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Abstract 
 

In this paper, the possibility of introducing random field theory into the cross-

entropy algorithm is studied. Cross-entropy algorithm is an optimization process that 

Walsh and González (2009) use to estimate the stiffness distribution of a structure 

given a set of displacements. Although this method has been successfully tested, 

many lines of improvement are still opened. Random field theory is incorporated 

into the algorithm in an attempt to account for spatial variability of stiffness 

throughout the structure. For this purpose, a correlation function, variable in space, 

is defined and, as a result, a modification of the algorithm is proposed. The modified 

algorithm is then tested using numerical simulations in a scenario consisting of a 

simply supported beam. 

 

Keywords: structural health, damage assessment, static testing, cross-entropy 

method, optimization algorithm, random field theory, spatial variability. 

 

1  Introduction 
 

The need for assessment of bridge structures is an urgent demand [1] that has 

provided the impetus for the development of many damage detection methods [2, 3, 

4, 5, 6]. In this context, Walsh and González [7] propose a method to predict the 

distribution of stiffness throughout the structure based on the finite element method 

(FEM), cross-entropy (CE) and static measurements. This technique has proven to 

be valid, under certain conditions, both in numerical simulations [7, 8] and lab 

experiments [9]. One of the assumptions of this technique is that the stiffness of a 

specific finite element is independent from other elements. However, it appears to be 

reasonable to think that a level of correlation will exist between the stiffness of 

different structural elements. 

In this regard, random field theory is a statistical approach that allows treating a 

certain property that varies in space (one, two or three dimensional) as a set of 
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correlated random variables. Correlation represents a way of measuring the degree 

of linear dependency between variables. In the case of flexural stiffness, it seems 

logical to think that random field theory could be used to describe its spatial 

variation. The use of random fields to describe spatial variability has already been 

explored by Stewart and others to study pitting corrosion in reinforced concrete 

beams [10, 11, 12]. 

In this paper, random field theory is incorporated into the original CE-based damage 

detection algorithm [7]. The modified algorithm is then tested through numerical 

simulations. Finally, results of the simulations are discussed. 

 

2  Cross-entropy algorithm 
 

The CE algorithm is attributed to Reuven Rubinstein [13] and it can be classified as 

an optimization algorithm, within the family of genetic algorithms. It was first 

applied to structural damage detection by Brian Walsh and Arturo González in 2009 

[7]. The first applications of the algorithm use input data from static loading tests 

although it can easily be extended to the use of dynamic data too [14]. This paper 

focuses in the use of static data, measured deflections in particular, which are 

obtained at a number of points in the structure. In this case, the response of the 

structure relies solely on the static equilibrium Equation (1):  
 

 f K u   (1) 

 

where f represents the force vector, K is the global stiffness matrix and u is a vector 

that contains the displacements of the structure. Knowing both f and K, the stated 

problem has a unique solution, i.e., there is only one set of displacements that 

satisfies the equation. However, knowing f and u only for a limited number of 

degrees of freedom, the calculation of K is a problem with multiple solutions, 

meaning that there are many variations of the stiffness matrix that can solve the 

equilibrium equation. The CE-based damage detection algorithm poses an iterative 

procedure that attempts to find the stiffness profile that best fits the static deflections 

used as inputs. Since damage can be characterized as a loss of stiffness over a 

certain area, the solution provided by the algorithm can determine whether or not 

structural damage is present, identifying its location and magnitude. 

Prior to the application of the CE optimisation procedure, the algorithm requires the 

formulation of a discretised FEM of the structure that accounts for features such as 

geometry and loading state. The location and magnitude of the applied loads is 

considered to be known. Boundary conditions are also assumed to be known but 

they may be modelled using springs whose constant could be modified. Regarding 

the level of discretisation, the number of elements depends on each particular case 

but it should always be chosen so that points where deflections have been measured 

match nodes of the FEM.  

Stiffness values for each element are treated as normal random variables by the 

algorithm. Accordingly, the first step consists in setting the initial parameters of the 

corresponding probability distributions: mean and standard deviation. Standard 

deviation is chosen to be the same for all elements whereas mean is chosen 
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randomly in the range of typical expected stiffness. The next step of the algorithm 

involves the creation of different versions of the structure which are called ‘trial 

beams’. Trial beams are created by assigning a stiffness value to each element, 

sampled randomly from its probability distribution. As a result, stiffness profiles of 

the trial beams are different, covering a wide range of possible distributions of 

stiffness. 

Then, for each trial beam, deflections are calculated using Equation (1) and 

compared to the measured ones by determining the sum of square errors. This 

comparison evaluates which trial beams lead to a deflection profile more similar to 

the target one. Trial beams are arranged according to this criterion and the ones in 

the top percentage are retained. The selected trial beams contain, for each particular 

element, a diversity of stiffness values that represent a sample of their distributions. 

However, since not all trial beams are being considered, this sample corresponds to 

a new distribution, which will be characterised by parameters different from those in 

the previous iteration. As a consequence, probability distributions are updated by 

calculating mean and standard deviation, for each element, of the sample of top trial 

beams, to be used in the next iteration of the algorithm 

The algorithm continues iterating until the convergence criterion is met. It is 

assumed that the algorithm converges when the rate of change of error over the last 

ten iterations falls below a predefined value. At the point of convergence, a tool 

known as ‘injection’ is applied to the solution of stiffness distributions. This term 

refers to the act of artificially widen distributions by increasing the value of the 

standard deviation, whose value decreased naturally throughout iterations. The 

purpose of the injection is to help the algorithm to avoid local minima and its 

number is a parameter of the algorithm set by the user. The first two injections reset 

standard deviations at their initial values and the magnitude of the following ones 

decreases inversely proportional to the number of injections yet to be applied. Once 

all injections have been applied, next convergence is considered to be the final one. 

When using injection, only the standard deviation is typically modified, except when 

convergence is achieved for the second time. At that point, mean is recalculated for 

each element based on the means of adjacent elements to profit from one of the 

biggest strengths of the algorithm, the accuracy on the determination of the global 

average stiffness value. 

 

3  Random field theory 
 

Random fields can be used to describe various phenomena or properties when a 

probabilistic approach is more suitable than a deterministic one. They can be applied 

to multiple scales in space and time and they can also serve to different kind of 

purposes [15]. A random field independent of time can be referred to as a random 

medium, where the value of the property described by the field at a certain point is 

deterministic. However, that value is actually unknown unless it has been measured, 

a task that is normally unfeasible for all points of the field [15].  

In order to model a structure, i.e., a beam, as a random field, it is necessary to 

discretise the continuous reality into a finite number of elements. Then, the value of 

the analysed property for each element is treated as a random variable, which can be 
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discrete or continuous. As a consequence, it is considered that the value of the field 

does not change inside the element and that the random variable is assigned to its 

centroid (midpoint method [12]). There will be as many random variables as the 

number of elements used to discretise the structure. 

Given two random variables (X, Y), their inter-dependence affects the shape of their 

joint probability distribution. In particular, the degree of linear dependence is 

measured by means of the correlation coefficient (ρ
X,Y

) in Equation (2). 

 

 
 

,
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  (2) 

 

where Cov[X,Y] represents the covariance of X and Y while σX and σY correspond to 

the standard deviation of X and Y, respectively. The value of the correlation 

coefficient ranges from -1 to +1, being ρ = |1| perfect correlation (positive or 

negative) and ρ = 0, no correlation. Figure 1 shows the joint probability distribution 

of two variables; both variables are assumed to have same mean (μX = μY = 100) and 

standard deviation (σX = σY = 1).  

 

 
Figure 1: Two normally distributed variables with no correlation 

 

It can be noticed that contours of equal probability density are centred at the point 

(μX, μY) with respect to which there is radial symmetry. In this case, no correlation 

between random variables has been considered. However, if variables are assumed 

to be correlated, being 0.75 the value of the coefficient of Equation (2), the 

distribution of probability is modified as illustrated by Figure 2.  
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Figure 2: Two normally distributed variables with correlation 

 

Due to the effect of correlation, the contours are not symmetrical anymore and 

combinations of values along the diagonal are more probable than off-diagonal ones 

[16]. It can also be noticed that more probability is concentrated around the centre 

point (μX, μY). The value of the coefficient described by Equation (2) has been 

selected so the effect of correlation is exaggerated to serve as an example. 

As a result of the previous analysis it is clear that, in order to fully characterize a 

random field, it is necessary to establish a correlation function that accounts for the 

degree of correlation between all the variables of the random field. In a 

homogeneous random field, the value of this function will only depend on the 

distance between elements [15]. In this paper, a correlation function, adopted for a 

1-D field, of the following form [16] is considered:  
 

  

2

0 01

x

xd
e



  

 
 
      (3) 

 

where ρ0 represents a constant component of the correlation function, τx is the 

distance between centroids of elements and dx is a parameter that is related to the 

distance at which the second term of the function begins to be irrelevant. The latter 

can be defined in terms of the scale of fluctuation (θx) [15] as dx = θx / π1/2. This 

function assigns higher correlation coefficients to elements close to each other while 

its value decreases as τx increases. The impact of different combinations of the 

parameters (ρ0, dx) in the shape of the correlation function is shown in Figure 3.  
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Figure 3: Correlation coefficient of Equation (3) for a range of parameters   

 

4  Cross-entropy algorithm with random field theory 
 

From the description of CE algorithm in section 2, it can be deduced that, to some 

extent, flexural stiffness (EI) was already been treated as a random field. The 

approach made in the algorithm is probabilistic rather than deterministic since 

stiffness at element centroids is considered to be a normal random variable, 

characterised by its mean and standard deviation. This fits the definition of random 

field: a property (EI) is described as a random field (one-dimensional in space for a 

beam) where observations of that property are made at discrete points (element 

centroids). Values of the random field at each of these points are random variables 

and observations are particular values of those random variables. A certain set of 

observations for all variables constitutes a realization of the random field [15]. 

Hence, the outcome of the algorithm could be seen as the stiffness random field that 

best fits the inputs, which were measured displacements of the structure. 

On the other hand, CE algorithm did not consider any correlation between stiffness 

of different elements in the iterative process. However, in a real structure, given that 

flexural stiffness depends solely on material properties and cross section geometry, 

the variation of this property from one point of the structure to another is bounded 

by physical and structural limitations. As a result, it could be assumed that variables 

of the random field are correlated and that the correlation coefficient would account 

for a realistic modelling of stiffness spatial variability. This implies modifying the 

process by which trial beams are generated in the algorithm. When correlation was 

not considered, trial beams were created by randomly extracting from each 

probability distribution as many values as the number of trial beams. This process 

was repeated independently for each element of the structure; that is, in order to 

generate one trial beam, a number of normal distributions were accessed 
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consecutively. However, if correlation is assumed to exist, stiffness for each element 

should be considered to be a normal variable being part of a multivariate normal 

distribution. As a consequence, CE algorithm is modified so that one trial beam is 

created just by accessing once this joint distribution, obtaining a vector of stiffness 

values (one per element of the beam). This process is repeated as many times as the 

number of trial beams set to be created.  

The multivariate normal distribution is characterised by a vector of means and a 

covariance matrix. The process for obtaining means and standard deviations remains 

unaltered but, since correlation is being considered, it is necessary to determine the 

covariance matrix. In this matrix, which is always symmetric and semi-positive 

definite, diagonal elements represent variances while non-diagonal elements 

correspond to covariances. Knowing the standard deviations and assuming a 

correlation function as defined by Equation (3), elements of the matrix can be 

computed from Equation (2) by clearing the covariance:  
 

  , 1,ij ij i j i j n         (4) 

 

where σij represents the element of the covariance matrix in row i and column j, ρij is 

the correlation coefficient between elements i and j according to Equation (3), σi and 

σj correspond to the standard deviation of elements i and j respectively, and, finally, 

n is the total number of elements in which the beam has been discretised.  

It should be noticed that for diagonal elements (i = j) the correlation coefficient will 

always be equal to one, since the correlation of one variable with respect to itself is 

absolute, and thus, variance is calculated as the square of the standard deviation, 

which is how it is statistically defined:  
 

  21 1,ii i i i i n          (5) 

 

where σii = σi
2
 represents the variance of element i, calculated as the square of its 

standard deviation, σi. 

 

5  Numerical simulations 
 

The algorithm is initially tested using the theoretical exact response of a 16 m long 

beam with constant section and homogenous material, i.e., constant flexural stiffness 

throughout the beam. Stiffness value is chosen so that deflection at mid-span would 

resemble that of a real bridge structure recently tested by the authors in León 

(Spain). The stiffness of that structure was found to be approximately 9750 MN·m
2
. 

The finite element beam model is considered to be simply supported at both ends. 

Deflections are simulated every 0.5 m using Equation (1), which results into a total 

of 31 control points evenly spaced along the structure. Finally, one concentrated 

load is considered to be acting at mid-span with a value of 400 MN. 

The selected parameters for the CE algorithm are as follows. The number of trial 

beams is 10000, which is a number that balances computational time and efficiency 

of the algorithm according to experience. The top percentage of these trial beams 
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used to update distributions is 10%. The discretised model of the beam is created 

using 2 elements per meter, so that every node of the model would correspond to a 

point were deflection has been simulated. Also, the number of convergences until 

the stop of the algorithm is fixed at four, which means that injection is applied three 

times. The rate of change of error for which convergence is considered to be met is 

set at 0.0001. Initial standard deviation for all probability distributions is set at 975 

MN·m
2
, 10% of the stiffness value mentioned above, and initial mean is randomly 

calculated in the range of that same stiffness value. 

Regarding the incorporation of random field theory into the CE algorithm, a number 

of approaches have been adopted: (I) correlation is introduced in the algorithm right 

from the start, so trial beams are created using the multivariate normal distribution in 

all iterations; (II) the correlation is introduced in a more advanced iteration and it 

was chosen to do this after the second convergence, since at that point means are re-

calculated for all elements as explained in section 2. As a result, during the first two 

convergences, values are drawn from independent normal distributions whereas for 

the last two, values are drawn from the multivariate normal distribution; (III) a final 

scenario is considered where correlation is only applied after the last injection. 

Several values are considered for the parameters of the correlation function defined 

by Equation (3) with the scale of fluctuation (dx) ranging from 0.25 m to 16 m. The 

constant component of the function (ρ0) varies between 0 and 1, in increments of 0.1.  

 

6  Results 
 

In a first group of tests, stiffness distributions are calculated five times (which differ 

due to the random nature of the algorithm) using the input model described in 

section 5 and the original CE algorithm, that is, without considering any kind of 

correlation. Figure 4 shows the stiffness profile for each of five applications of the 

algorithm as well as their average.  

 

 
Figure 4: Stiffness profiles, no correlation 
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The stiffness profiles represented in Figure 4 are built using the mean values of the 

element stiffness probability distributions corresponding to the best iteration of the 

algorithm (the one with the least sum of square errors), since mean is considered 

their most representative value. It can be seen that the algorithm is successful in 

predicting the stiffness profile of the structure. Predictions for stiffness values at the 

supports are less accurate, particularly for one single application of the algorithm; 

this is reflected by the values of standard deviations associated to the final 

probability distributions, which are greater near the boundaries of the structure [8, 

9]. The average of five simulations is computed in order to smooth the final solution, 

especially near the supports. When the outputs of several applications of the 

algorithm are averaged, the uncertainties near the supports are reduced considerably. 

The root mean square error for the average of five simulations is 206.81 MN·m
2
 

(2.12% error) while the average error for individual simulations is 616.65 MN·m
2
 

(6.32% error). Maximum errors correspond in both cases to elements 1 or 2 

(supports): 3.89% for the average and 26.14% for a single simulation. 

In a second group of tests, correlation is incorporated to the algorithm following the 

approach (I) described in section 5. In order to decide the ideal values of the 

parameters (ρ0, dx) of the correlation function, simulations are conducted with 

several combinations of those values in the ranges mentioned before. Again, the 

average of five applications of the algorithm is computed for each combination of 

parameters. Figure 5 represents a contour plot of all the tested cases where axis z 

corresponds to the root mean square error of the stiffness prediction.  

 

 
Figure 5: Stiffness prediction error depending on correlation function parameters  

 

Intuitively, one would think that a combination providing a minimum error would 

appear in the figure, which then could be selected as the optimum combination of 

values for the correlation parameters. However, the figure reveals that this is not the 

case, which in part could be due to the random nature of the algorithm; although, in 

fact, stiffness predictions made by the algorithm are slightly less accurate when 
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allowing for correlation. For example, the smallest error in the contour plot of 

Figure 5 is 280.71 MN·m
2
 (2.88% error for case ρ0 = 0 and dx = 0.25 m) compared 

to 206.81 MN·m
2
 (2.12% error) for the average profile in Figure 4. On the other 

hand, the largest error in Figure 5 corresponds to case ρ0 = 0 and dx = 4 m and its 

value is 1457.55 MN·m
2
 (14.95% error). This is clearly shown in Figure 6, which 

represents the stiffness profiles for one of the cases (ρ0 = 0.2 and dx = 1 m). 

 

 
Figure 6: Stiffness profiles, initial model of correlation 

 

In Figure 6, individual stiffness profiles for all simulations show greater variability 

than those in Figure 4. Here the average error for individual simulations is 1112.39 

MN·m
2
 (11.41% error). The average profile is also less accurate than the one 

obtained without introducing correlation. 

Finally, considering these results it is decided to delay the application of correlation 

within the algorithm. This third group of tests is based on the assumption that if the 

correlation function is applied once the stiffness distributions are closer to the target 

values, the behaviour of the algorithm will improve. In a first attempt, correlation is 

not applied until after the second injection (approach (II) defined in section 5) and, 

in a second attempt, it is only applied between the third injection and final 

convergence (approach (III) defined in section 5). In the last case, the predicted 

stiffness profiles are similar to the ones in Figure 4 (without correlation) and the root 

mean square error of the stiffness prediction is in the same order of magnitude. 

Figure 7 shows the stiffness profiles of the average of five simulations for multiple 

combinations of the correlation function parameters.  
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Figure 7: Stiffness profiles, final model of correlation 

 

As a summary, Table 1 shows the average of the predicted stiffness values 

throughout the structure and root mean square errors (RMS), both in absolute value 

and percentage, for the cases in Figure 4, 6 and 7. Errors in Table 1 correspond in all 

cases to the average of five simulations.  

 

Cases 
Average stiffness value 

(MN·m
2
) 

RMS 

(MN·m
2
) 

RMS (%) 

Original algorithm 9790.33 206.81 2.12 
Initial model of 

correlation (I) 
ρ0 = 0.2; dx = 1 m 9768.51 335.39 3.44 

Final model of 

correlation (III) 

ρ0 = 0.3; dx = 0.5 m 9812.01 284.53 2.92 

ρ0 = 0.2; dx = 1.5 m 9778.52 268.54 2.75 

ρ0 = 0.7; dx = 1.5 m 9715.38 406.25 4.17 

ρ0 = 0.4; dx = 2.5 m 9814.58 305.37 3.13 
ρ0 = 0; dx = 3.5 m 9785.02 297.30 3.05 

 

Table 1: Comparison between models 

 

It can be noticed from Table 1 how close the average stiffness predicted by the 

algorithm is to the target one (9750 MN·m2). The delay in incorporating correlation 

into the CE algorithm (approach (III)) has led to more accurate results than using 

correlation from the starting iteration (approach (I)), although the third case that 

illustrates approach (III) is the exception and it is an example of the effect of the 

random nature of the algorithm. However, the level of accuracy is within the same 

range as those results obtained without considering any correlation at all, as it is 

shown in Table 1. The latter is likely due to convergence being rapidly achieved 

after the last injection with correlation hardly having any impact on the results. The 

number of iterations where correlation is applied is small so results are almost the 

same as the ones obtained with the original version of the algorithm. 
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7  Conclusions 
 

In the past, cross-entropy has been used to predict the distribution of stiffness within 

a structure subjected to a static loading test, and this prediction is dependant on the 

number, location and accuracy of  available measurement points. The overall 

stiffness of the structure (average value) is predicted accurately, but predictions of 

stiffness for individual elements exhibit larger errors due to their sensitivity to the 

random nature of the algorithm. In order to address the latter, the average of the 

predictions obtained from several applications of the algorithms is used as the 

solution (which is typically closer to the true value and leads to a smoother profile 

than individual predictions).  

This paper has incorporated random field theory into the algorithm in an attempt to 

account for the spatial variability of stiffness in a structure. The initial expectations 

were that the stiffness profiles calculated by the new algorithm would reduce the 

error in of the prediction of elementary stiffness; however, this has not been the 

case. It is clear that the real stiffness of a structure can be seen as a random field, 

whose spatial variability can be modelled using a correlation function similar to 

Equation (3). Nevertheless, an accurate representation of reality by the random field 

requires knowing the true value of stiffness at a number of points, not only the shape 

of its correlation function. In the cross-entropy algorithm, the real stiffness is 

precisely the unknown and its value is updated at each iteration. Therefore, if the 

correlation function is applied to the intermediate random values of stiffness that are 

generated in the cross-entropy iterative procedure, the assumed random field 

happens to be unable to represent the actual stiffness distribution. As a result, further 

research aims to adapt the algorithm to be able to predict not only the stiffness 

profile producing the closer deflection to the measured one but also the random field 

giving the better resemblance with reality. 
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