7 mL) and under inert 

atmosphere, the (S)-Mosher’s acid chloride (15 µL, 0.080 mmol, 

1.25 equiv.) and dry Et3N (11 µL, 0.080 mmol, 1.25 equiv.) were 

successively added. The mixture was stirred for 10 h at room 

temperature and then CH2Cl2 (10 mL) was added. The solution 

was washed with H2O (2 x 10 mL), dried with Na2SO4, filtered 
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and concentrated under reduced pressure. The resulting residue 

was purified by column chromatography on silica gel (50% 

EtOAc/hexane), yielding the corresponding Mosher derivative 

(R,R)-6 with 91% de (76% isolated yield). 
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