
Fuzzy preorders: conditional extensions,

extensions and their representations

J. C. R. Alcantud
University of Salamanca

http://borda.usal.es
jcr@usal.es

S. Dı́az
University of Oviedo

http://unimode.uniovi.es
diazsusana@uniovi.es

Abstract

The crisp literature provides characterizations of the preorders that
admit a total preorder extension when some pairwise order comparisons
are imposed on the extended relation. It is also known that every preorder
is the intersection of a collection of total preorders. In this contribution we
generalize both approaches to the fuzzy case. We appeal to a construction
for deriving the strict preference and the indifference relations from a
weak preference relation, that allows to obtain full characterizations in
the conditional extension problem. This improves the performance of the
construction via generators studied earlier.

keyword fuzzy relation, transitivity, acyclicity, consistency, extension, indica-
tor.

1 Introduction

This paper studies compatible extensions of fuzzy binary relations. The source
of inspiration is the classic Szpilrajn Theorem (cf. [27]), which states that every
partial order can be refined to a linear order or put in another form, that any
preorder has a total preorder extension (cf., Arrow [3, Chapter VI], Hansson
[23, Lemma 3]). This is an important principle that fostered many studies
to understand the significance of such refinements. A celebrated application
is given by Dushnik and Miller [16], who prove that any partial order is the
intersection of linear orders. Relatedly, Donaldson and Weymark [15] (see also
Bossert [8]) prove the parallel result for preorders, namely, that any preorder is
the intersection of total preorders.

We can also cite various fuzzy versions or extensions of Szpilrajn’s theo-
rem, like Georgescu [17, Theorem 5.4] and [18, Corollary 4.37], Gottwald [22,
Proposition 2.34] for t-norms withour zero divisors, or Zadeh [30, Theorem 8].
Bodenhofer and Klawonn [5, Theorem 6.7] conduct a detailed investigation of
linearity axioms for fuzzy orders. Höhle and Blanchard [25] produce variations
for antisymmetric preorders both of the extension theorem in their Theorem
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II.7 and of the intersection theorem in their Corollary II.8. Finally, Alcantud
and Dı́az [2] provide several new variations of the Szpilrajn theorem for fuzzy
preorders, in the spirit of [1]. We emphasize that in order to define the key
concept of compatible extension of a fuzzy reflexive relation, [2] relies on the
construction of an asymmetric part from the original relation that is based on
generators (cf., De Baets and Fodor [11]).

In this paper we provide several new extensions of Szpilrajn’s theorem for
fuzzy relations.

Firstly we depart from the precedent [2] in order to consider the alternative
approach to the construction of an asymmetric part from the original preference
relation in Georgescu [17]. We prove further results in the tradition of [1] (also
[2]), namely, on the identification of constraints that can be imposed to the
fuzzy total preorder extensions.

Secondly, we put forward new results inspired by the alternative approaches
by [15] and [25]. Hence we explore the problem of extending fuzzy relations
with fixed degrees of relation between pairs of elements. Then this technique is
applied to provide some general representation results for fuzzy relations. But in
addition to these novelties, along such programme we introduce indicators into
the analysis. We are interested in indicators which capture the degree to which
a fuzzy relation verifies a given property (e.g., reflexivity or min-transitivity).
The recourse to this notion permits to state properties of fuzzy relations which
are especially appealing when they are fuzzy preorders. Put differently, we
demonstrate that also in our framework (e.g., the investigation of representation
theorems), indicators allow us to extend statements on fuzzy preorders to fuzzy
relations.

This paper is organized as follows. In Section 2 we recall the results by
Alcantud [1] that inspire this paper, as generalized in [2]. In Section 3 we give
some notation and preliminaries on fuzzy relations and their extensions. Section
4 solves our main problems about conditional fuzzy extensions.

Section 5 introduces the approach by indicators in the context of [25]. Then
we take advantage of these results to prove our representation theorem of a
fuzzy preorder as the intersection of its fuzzy total preorder extensions, also
in terms of indicators for unrestricted fuzzy relations. Section 6 contains some
concluding remarks.

2 Crisp conditional extensions

In the context of crisp or classical relations, Alcantud [1] proves some character-
izations of preorders for which a total preorder exists, satisfying some additional
conditions as its extension. According to Alcantud and Dı́az [2] those charac-
terizations can be sligthtly extended within the crisp context. In this section
we recall the main results concerning classical relations in [2], including basic
definitions in crisp set theory.

Definition 2.1. A binary relation Q on a universe X is reflexive if aQa for all
a ∈ X. A weak preference is a reflexive relation.
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Associated with any weak preference relation R we can build its symmetric
component, called indifference relation and denoted by IR or simply I when there
is no danger of confusion. It is defined as aIRb if and only if aRb ∧ bRa. We
can also obtain an asymmetric component, called strict preference relation and
denoted by PR or simply P when there is no danger of confusion. It is defined
as aPb if and only if aRb ∧ ¬bRa.

Weak preference relations R are usually understood as follows: if a is con-
sidered at least as good as b then aRb, otherwise ¬aRb .

Definition 2.2. A binary relation Q on a universe X is

(a) transitive if for all a, b, c ∈ X it holds that (aQb and bQc) imply aQc ,

(b) acyclic if for any a1, . . . , an ∈ X it holds that

(a1Qa2 and a2Qa3 and . . . and an−1Qan) imply ¬anQa1 ,

(c) transitive-consistent if it is a weak preference relation R with strict prefer-
ence relation P such that for any a1, . . . , an ∈ X it holds that

(a1Pa2 and a2Ra3 and . . . and an−1Ran) imply ¬anRa1 ,

(d) total if aQb or bQa for all a 6= b ∈ X,

(e) complete if aQb or bQa for all a, b ∈ X,

(f) a preorder if it is transitive and reflexive,

Clearly, transitive-consistency is a condition weaker than transitivity.

Definition 2.3. The transitive closure of a relation Q is the smallest transitive
relation QT such that Q ⊆ QT .

It is easy to prove that the transitive closure of a relation Q is the intersection
of all the transitive relations that contain the relation Q.

Definition 2.4. If Q ⊆ Q′, then Q′ is an extension of Q. Given a weak
preference relation R1, a compatible extension of R1 is another weak preference
relation R2 defined on the same universe, such that R1 ⊆ R2 and PR1

⊆ PR2
,

where PRi
is the strict preference relation associated with Ri.

Alcantud [1] provides two characterizations for the class of transitive binary
relations that can be extended under certain conditions. His first theorem is
stated with the help of the following auxiliary relation:

Definition 2.5. Let R be a binary relation defined on a set of alternatives X.
Let XI = {a1, . . . , an, b1, . . . , bn} be an ordered set of possibly repeated elements
of X. The relation RA associated with XI and R is defined by aiR

Aaj if and
only if aiRbj.
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Theorem 2.1 (Alcantud [1]). Let R be a preorder on a set X. Let XI =
{a1, . . . , an, b1, . . . , bn} be an ordered list of possibly repeated elements of X.
The following statements are equivalent:

a) There is a total preorder R̃ that is a compatible extension of R such that
biP̃ ai for each i = 1, . . . , n, where P̃ denotes the asymmetric part of R̃.

b) RA associated with XI and R is acyclic.

In order to recall Alcantud’s second theorem we need to introduce new con-
cepts.

Definition 2.6. Let XI = {a1, . . . , ap, b1, . . . , bp} be an ordered list of possibly
repeated elements of X. For each c ∈ XI , let

δ(c) =

{
bi if c = ai ,
ai if c = bi .

Let Xn
I = {an+1, . . . , ap, bn+1, . . . , bp}. If n = p, then Xn

I = ∅.

Definition 2.7. The relation RI associated with R and XI is defined as follows:

aRIb if and only if aRδ(b), for all a, b ∈ XI .

We say that RI is δ-cyclic along Xn
I if c1R

Ic2 and c2R
Ic3 and . . . ckR

Ic1
implies that

δ(c1)RIδ(ck) . . . δ(c2)RIδ(c1), for all c1, . . . , ck ∈ Xn
I .

Definition 2.8. The relation RG associated with R, n ≤ p and XI is defined
by

aiR
Gaj =

(
aiRbj ∨

∨
{c1,...ck}⊆Xn

I

(aiRδ(c1) ∧ c1Rδ(c2) ∧ · · · ∧ ckRbj)
)
.

Remark 2.1. The relation RG connects those alternatives that will later be
connected by the extensions of R that satisfy some additional requirements. That
is, if we impose additional connections to the elements in XI and consider a
transitive extension R̃ of R satisfying those conditions, the relation RG connects
two elements aiR

Gaj if aiR̃bj.

Definition 2.9. The relation RG is δ-consistent with XI and n ≤ p if

ai1R
Gai2 , . . . , aikR

Gai1 implies it > n for all t ∈ {1, . . . , k} .

Theorem 2.2 (Alcantud [1]). Let R be a preorder on a set X. Let XI =
{a1, . . . , ap, b1, . . . , bp} be an ordered list of possibly repeated elements of X and
let n ≤ p. The following statements are equivalent:

a) There exists a total preorder R̃ that is a compatible extension of R such
that biP̃ ai for each i = 1, . . . , n, and biĨai for i = n + 1, . . . , p, where P̃
and Ĩ denote the asymmetric and symmetric components of R̃ respectively.
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b) The relation RG is δ-consistent with XI and n, and RI is δ-cyclic along
Xn

I .

Remark 2.2. In Theorem 2.2, the conditions in b) basically request that if
the new connections together with the original relations produce cycles, all the
elements involved are indifferent. The condition on RG says that if there are
cycles among the elements that are going to be connected by the extension, those
cycles must involve only elements that are going to be indifferent in the exten-
sion. The condition involving the relation RI also prevents the existence of strict
preference in cycles: there cannot be strict preferences among elements that are
required to be indifferent in the extension. Consider a simple example: take
the elements XI = {a1, a2, a3, b1, b2, b3} and assume that the original relation R
satisfies a1Rb2, a2Rb3 and a3Rb1. In order to find an extension such that aiĨbi
for all i = 1, 2, 3, we must have that also b1Ra3, b3Ra2 and b2Ra1, otherwise,
the extension R̃ would have a cycle with at least one strict preference involved.

Both theorems can be extended to transitive-consistent binary relations, in
the following terms:

Corollary 2.1 (Alcantud and Dı́az [2]). Let R be a (crisp) transitive-consistent
weak preference relation on a universe X. Let XI = {a1, . . . , an, b1, . . . , bn} be
an ordered list of possibly repeated elements of X. The following statements are
equivalent:

a) There is a total preorder R̃ that is a compatible extension of R such that
biP̃ ai for each i = 1, . . . , n, where P̃ denotes the asymmetric component
of R̃.

b) RA associated with XI and RT is acyclic.

Corollary 2.2 (Alcantud and Dı́az [2]). Let R be a (crisp) transitive-consistent
weak preference relation on a universe X. Let XI = {a1, . . . , ap, b1, . . . , bp} be
an ordered list of possibly repeated elements of X and let n ≤ p. The following
statements are equivalent:

a) There exists a total preorder R̃ that is a compatible extension of R such
that biP̃ ai for each i = 1, . . . , n and biĨai for i = n+1, . . . , p, where P̃ and
Ĩ denote the asymmetric and symmetric components of R̃ respectively.

b) The relation RG associated with RT is δ-consistent with XI and n and RI

(associated with RT ) is δ-cyclic along Xn
I .

3 Fuzzy relations and their extensions

This section recalls some basic definitions on fuzzy set theory.
Fuzzy set theory was introduced by Zadeh in [29] in order to formalize am-

biguous or imprecise reasonings. Contrary to classical logic where statements
are true or false, fuzzy theory allows degrees of truth or connection. The set
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{0, 1} where 0 means false or absence of connection and 1 stands for true or
presence of connection, is replaced by the whole interval [0, 1]. Intermediate
values stand for intermediate degrees of truth or connection. The advantage of
this theory is the possibility of formalizing human way of thinking in a more
accurate way.

Definition 3.1. A fuzzy relation Q defined on a universe X is a mapping
Q : X ×X → [0, 1]. For every a, b ∈ X, Q(a, b) indicates the degree with which
a is connected to b by the relation Q.

A fuzzy weak preference relation is a reflexive fuzzy relation, i.e., a fuzzy
relation R such that R(a, a) = 1 for all a ∈ X.

Given two fuzzy relations, Q1 and Q2, we say that Q1 is contained in Q2,
Q1 ⊆ Q2 if Q1(a, b) ≤ Q2(a, b) for all a, b ∈ X.

Now in order to deal with fuzzy relations, we provide the necessary concepts
to generalize the classical intersection and negation.

Definition 3.2. A t-norm T is a binary mapping T : [0, 1]× [0, 1]→ [0, 1] sat-
isfying the following four properties: commutativity, associativity, monotonicity
(in each component) and neutral element 1.

The greatest t-norm is the minimum operator TM(x, y) = min(x, y). We
also use the common notation min(x, y) = x ∧ y.

A t-norm T has zero divisors if there is a pair of values (x, y) ∈ ]0, 1[ 2 such
that T (x, y) = 0. In this case x and y are called zero divisors of T . The minimum
t-norm does not admit zero divisors.

If we fix one argument, a t-norm can be considered a real function on the
other component. If for each component, the corresponding function is left
continuous (as a real function), the t-norm is said left continuous.

Definition 3.3. Given a left continuous t-norm T , its residuum → is defined
as follows

x→ y = sup{z ∈ [0, 1] | T (x, z) ≤ y} .

The negation ¬ associated to a left continuous t-norm T is defined as ¬x = x→
0 = sup{y ∈ [0, 1] | T (x, y) = 0} .

The residuum satisfies the following properties:

y → z ≤ x→ z for all x ≤ y, z ∈ [0, 1] . (1)

x ≤ y → x for all x, y ∈ [0, 1] . (2)

0→ x = 1 for all x ∈ [0, 1] . (3)

1→ x = x for all x ∈ [0, 1] . (4)

x→ y = 1 for all x ≤ y ∈ [0, 1] . (5)

For the minimum t-norm the residuum and the negation look as follows

x→ y =

{
1 if x ≤ y ,
y if x > y

and ¬x =

{
1 if x = 0 ,
0 if x > 0 .
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Let T be a t-norm. The T -composition of two fuzzy relations Q1 and Q2 is
denoted byQ1◦TQ2, and it is defined by (Q1◦TQ2)(a, b) = sup

c∈X
T (Q1(a, c), Q2(c, b))

for all a, b ∈ X.

Definition 3.4. A fuzzy relation Q is T -transitive if

T (Q(a, b), Q(b, c)) ≤ Q(a, c), for all a, b, c ∈ X.

The min-transitive closure of a fuzzy relation Q is the smallest min-transitive
fuzzy relation that contains Q. We denote it by QT , the capital T standing for

transitive compatible extension. As it is well known, QT =
⋂
{Qi ⊇ Q |

Qi min -transitive}.
The notion of completeness admits different generalizations too, and we con-

sider its weakest form. We say that a fuzzy relation Q is total if for all distinct
a, b ∈ X it holds that either Q(a, b) > or Q(b, a) > 0. Therefore a reflexive
relation R is total if and only if either R(a, b) > 0 or R(b, a) > 0 for all a, b ∈ X.

Definition 3.5. A fuzzy relation R is a fuzzy preorder if it is reflexive and
min-transitive.

Later on in this paper we discuss the connection between transitive-consistency
and transitivity in the fuzzy context (cf., section 4 below).

Definition 3.6. A fuzzy relation Q is T -acyclic if

T (Q(a1, a2), Q(a2, a3), . . . , Q(an, a1)) = 0, for all a1, . . . , an ∈ X .

Associated with fuzzy weak preference relations one can define strict prefer-
ence components in several ways. Along this paper we fix the following notions:
for each a, b ∈ X,

I(a, b) = min(R(a, b), R(b, a)), P (a, b) =

{
R(a, b) if R(b, a) = 0,
0 if R(b, a) > 0.

(6)

Given this (or any other) procedure for producing the strict component, Defi-
nitions 3.7 and 3.8 below are crucial in the rest of the paper:

Definition 3.7. A fuzzy weak preference relation R with an associated strict
preference relation P is T -transitive-consistent if

T (P (a1, a2), R(a2, a3), . . . , R(an−1, an)) ≤ ¬R(an, a1) for all a1, . . . , an ∈ X .

For the minimum t-norm, one has that R is min-transitive-consistent if and
only if for every a1, . . . , an ∈ X,

min(P (a1, a2), R(a2, a3), . . . , R(an−1, an)) ≤ 1−R(an, a1).

This property is called Suzumura transitive-consistency in [17].
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Definition 3.8. A fuzzy relation R̃ is an extension of the fuzzy relation R on
the set X if and only if R ⊆ R̃.

A fuzzy weak preference relation R̃ with associated strict preference relation
P̃ is a compatible extension of the fuzzy weak preference relation R with as-
sociated strict preference relation P on the set X if and only if R ⊆ R̃ and
P ⊆ P̃ .

Given a left continuous t-norm T and → its residuum, the fuzzy relation R̃
is a T -compatible extension of R if R ⊆ R̃ and R̃(b, a) ≤ R(a, b) → R(b, a) for
all a, b ∈ X.

The relation R is T -consistent if its T -transitive closure RT is a T -compatible
extension of R.

The notion of T -compatible extension was introduced by Georgescu in [19].
Every min-compatible extension is a compatible extension but the opposite is
not true as Example 4.6 in [19] shows. Here we give an alternative argument of
a stronger result. Namely, the transitive closure of a min-transitive consistent
fuzzy relation is a compatible extension of it, but it is not necessarily a min-
compatible extension of the original relation as Example 4.1 below shows.

Unless otherwise stated, the results henceforth stated refer to the transitivity
based on the minimum t-norm, i.e., to min-transitivity. Accordingly, for any
fuzzy relation Q, min-transitivity means Q ◦Q ⊆ Q.

4 Conditional fuzzy extensions

Alcantud and Dı́az [2, Remark 1] show that also in the fuzzy context, constraints
cannot be imposed on the extensions of a fuzzy preorder with impunity. If we
appeal to the general construction based on generators (cf., De Baets and Fodor
[11]) in order to define the notion of a fuzzy extension through Definition 3.8,
then [2] shows that Corollary 2.1 can be faithfully extended but Corollary 2.2
only admits a partial generalization. This raises the question whether other
constructions can provide a full characterization accounting for the general case
approached in Corollary 2.2.

Although generators have proven to be the most appropriate way to de-
compose fuzzy weak preference relations, other tighter constructions have been
studied in the literature. In particular, Georgescu [17] proved several general-
izations of Szpilrajn theorem via the construction in Eq. (6). Henceforth we
assume that for any weak preference relation, its associated indifference and
strict preference relations are defined by Eq. (6). The negative side of this ap-
proach is that these formulae do not determine the original weak preference
relation R. However, we proceed to show that it performs very well when it
comes to extending relations.

We proceed to prove the fuzzy counterparts of Corollaries 2.1 and 2.2. In
particular we extend the characterization of Corollary 2.2 to the fuzzy set con-
text. This shows that despite other drawbacks, the construction of Eq. (6)
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leads to better results in the context of extensions than the construction based
on generators.

Firstly we consider the simpler case where we request that a number of
elements are in strict relation with respective elements in the extended total
preorder. This particular statement facilitates the subsequent proof of a more
general result. To that purpose we need some previous results.

Although not every T -transitive-consistent relation is T -transitive, the fol-
lowing lemma proves a relationship between these properties:

Lemma 4.1. Let T be a t-norm without zero divisors. Every T -transitive fuzzy
weak preference relation R on a universe X is also T -transitive-consistent.

Proof. Assume that the T -transitive fuzzy relationR is not T -transitive-consistent.
Then there exist alternatives a1, . . . , an ∈ X such that

T (P (a1, a2), R(a2, a3), . . . , R(an−1, an) > ¬R(an, a1) .

Two implications derive.
Firstly, R(an, a1) > 0 because otherwise ¬R(an, a1) = 1, which contradicts

the previous inequality. Secondly, T (P (a1, a2), R(a2, a3), . . . , R(an−1, an) > 0.
Since T does not admit zero divisors, min(P (a1, a2), R(a2, a3), . . . , R(an−1, an) >
0. By T -transitivity we deduce R(a2, an) > 0, which coupled with the fact that
R(an, a1) > 0, implies R(a2, a1) > 0. By the construction of P , the contradic-
tion P (a1, a2) = 0 follows.

Theorem 4.1 below crucially hinges on our maintained assumption that P is
deduced from Eq. (6).

Theorem 4.1. [19, Theorem 5.5] For a fuzzy relation R on X the following are
equivalent:

1. R has a total and min-transitive min-compatible extension Q.

2. R has a min-transitive min-compatible extension Q.

3. R is min-consistent.

Lemma 4.2. [19, Lemma 4.9] If Q is a min-compatible extension of R and S
is a min-compatible extension of Q, then S is min-compatible extension of R.

As a direct corollary of Theorem 4.1, every min-transitive fuzzy relation R
has a total and min-transitive min-compatible extension. When the relation is
reflexive we get:

Corollary 4.1. For every fuzzy preorder there is a fuzzy total preorder that is
a min-compatible extension of it.
In particular, for every fuzzy preorder there is a fuzzy total preorder that is a
compatible extension of it.
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Lemma 4.3. [17, Corollary 3.5] A fuzzy relation R is min-transitive-consistent1

if and only if RT is a compatible extension of R if and only if PR ⊆ PRT (where
PRT is the strict preference relation associated with the transitive closure RT of
R).

As a consequence, for any min-transitive-consistent fuzzy relation R on X,
any relation Q that is a compatible extension of RT is also a compatible exten-
sion of R. The converse implication also holds under transitivity:

Lemma 4.4. Given a fuzzy min-transitive-consistent relation R, every min-
transitive compatible extension of R is a compatible extension of RT .

Therefore, on the grounds of the construction of Eq. (6) we can state a fuzzy
counterpart of Theorem 1 in [1].

Theorem 4.2. Let R be a min-transitive fuzzy relation on X, and let XI =
{a1, . . . , an, b1, . . . , bn} be a subset of possibly repeated elements of X. The
following statements are equivalent:

a) There exists a total preorder R̃ that is a min-compatible extension of R
and such that P̃ (bi, ai) = 1 for all i = 1, . . . , n, where P̃ denotes the
asymmetric part of R̃.

b) The relation RA associated with XI and R is min-acyclic.

Proof. 2 Let us assume that a) is true but b) does not hold. Then there exists
a list of alternatives ai1 , . . . , aik such that

RA(ai1 , ai2) > 0, RA(ai2 , ai3) > 0, . . . , RA(aik , ai1) > 0 ,

or equivalently,

R(ai1 , bi2) > 0, R(ai2 , bi3) > 0, . . . , R(aik , bi1) > 0 .

From the latter inequalities, because R̃ is an extension of R

R̃(ai1 , bi2) > 0, R̃(ai2 , bi3) > 0, . . . , R̃(aik , bi1) > 0 .

Also, P̃ (bij , aij ) = 1 for all j = 1, . . . , k by our assumption. Therefore because
the inequalities

R̃(ai1 , bi2) > 0, P̃ (bi2 , ai2) > 0, . . . , R̃(aik , bi1) > 0

have been established we obtain by min-transitivity that R̃(ai1 , bi1) > 0. This
contradicts the fact that P̃ (bi1 , ai1) = 1.

1Contrary to our notation, Georgescu calls transitive consistent to those fuzzy relations
such that RT is a compatible extension of R.

2This proof partially replicates the proof of Theorem 2 in [2]. At the risk of being reiter-
ative, we present all the steps for the sake of completeness. We insist that the formulae used
here and in [2] to obtain the indifference and strict preference relations are different.
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Now let us assume that b) is true. In order to prove a) we proceed in several
steps.

Define the relation R̄ as follows: for each a, b ∈ X,

R̄(a, b) =

{
R(a, b) if (a, b) 6= (bi, ai) for all i ,
1 otherwise.

(7)

Then we prove the following claim:
Claim. For each a, b ∈ X, if there exist c1 . . . , ck alternatives in X such that

min(R̄(a, c1), . . . , R̄(ck, b)) > 0 ,

then either
R(a, b) ≥ min(R̄(a, c1), . . . , R̄(ck, b)) (8)

or

∃{j1, . . . , jl} ⊆ {1, . . . , n} | min(R(a, bj1), R(aj1 , bj2), . . . , R(ajl , b)) > 0 . (9)

To prove the claim, let c0 = a and ck+1 = b. We distinguish two cases.
If (ci, ci+1) 6= (bj , aj) for any j ∈ {1, . . . , n}, then R̄(ci, ci+1) = R(ci, ci+1) for

all i and sinceR is min-transitive, it holds thatR(a, b) ≥ min(R(a, c1), . . . , R(ck, b)) =
min(R̄(a, c1), . . . , R̄(ck, b)). This provides the statement in Eq. (8).

Otherwise there are l indexes {i1, . . . , il} ⊆ {1, . . . , k} such that

(ci1 , ci1+1) = (bj1 , aj1) ,
. . . ,
(cil , cil+1) = (bjl , ajl)

for some {ji, . . . , jl} ∈ {1, . . . , n},

R(ci1+1, ci2) ≥ min(R(ci1+1, ci1+2), . . . , R(ci2−1, ci2))
= min(R̄(ci1+1, ci1+2), . . . , R̄(ci2−1, ci2)) > 0 .

A similar reasoning establishes R(ci2+1, ci3) > 0, . . . , R(cil−1+1, cil) > 0. Fur-
thermore, if a 6= ci1 then R(a, ci1) ≥ min(R(a, c1), . . . , R(ci1−1, ci1)) > 0 and if
cil 6= b then R(cil+1, b) > 0. Thus we get

min(R(a, ci1), R(ci1+1, ci2), . . . , R(cil+1, b)) > 0 ,

which can be expressed as follows:

min(R(a, bj1), R(aj1 , bj2), . . . , R(ajl , b)) > 0 .

This provides the statement in Eq. (9).
We claim that R̄T , the transitive closure of R̄, is a min-compatible extension

of R. It is clear that R ⊆ R̄T because R ⊆ R̄ ⊆ R̄T . Fix (a, b), we prove
that R̄T (b, a) ≤ R(b, a) → R(a, b). If R(a, b) ≤ R(b, a), then according to
Eq. (5), R(a, b) → R(b, a) = 1 and the inequality holds trivially. Assume that
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R(a, b) > R(b, a). If R̄T (b, a) = R(b, a) then the inequality follows from Eq. (2)
and we are done. Let us prove that R̄T (b, a) > R(b, a) is absurd.

It must be the case that R̄(b, a) = R(b, a) because otherwise (b, a) = (bi, ai)
for some i and R(ai, bi) = R(a, b) > 0 contradicts the fact that RA is min-acyclic
(for RA(ai, ai) > 0). Therefore one has R̄T (b, a) > R̄(b, a). By the definition of
transitive closure, there exist c1, . . . , ck alternatives such that

min(R̄(b, c1), R̄(c1, c2), . . . , R̄(ck, a)) > R̄(b, a) .

By using the Claim above, the previous inequality leads to either

R(b, a) ≥ min(R̄(b, c1), . . . , R̄(ck, a))

or

∃{i1, . . . , il} ⊆ {1, . . . , n} | min(R(b, bi1), R(ai1 , bi2), . . . , R(ail , a)) > 0 .

The first possibility produces the contradiction

R(b, a) ≥ min(R̄(b, c1), R̄(c1, c2), . . . , R̄(ck, a)) > R̄(b, a) .

Now assume the second possibility. Then

min(R(ai1 , bi2)), R(ai2 , bi3), . . . , R(ail , bi1)) > 0 ,

or equivalently,

min(RA(ai1 , ai2)), RA(ai2 , ai3), . . . , RA(ail , ai1)) > 0 ,

which contradicts the fact that RA is min-acyclic.
Let us prove that P̄T (bi, ai) = 1 for all i ∈ {1, . . . , n}. Fix an arbitrary

i ∈ {1, . . . , n}. Since R̄T (bi, ai) ≥ R̄(bi, ai) = 1, it only remains to prove
that R̄T (ai, bi) = 0. It is clear that R(ai, bi) = 0, otherwise RA(ai, ai) > 0
against the fact that RA is min-acyclic. Furthermore R̄(ai, bi) = 0, otherwise
R(ai, bi) 6= R̄(ai, bi) thus necessarily (ai, bi) = (bj , aj) for some j, and because
RT is reflexive

1 = R(ai, ai) = R(ai, bj) = RA(ai, aj) ,
1 = R(aj , aj) = R(aj , bi) = RA(aj , ai) ,

against the fact that RA is min-acyclic.
Now, if R̄T (ai, bi) > 0 then

min(R̄(ai, c1), . . . , R̄(ck, bi)) > 0 .

So the Claim above applies again. Eq. (8) contradicts R(ai, bi) = 0. If Eq. (9)
applies, then there exists a set {j1, . . . , jl} ∈ {1, . . . , n} such that

min(R(ai, bj1), R(aj1 , bj2), . . . , R(ajl , bi)) > 0 .

12



Equivalently, min(RA(ai, aj1), RA(aj1 , aj2), . . . , RA(ajl , ai)) > 0 , a cycle in RA,
which is absurd.

From R̄T (ai, bi) = 0 and R̄T (bi, ai) = 1, one has P̄T (bi, ai) = R̄T (bi, ai) = 1.
Since R̄T is transitive, Theorem 4.1 assures that there exists a total preorder

R̃ that is a min-compatible extension of R̄T . Then P̃ (bi, ai) = 1 for all i ∈
{1, . . . , n}. Furthermore, because R̃ is a min-compatible extension of R̄T which
is a min-compatible extension of R, then it follows from Lemma 4.2 that R̃ is a
min-compatible extension of R. This ends the proof.

Corollary 4.2. Let R be a min-transitive-consistent fuzzy relation on X, and
let XI = {a1, . . . , an, b1, . . . , bn} be a subset of possibly repeated elements of X.
The following statements are equivalent:

a) There exists a total preorder R̃ that is a compatible extension of R and such
that P̃ (bi, ai) = 1 for all i = 1, . . . , n, where P̃ denotes the asymmetric
part of R̃.

b) The relation RA associated with XI and RT , where RT is the min-transitive
closure of R, is min-acyclic.

Proof. Assume a) is true. To prove that b) holds we can copy the steps followed
in the proof of Theorem 4.2.

The converse implication follows from Theorem 4.2 and Lemma 4.1.

This corollary proves that min-transitive-consistency is a sufficient condi-
tion for the existence of a compatible extension satisfying certain conditions.
However, it is not a sufficient condition if we want to obtain a min-compatible
extension as the following example proves:

Example 4.1. Consider the fuzzy relation R defined on X = {a, b, c} as follows
and its associated strict preference relation P .

R a b c
a 1 0.7 0.7
b 0.7 1 0.7
c 0.5 0.7 1

P a b c
a 0 0 0
b 0 0 0
c 0 0 0

Since P (d1, d2) = 0 for all d1, d2 ∈ X, it is easy to check that R is min-transitive-
consistent. But there exists no min-transitive relation R̃ that is a min-compatible
extension of R. Such an R̃ must satisfy

R̃(c, a) ≥ min(R̃(c, b), R̃(b, a)) ≥ min(R(c, b), R(b, a)) .

Thus, R̃(c, a) ≥ 0.7. However, this means that R̃ cannot be a min-compatible
extension of R:

R̃(c, a) ≥ 0.7 > 0.5 = 0.7→ 0.5 = R(a, c)→ R(c, a).
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Theorem 4.2 extends Theorem 1 in [1]. In spirit this achievement can be
compared to Theorem 2 in [2]. Corollary 4.2 extends Corollary 2.1. They
concern a more general class of relations, namely min-transitive-consistent rela-
tions, whereas in Theorem 4.2 and [2, Theorem 2] the original relation must be
transitive.

Now we proceed to consider the more general case where some elements are
asked to be in strict relation with respective elements in the extended total pre-
order, while some other are asked to be indifferent (i.e., with full relationship)
to respective companions. This ultimately yields a fuzzy counterpart of Corol-
lary 2.2 and [1, Theorem 2]. To prove it we establish Lemma 4.5 below and
then introduce some definitions.

Lemma 4.5. Let R be a fuzzy reflexive relation defined on X. Then3

R ◦R ⊆ R ⇒

 P ◦ P ⊆ P
P ◦ I ⊆ P
I ◦ P ⊆ P .

Proof. In order to prove min -transitivity of P , assume P (a, b) = x > 0 and
P (b, c) = y > 0. Then R(a, b) = x, R(b, c) = y and R(b, a) = R(c, b) = 0.
This implies that R(a, c) ≥ min(x, y) by min -transitivity of R. If R(c, a) > 0
then we have R(c, b) ≥ min(R(c, a), R(a, b)) > 0, a contradiction, thus P (a, c) =
R(a, c) ≥ min(x, y).

In order to prove min(P (a, b), I(b, c)) ≤ P (a, c) for each a, b, c ∈ X, we as-
sume P (a, b) = x > 0 and I(b, c) = y > 0. ThenR(a, b) = x, min(R(b, c), R(c, b)) =
y, and R(b, a) = 0. This implies R(a, c) ≥ min(x, y). Now, if R(c, a) > 0 then
R(b, a) > 0, a contradiction that completes the argument.

The case min(I(a, b), P (b, c)) ≤ P (a, c) for each a, b, c ∈ X is similar.

Let Xn
I = {an+1, . . . , ap, bn+1, . . . , bp}. If n = p, then Xn

I = ∅.

Definition 4.1. The relation RI associated with R and XI is defined as follows:

RI(a, b) = R(a, δ(b)), for all a, b ∈ XI .

where δ(b) is the function introduced in Definition 2.6.

Definition 4.2. The relation RG associated with R, n ≤ p and XI is defined
by

RG(ai, aj) = max
(
R(ai, bj), sup

{c1,...ck}⊆Xn
I

(min(R(ai, δ(c1)), R(c1, δ(c2)), . . . , R(ck, bj)))
)
.

Definition 4.3. The relation RG is δ-consistent with XI and n ≤ p if

min(RG(ai1 , ai2), . . . , RG(aik , ai1)) > 0 implies it > n for all t ∈ {1, . . . , k}.
3This implication was studied by Dasgupta and Deb [10] and Dı́az et al. [13, 14] for con-

structions unrelated to Eq. (6).
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In [2] the following Proposition 4.1 is proven in a context where the strict
preference and indifference relations associated with a weak preference relation
are obtained using a generator. A careful look at the proof reveals that the
result holds true independently of the construction considered and in particular,
it applies under our maintained assumption that Eq. (6) is used to derive strict
preference and indifference relations from weak preference relations:

Proposition 4.1 (Alcantud and Dı́az [2], Prop. 2). Let R be a fuzzy preorder.
If there exists a fuzzy total preorder R̃ that is a compatible extension of R, such
that P̃ (bi, ai) = 1 for each i = 1, . . . , n and Ĩ(bi, ai) = 1 for i = n + 1, . . . , p,
then the relation RG is δ-consistent with XI and n.

We will provide two extensions of Corollary 2.2 thus [1, Theorem 2]. In
order to prove the first one, Theorem 4.3, we introduce the notion of (fuzzy)
δ-cyclicity. The proof of Theorem 4.4 involves a stronger concept that we will
introduce later.

Definition 4.4. We say that RI is δ-cyclic along Xn
I if RI(c1, c2) > 0 and

RI(c2, c3) > 0 and . . . RI(ck, c1) > 0 implies that

RI(δ(c1), δ(ck)) > 0, . . . , RI(δ(c2), δ(c1)) > 0, for all c1, . . . , ck ∈ Xn
I .

Theorem 4.3. Assume that for any fuzzy weak preference relation the associ-
ated strict preference and indifference relations are defined as in Eq. (6). Let R
be a min-transitive-consistent fuzzy relation on X. Let XI = {a1, . . . , ap, b1, . . . , bp}
be an ordered list of possibly repeated elements of X and let n ≤ p. The following
statements are equivalent:

a) There exists a fuzzy total preorder R̃ that is a compatible extension of
R such that P̃ (bi, ai) = 1 for each i = 1, . . . , n and Ĩ(bi, ai) = 1 for
i = n+ 1, . . . , p.

b) The relation RG associated with RT is δ-consistent with XI and n, and
RI (associated with RT ) is δ-cyclic along Xn

I .

Proof. Let us assume that a) is true. According to Lemma 4.4, the relation R̃ is
a compatible extension of RT . It follows from Proposition 4.1 that the relation
RG is δ-consistent with XI and n.

In order to prove that RI is δ-cyclic along Xn
I , let us assume that c1, . . . ck ∈

Xn
I are such that

min(RI(c1, c2), . . . , RI(ck, c1)) > 0 but RI(δ(cj+1), δ(cj)) = 0

for some j ∈ {1, . . . , k} with the convention ck+1 = c1. From this we ob-
tain the equality R(δ(cj+1), cj) = 0. Since RI(cj , cj+1) > 0 and this means

R(cj , δ(cj+1)) > 0, we deduce P (cj , δ(cj+1)) > 0 which in turn implies P̃ (cj , δ(cj+1)) >
0. In addition,

min(Ĩ(δ(cj+1), cj+1), R̃(cj+1, δ(cj+2)), Ĩ(δ(cj+2), cj+2), . . . , Ĩ(δ(cj), cj)) > 0 .
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Since R̃ is min-transitive, this leads to R̃(δ(cj+1), cj) > 0. We obtain the con-

tradiction: P̃ (cj , δ(cj+1)) > 0 and R̃(δ(cj+1), cj) > 0.

Now let us assume that b) is true. We use the properties of the auxiliary
relation R̄ defined as follows:

R̄(a, b) = max
(
RT (a, b),

sup
{d1,...dk}⊆Xn

I

(min(RT (a, δ(d1)), RI(d1, d2), . . . , RI(dk−1, dk), RT (dk, b)))
)
.

Then R̄(ai, bj) = RG(ai, aj) for all i, j.
It is easy to check that R̄ is reflexive and min-transitive. Let Ī be the

symmetric part of R̄, then the fact that Ī(ai, bi) = 1 for all i = n + 1, . . . , p
follows from

R̄(ai, bi) ≥ min(RT (ai, δ(bi)), R
T (bi, bi)) = 1 for each i ,

R̄(bi, ai) ≥ min(RT (bi, δ(ai)), R
T (ai, ai)) = 1 for each i .

Furthermore, R̄ is a compatible extension of RT . It is clear that RT ⊆ R̄.
To prove PT ⊆ P̄ we fix arbitrary a, b ∈ X, then we need to assure P̄ (a, b) ≥
PT (a, b). Two cases arise. If R̄(b, a) = 0 then P̄ (a, b) = R̄(a, b) ≥ RT (a, b) ≥
PT (a, b) and we are done. If R̄(b, a) > 0 we get a contradiction under the
assumption PT (a, b) > P̄ (a, b) as follows. Observe that now RT (a, b) > 0,
RT (b, a) = 0 and R̄(a, b) > 0 hold true. From R̄(b, a) > 0 we deduce the
existence of d1, . . . , dk ∈ Xn

I such that

min(RI(d1, d2), . . . , RI(dk−1, dk)) > 0

and also RT (b, δ(d1)) > 0 and RT (dk, a) > 0. Now

RT (dk, a) > 0, RT (a, b) > 0, RT (b, δ(d1)) > 0 imply RT (dk, δ(d1)) > 0 .

So that RI(d1, d2) > 0, RI(d2, d3) > 0, . . . , RI(dk, d1) > 0. Therefore an appeal
to b) produces

RI(δ(d1), δ(dk)) > 0, . . . , RI(δ(d2), δ(d1)) > 0 .

Then we get a contradiction that completes the argument because

RT (b, δ(d1)) > 0, RT (δ(d1), dk) > 0, RT (dk, a) > 0 imply RT (b, a) > 0 .

Hence R̄ is a compatible extension of RT . By Lemma 4.4, R̄ is a compatible
extension of R.

Now we are ready to conclude. If n = 0 then any fuzzy total preorder
R̃ that is a compatible extension of R̄ is a compatible extension of R too. If
n > 0 then we can apply Theorem 4.2: the relation R̄A is min-acyclic on
nXI = {a1, . . . , an, b1, . . . , bn} since RG is δ-consistent. Therefore there exists a
total preorder R̃ that extends R̄ such that P̃ (bi, ai) = 1 for i ≤ n. In addition
to this, Ĩ(bi, ai) = 1 for all i ≥ n+ 1 because R̃ extends R̄ and Ī(ai, bi) = 1 for
all i ≥ n+ 1. This ends the proof.

16



A comparison with the characterization in Alcantud and Dı́az [2, Theorem 5]
is in order. That result attempted to extend Corollary 2.2 too. To be precise,
there it is shown that when we use generators in order to define the notion of
a compatible extension, only a partial generalization can be proven: sufficient
conditions for the existence of the desired extension, conditional on a given list
of pairwise comparisons, are put forward. One of these conditions, namely, δ-
min-cyclicity, is not necessary with the construction by Eq. (6). Theorem 4.3
shows that by weakening this condition to δ-cyclicity, a full characterization can
be proven under the construction by Eq. (6) which therefore constitutes a fuzzy
generalization of Corollary 2.2.

However, if we want to assure the existence of a min-compatible extension,
the departing relation R has to be min-transitive and its associated RI , δ-min-
cyclic.

Definition 4.5. We say that RI is δ-min-cyclic along Xn
I if

min(RI(a1, a2), RI(a2, a3), . . . , RI(ak, a1))
= min(RI(δ(a1), δ(ak)), . . . RI(δ(a2), δ(a1))), for all a1, . . . , ak ∈ Xn

I .

Theorem 4.4. Assume that for any fuzzy weak preference relation the associ-
ated strict preference and indifference relations are defined as in Eq. (6). Let
R be a min-transitive fuzzy relation on X. Let XI = {a1, . . . , ap, b1, . . . , bp} be
an ordered list of possibly repeated elements of X and let n ≤ p. The following
statements are equivalent:

a) There exists a fuzzy total preorder R̃ that is a min-compatible extension
of R such that P̃ (bi, ai) = 1 for each i = 1, . . . , n and Ĩ(bi, ai) = 1 for
i = n+ 1, . . . , p.

b) The relation RG associated with R is δ-consistent with XI and n, and RI

is δ-min-cyclic along Xn
I .

Proof. The proof is very similar to the proof of Theorem 4.3.
Let us prove that a) implies b). Since R is min-transitive, R = RT and since

R̃ is a min-compatible extension of R, it is a compatible extension of R. Then
it follows from Proposition 4.1 that RG is δ-consistent with XI and n. Let
us prove now that RI is δ-min-cyclic. It holds that R̃(ai, bi) = R̃(bi, ai) =
1 for i = n + 1, . . . , p. Since R̃ is a min-compatible extension of R, then
R̃(b, a) ≤ R(a, b) → R(b, a) for all a, b. This implies that R(bi, ai) ≤ R(ai, bi)
andR(ai, bi) ≤ R(bi, ai), or equivalently, R(bi, ai) = R(ai, bi) for i = n+1, . . . , p.
Now assume that RI is not δ-min-cyclic. Then there exist a1, . . . , ak ∈ Xn

I such
that

min(RI(a1, a2), RI(a2, a3), . . . , RI(ak, a1))
< min(RI(δ(a1), δ(ak)), . . . RI(δ(a2), δ(a1))) .

Equivalently,

min(R(a1, b2), R(a2, b3), . . . , R(ak, b1))
< min(R(b1, ak), R(bk, ak−1), . . . , R(b3, a2), R(b2, a1)) .
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Then we obtain a contradiction since there exists some i ∈ {1, . . . , k} such that

R(ai, bi+1) = min(R(a1, b2), R(a2, b3), . . . , R(ak, b1)) < R(bi+1, ai) .

Now let us assume that b) is true. We use the properties of the auxiliary
relation R̄ defined as in the proof of Theorem 4.3. Let us recall that this relation
is reflexive and min-transitive and Ī(ai, bi) = 1 for all i = n+ 1, . . . , p.

Furthermore, R̄ is a min-compatible extension of R. It is clear that RT ⊆ R̄.
Let us prove that R̄(b, a) ≤ R(a, b) → R(b, a) for all a, b ∈ X. For any fixed
a, b ∈ X, if R(a, b) ≤ R(b, a), R(a, b) → R(b, a) = 1 and the inequality holds
trivially.
Then assume R(a, b) > R(b, a). If R̄(b, a) = R(b, a), the inequality also holds.
Let us assume that R̄(b, a) > R(b, a), we will obtain a contradiction.
According to the definition of R̄, there exist d1, . . . , dk ∈ Xn

I such that

R̄(b, a) = min(R(b, δ(d1)), RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a)) > R(b, a) ≥ 0 .

Now RI(dk, d1) = R(dk, δ(d1)) ≥ min(R(dk, a), R(a, b), R(b, δ(d1))). Then

min(RI(d1, d2), . . . , RI(dk−1, dk), RI(dk, d1)) ≥
min(RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a), R(a, b), R(b, δ(d1))) .

Since RI is δ-min-cyclic, also

min(RI(δ(d1), δ(dk)), . . . , RI(δ(d2), δ(d1))) ≥
min(RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a), R(a, b), R(b, δ(d1))) .

In particular,

R(δ(d1), dk) ≥ min(RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a), R(a, b), R(b, δ(d1))) .

Applying min-transitivity,

R(b, a) ≥ min(R(b, δ(d1)), R(δ(d1), dk), R(dk, a))
≥ min(R(b, δ(d1)), RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a), R(a, b)) .

Finally, since R(b, a) < R(a, b), we get the contradiction

R(b, a) ≥ min(R(b, δ(d1)), RI(d1, d2), . . . , RI(dk−1, dk), R(dk, a)) = R̄(b, a) .

The final part of this proof is similar to the proof of Theorem 4.3.
If n = 0, since R̄ is min-transitive, it follows from Theorem 4.1 that there

exists a fuzzy total preorder R̃ that is a min-compatible extension of R̄ and by
Lemma 4.2 it is also a min-compatible extension of R. If n > 0 then we can apply
Theorem 4.2: the relation R̄A is min-acyclic on nXI = {a1, . . . , an, b1, . . . , bn}
since RG is δ-consistent. Therefore there exists a total preorder R̃ that is a
min-compatible extension of R̄ such that P̃ (bi, ai) = 1 for i ≤ n. In addition to
this, Ĩ(bi, ai) = 1 for all i ≥ n+ 1 because R̃ extends R̄ and Ī(ai, bi) = 1 for all
i ≥ n+ 1. This ends the proof.

18



We have characterized the existence of total preorders that satisfy some
additional conditions and that are compatible extensions or min-compatible ex-
tensions of the original relation R. Theorem 4.4 shows that in order to obtain
a min-compatible extension, the original relation has to be transitive and the
associated relation RI has to be δ-min-cyclic. Theorem 4.3 shows that a com-
patible extension can be found for a wider family of relations: on the one hand
the departing relation has to be min-transitive consistent, not necessarily min-
transitive, and on the other hand, it suffices to check that the associated RI is
δ-cyclic and not necessarily δ-min-cyclic.

5 Representing fuzzy relations as intersections
of fuzzy total relations

This Section has two objectives. It aims at proving some results on the rep-
resentation of fuzzy relations, a task that we accomplish by first exploring the
problem of extending fuzzy relations with fixed degrees of relation between pairs
of elements. But it also shows that all these types of results can be expressed
in terms of numerical indicators which capture the degree to which a fuzzy re-
lation verifies a given property (cf., Belohlavek [4], Georgescu [18, 20, 21] and
Gottwald [22]). 4 In particular, we are concerned with the following indicators:

Definition 5.1. Given a fuzzy relation R defined on X,

Ref(R) =
∧
a∈X

R(a, a) ;

Trans(R) =
∧

a,b,c∈X

[(R(a, c) ∧R(c, b))→ R(a, b)] ;

Preord(R) = Ref(R) ∧ Trans(R) .

Ref(R) is called the degree of reflexivity of R, Trans(R) is called the degree
of min-transitivity ofR, and Preord(R) is interpreted as the degree to whichR is
a fuzzy preorder. From the fuzzy logic point of view, Ref(R) (resp., Trans(R),
Preord(R)) measures the degree of truth of the statement “the relation R is
reflexive” (resp., min-transitive, fuzzy preorder).

Georgescu [18, Chapter 4.4] is concerned with the analysis of properties and
indicators of fuzzy relations. As to the use of indicators in contexts related to our
targets, we mention that Georgescu [20, Theorem 8] constitutes a generalization
of the Szpilrajn theorem stated in terms of indicators. It generalizes a theorem
in Bodenhofer and Klawonn [5] which already generalizes the Szpilrajn theorem.

5.1 Fuzzy extensions with fixed degrees of relation

Höhle and Blanchard [25, Theorem II.7] prove that also in the fuzzy setting,
‘partial orders’ (reflexive, antisymmetric, transitive) can be extended to linear

4We are very grateful to an anonymous referee for pointing out this stimulating possibility
for research.
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orders with the restriction that a fixed pair of elements is in the same degree of
relation before and after the extending process. From this result they state that
a particularization of Szpilrajn’s theorem where non-trivial indifferences are not
allowed is a direct consequence (cf., [25, Corollary II.7′]).

In this subsection we prove that a similar result holds true when the state-
ment for the more general class of fuzzy preorders is invoked. In fact we derive
this consequence from Proposition 5.1 below, which affects all fuzzy relations,
by the appeal to indicators in the following terms:

Proposition 5.1. Given a fuzzy relation R defined on a set X, let us fix
a0, b0 ∈ X such that R(a0, b0) = α and β > 0. Then there exists a fuzzy
total relation R̃ that is a compatible extension of R satisfying that Ref(R) ≤
Ref(R̃) and Trans(R) ≤ Trans(R̃) and such that R̃(a0, b0) = R(a0, b0) and
R̃(a, b) = R(a, b) for all a, b with R(a, b) ≥ β.

Furthermore, we can impose R̃(a, b) ≤ β when R(a, b) < β. More precisely,
if α = 0 we can impose R̃(a, b) ∈ {0, β} when R(a, b) < β.

Proof. Define the auxiliary relation R0 as follows:

R0(a, b) =

{
0 if R(a, b) = 0,
1 otherwise.

This relation is crisp, reflexive, and transitive. Furthermore it is a compatible
extension of R. For one thing, R0 ≥ R is trivial. For another, in order to prove
P0 ≥ P , where P0 is the asymmetric part of R0, observe that P (a, b) > 0 is
equivalent to R(a, b) > 0 and R(b, a) = 0. Therefore P (a, b) > 0 is equivalent
to the conjunction of R0(a, b) = 1 and R0(b, a) = 0, hence P0(a, b) = 1 follows.

We distinguish two cases depending on the value of α.
Firstly we argue under the assumption α = 0. Then there exists a (crisp)

total preorder R̃0 that is a compatible extension of R0 such that P̃0(b0, a0) = 1
(cf., Alcantud [1]). Now define the fuzzy relation R̃ as follows:

R̃(a, b) =


R(a, b) if R(a, b) ≥ β,
β if R(a, b) < β ∧ P̃0(b, a) = 0,

0 if P̃0(b, a) > 0 (which implies R(a, b) = 0).

It is clear that R̃(a, b) = R(a, b) for every a, b such that R(a, b) ≥ β. Also,
R̃(a0, b0) = R(a0, b0) = 0 because P̃0(b0, a0) = 1.

Also, by definition R̃(a, b) ∈ {0, β} when R(a, b) < β.
We claim that R̃ is a compatible extension of R and that R̃ is a total preorder.

Let us first see that R̃ is a compatible extension of R. The fact R̃(a, b) ≥
R(a, b) for all a, b ∈ X follows from the definition of R̃. In order to check
P̃ (a, b) ≥ P (a, b) for all a, b ∈ X, we can assume that a, b verify P (a, b) > 0 to
avoid trivialities. In this case R(a, b) > 0 and R(b, a) = 0. Then R0(a, b) = 1
and R0(b, a) = 0, so that P0(a, b) = 1 and since R̃0 is a compatible extension
of R0, we obtain P̃0(a, b) = 1. From this fact we deduce R̃(b, a) = 0. Therefore
P̃ (a, b) = R̃(a, b) ≥ R(a, b) ≥ P (a, b).
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We now check that Trans(R) ≤ Trans(R̃). Fix any three alternatives
a, b, c ∈ X. We will prove that R(a, b) ∧R(b, c)→ R(a, c) ≤ R̃(a, b) ∧ R̃(b, c)→
R̃(a, c).
First assume that R(a, b) ∧R(b, c)→ R(a, c) = R(a, c). Since R ⊆ R̃,

R(a, b) ∧R(b, c)→ R(a, c) = R(a, c) ≤ R̃(a, c) ≤ (R̃(a, b) ∧ R̃(b, c)→ R̃(a, c)) .

Now assume that R(a, b) ∧ R(b, c) → R(a, c) = 1, this is, that R(a, b) ∧
R(b, c) ≤ R(a, c) . We have to prove that R̃(a, b)∧ R̃(b, c) ≤ R̃(a, c). In order to
prove R̃(a, c) ≥ min(R̃(a, b), R̃(b, c)) we distinguish three cases.

Case 1 : R̃(a, c) > β. Thus R̃(a, c) = R(a, c). If either R̃(a, b) ≤ β or R̃(b, c) ≤ β
then the inequality follows trivially. Otherwise R̃(a, b) > β and R̃(b, c) > β thus
by definition R̃(a, b) = R(a, b) and R̃(b, c) = R(b, c). Since R is min-transitive,

R̃(a, c) = R(a, c) ≥ min(R(a, b), R(b, c)) = min(R̃(a, b), R̃(b, c)) .

Case 2 : R̃(a, c) = β. Then R(a, c) ≤ β. By min-transitivity of R, either
R(a, b) ≤ β or R(b, c) ≤ β or both hold true. This implies that either R̃(a, b) ≤ β
or R̃(b, c) ≤ β, and the inequality follows immediately.

Case 3 : R̃(a, c) < β, which is equivalent to R̃(a, c) = 0. This yields R(a, c) = 0
and P̃0(c, a) > 0. Since R is min-transitive, R(a, c) ≥ min(R(a, b), R(b, c)).
We assume without loss of generality that R(a, b) = 0. If R̃(a, b) = 0 we are
done. Assume R̃(a, b) > 0. Since R(a, b) = 0 one obtains P̃0(b, a) = 0. Now
R̃0(a, b) = 1 because R̃0 is complete. Then

0 = R̃0(a, c) ≥ min(R̃0(a, b), R̃0(b, c)) = R̃0(b, c)

henceforth R̃0(b, c) = 0. From this equality completeness yields R̃0(c, b) = 1
thus P̃0(c, b) = 1 therefore R̃(b, c) = 0.

It remains to prove that Ref(R) ≤ Ref(R̃) and that R̃ is complete. Since R̃
extendsR it holds thatR(a, a) ≤ R̃(a, a) for every a ∈ X and then

∧
a∈X R(a, a) ≤∧

a∈X R̃(a, a). To prove completeness let us assume that a, b ∈ X are such that

R̃(a, b) = 0. We proceed to check R̃(b, a) > 0.
The equality R̃(a, b) = 0 is equivalent to R(a, b) = 0 and P̃0(b, a) > 0. Then

P̃0(a, b) = 0 because P̃0 is asymmetric. This guarantees R̃(b, a) > 0 by the
definition of R̃.

Secondly we argue under the assumption α > 0. Then there exists a (crisp)
total preorder R̃0 that is a compatible extension of R0 (see for example Ar-
row [3]). Take δ = min{α, β}. One solution is given by R̃ defined by the
expression

R̃(a, b) =


R(a, b) if R(a, b) ≥ δ,
δ if R(a, b) < δ ∧ P̃0(b, a) = 0,

0 if P̃0(b, a) > 0 (which implies R(a, b) = 0).

By mimicking the argument above in this proof one easily checks that (i) R̃
is a compatible extension of R, (ii) R̃ is complete and Ref(R) ≤ Ref(R̃) and
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Trans(R) ≤ Trans(R̃), (iii) R̃(a, b) = R(a, b) for all a, b such that R(a, b) ≥ δ,
and (iv) R̃(a, b) ≤ δ for all a, b such that R(a, b) < δ. In particular, R̃(a0, b0) =
R(a0, b0) = α ≥ δ and R̃(a, b) = R(a, b) for all a, b ∈ X with R(a, b) ≥ β
because β ≥ δ. Moreover, R̃(a, b) ≤ β for all a, b such that R(a, b) < β because
if R(a, b) < δ then R̃(a, b) ≤ δ ≤ β, otherwise δ ≤ R(a, b) < β and then
R̃(a, b) = R(a, b) < β.

Broadly speaking, Proposition 5.1 says that when extending a fuzzy relation
to a fuzzy total relation, one can impose the condition that the degree to which a
given element is in relation with another one can always be kept. The statement
provided by this proposition is very versatile. It is applied in Corollaries 5.1 to
5.3 below, which do not need to refer to indicators. The interested reader could
use it to derive other related statements too.

Corollary 5.1. Given a fuzzy preorder R defined on a set X, let {(ai, bi)}ni=1

be a finite list of pairs of elements in X. If one of the following assumptions
holds true

a) R(ai, bi) > 0 for all i = 1, . . . , n or

b) R(a1, b1) = 0 and R(ai, bi) > 0 for all i ≥ 2 ,

then there exists a fuzzy total preorder R̃ that is a compatible extension of R
and such that R̃(ai, bi) = R(ai, bi) for all i = 1, . . . , n.

Proof. Suppose firstR(ai, bi) > 0. Take α = β = min(R(a1, b1), . . . , R(an, bn)) >
0. Proposition 5.1 assures that there exists a fuzzy total preorder R̃ that is a
compatible extension of R such that R̃(x, y) = R(x, y) for all x, y satisfying
R(x, y) ≥ β. In particular, R̃(ai, bi) = R(ai, bi) for all i = 1, . . . , n.

Suppose now R(ai, bi) = 0. Take β = min{R(a2, b2), . . . , R(an, bn)} and
α = 0. By Proposition 5.1, there exists a total preorder R̃ that is a compatible
extension of R such that R̃(a1, b1) = R(a1, b1) = α and R̃(a, b) = R(a, b) for all
R(a, b) ≥ β. In particular, R̃(ai, bi) = R(ai, bi) for all i ≥ 2.

Remark 5.1. It is easy to prove that the conclusion of Corollary 5.1 does
not hold if more than one pair of alternatives are not connected by R and we
want to preserve such disconnections. Consider for example the preorder R
defined on X = {a, b, c, d} by R(a, b) = 1, R(c, d) = 1, R(x, x) = 1 for all
x ∈ X, and R(x, y) = 0 otherwise. We argue that it is not possible to obtain a
total preorder R̃ that is a compatible extension of R such that both R̃(a, d) = 0
and R̃(c, b) = 0 hold true. Using that R̃ should be total, because R̃(a, d) = 0
then R̃(d, a) > 0. By transitivity, R̃(d, b) ≥ min(R̃(d, a), R̃(a, b)) > 0 thus
R̃(c, b) ≥ min(R̃(c, d), R̃(d, b)) > 0, a contradiction.

Corollary 5.2. Given a fuzzy preorder R defined on a set X, let us fix a0, b0 ∈
X such that R(a0, b0) = α and β > 0. Then there exists a fuzzy total preorder
R̃ that is a compatible extension of R and such that R̃(a0, b0) = R(a0, b0) and
R̃(a, b) = R(a, b) for all a, b with R(a, b) ≥ β.

Furthermore, we can impose R̃(a, b) ≤ β when R(a, b) < β. More precisely,
if α = 0 we can impose R̃(a, b) ∈ {0, β} when R(a, b) < β.
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Corollary 5.3. Given a fuzzy preorder R defined on a set X, let {(ai, bi)}ni=1 be
a finite list of pairs of elements in X such that I(ai, bi) > 0 for all i = 1, . . . , n.
Then there exists a fuzzy total preorder R̃ that is a compatible extension of R
and such that Ĩ(ai, bi) = I(ai, bi) for all i = 1, . . . , n.

Proof. Because β = min(I(a1, b1), . . . , I(an, bn)) = min(R(a1, b1), R(b1, a1), . . . ,
R(an, bn), R(bn, an)) > 0, Corollary 5.1 assures that there is a fuzzy total pre-
order R̃ that is a compatible extension of R with R̃(ai, bi) = R(ai, bi) and
R̃(bi, ai) = R(bi, ai) for all i = 1, . . . , n. Therefore for all i = 1, . . . , n we obtain

Ĩ(ai, bi) = min(R̃(ai, bi), R̃(bi, ai)) = min(R(ai, bi), R(bi, ai)) = I(ai, bi) .

Proposition 5.1 is a useful tool for analysis too, and in Section 5.2 we benefit
from it in order to prove a general representation result for fuzzy relations from
which one can deduce that fuzzy preorders can be realized as an intersection of
fuzzy total preorders.

5.2 A general representation result for fuzzy relations

In this subsection we complement the information that fuzzy preorders can be
extended to fuzzy total preorders.

We aim at showing that in fact, fuzzy total preordering extensions and com-
patible fuzzy total preordering extensions provide respective representations of
fuzzy preorders.

In fact the introduction of indicators permits to prove a general result about
the representation of fuzzy relations, namely, Theorem 5.1 below, from which
the aforementioned lucid statement is a direct consequence:

Theorem 5.1. Consider the minimum t-norm. Then every fuzzy relation R
is the intersection of the collection of fuzzy total relations R̃ that are min-
compatible extensions (resp., compatible extensions) of it and satisfy Ref(R) ≤
Ref(R̃), Trans(R) ≤ Trans(R̃).

Proof. We proceed to prove the first statement, from which the second one
derives easily.

Let R be a fuzzy relation. It suffices to prove that for any a0, b0 ∈ X
either there is a min-compatible extension R̃ satisfying Ref(R) ≤ Ref(R̃) and
Trans(R) ≤ Trans(R̃) such that R̃(a0, b0) = R(a0, b0) or there exists a set
{R̂n}n∈N of min-compatible extensions of R satisfying Ref(R) ≤ Ref(R̂) and
Trans(R) ≤ Trans(R̂) and provide the equality (∩n∈NR̂n)(a0, b0) = R(a0, b0).

Case 1. The pair (a0, b0) does not verify R(a0, b0) = 0 = R(b0, a0). Then we
prove that there exists a complete relation R̃ that is a min-compatible extension
of R such that Ref(R) ≤ Ref(R̃) and Trans(R) ≤ Trans(R̃) and R̃(a0, b0) =
R(a0, b0).
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Suppose R(a0, b0) < R(b0, a0). Then for any R̄ min-compatible extension it
holds that R̄(a0, b0) = R(a0, b0) by the definition of min-compatible extension,
because R̄(a, b) ≤ R(b, a)→ R(a, b) = R(a, b) for all a, b.

Now assume R(a0, b0) ≥ R(b0, a0).
Select a total relation R̄ that is a min-compatible extension of R such

that Ref(R) ≤ Ref(R̄) and Trans(R) ≤ Trans(R̄). Let β = R(a0, b0) > 0
and consider the set {(ai, bi)}i∈I of all pairs of alternatives in X such that
R(ai, bi) = 0 = R(bi, ai) and R̄(ai, bi) > 0. Then according to Proposition 5.1,
for each i ∈ I there exists a fuzzy total relation R̃i that is a compatible ex-
tension of R and such that Ref(R) ≤ Ref(R̄), Trans(R) ≤ Trans(R̄) and
R̃i(bi, ai) = 0, R̃i(ai, bi) ∈ {0, β} because R(ai, bi) < β, and R̃i(a

′, b′) = R(a′, b′)
whenever R(a′, b′) > β. In particular, R̃i(a0, b0) = β throughout.
Now consider R̃ = (∪i∈IR̃i)∩R̄. This relation satisfies that R̃(a0, b0) = R(a0, b0)
since R̃(a0, b0) ≤ (∪i∈IR̃i)(a0, b0) = R(a0, b0) and R̄ and all R̃i’s are extensions
of R.
Let us check that R̃ is a min-compatible extension of R. It is clear that R ⊆ R̃
because R ⊆ R̄ and R ⊆ R̃i for all i ∈ I. Since R̄ is a min-compatible ex-
tension of R, for all (a, b) such that R(a, b) < R(b, a) it must be the case that
R̄(a, b) = R(a, b). We deduce R̃(a, b) = R(a, b) by using the fact that R̃ is an
extension of R.
We now check that R̃ is total. For every (a, b) such that R(a, b) = 0 = R(b, a),
either R̄(a, b) > 0 or R̄(b, a) > 0. Assuming without loss of generality that
R̄(a, b) > 0, there must exist i ∈ I such that R̃i(a, b) > 0. Then ∪i∈IR̃i(a, b) > 0
and R̃(a, b) = ((∪i∈IR̃i) ∩ R̄)(a, b) > 0. So that R̃ is total.
Let us now prove that Trans(R) ≤ Trans(R̃). Let us denote Trans(R) = β0.
We will prove that for any a, b, c ∈ X such that R̃(a, b) < β0 it holds that
R̃(a, b) ≥ R̃(a, c) ∧ R̃(c, b). Observe that since Trans(R̄) ≥ Trans(R), if
R̃(a, b) = R̄(a, b), then R̃(a, b) = R̄(a, b) ≥ min(R̄(a, c), R̄(c, b))≥ min(R̃(a, c), R̃(c, b))
then we conclude. We will then assume that R̃(a, b) = ∪i∈IR̃i(a, b) < R̄(a, b).
Assume firstly that R̃(a, b) < β. Because R̃i(a, b) ∈ {0, β} for all i ∈ I, the
only possibility is R̃i(a, b) = 0 for all i ∈ I. This assumption immediately yields
R̄(a, b) = 0. But we are assuming R̃(a, b) = ∪i∈IR̃i(a, b) < R̄(a, b).
Now assume β0 > R̃(a, b) = ∪i∈IR̃i(a, b) ≥ β. Then β0 > R̃i(a, b) = R(a, b)
for all i by the construction of each R̃i. Remember that since Trans(R) = β0,
R(a, b) ≥ min(R(a, c), R(c, b)). Assume without loss of generality R(a, b) ≥
R(a, c), the case R(a, b) ≥ R(c, b) being analogous. If R(a, c) ≥ β, then
R̃(a, c) = ∪i∈IR̃i(a, c) = R(a, c) and we conclude. IfR(a, c) < β, then R̃i(a, c) ≤
β for all i ∈ I, then it follows that R̃(a, c) ≤ ∪i∈IR̃i(a, b) ≤ β, whereas
R̃(a, b) ≥ β ≥ R̃(a, c).
It remains to prove that Ref(R) ≤ Ref(R̃). Since R̃ extends R it holds that
R(a, a) ≤ R̃(a, a) for every a ∈ X and then

∧
a∈X R(a, a) ≤

∧
a∈X R̃(a, a).

Therefore R̃ is a total relation that is a min-compatible extension of R and
such that Ref(R) ≤ Ref(R̃), Trans(R) ≤ Trans(R̃) and R̃(a0, b0) = R(a0, b0).

Case 2. The pair (a0, b0) verifies R(a0, b0) = 0 = R(b0, a0).
If there is a total relation R̄ that is a min-compatible extension of R such that
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Ref(R) ≤ Ref(R̃), Trans(R) ≤ Trans(R̃) and R̄(a0, b0) = 0 then we are done.
Otherwise we select a total relation R̄ that is a min-compatible extension of R
such that Ref(R) ≤ Ref(R̃), Trans(R) ≤ Trans(R̃) and verifies R̄(a0, b0) > 0.

Now consider β = 1/n for n a natural number and the set {(ai, bi)}i∈I of all
pairs of alternatives in X such that R(ai, bi) = 0 = R(bi, ai) and R̄(ai, bi) > 0.
Then according to Proposition 5.1, for each (bi, ai) there exists a total rela-
tion R̃i that is a compatible extension of R and such that Ref(R) ≤ Ref(R̃),
Trans(R) ≤ Trans(R̃) R̃(bi, ai) = 0, R̃(ai, bi) ∈ {0, 1/n} because R(ai, bi) <
1/n, and R̃i(a

′, b′) = R(a′, b′) whenever R(a′, b′) ≥ 1/n. Moreover, R̃i(a0, b0) ∈
{0, 1/n} becauseR(a0, b0) = 0 < 1/n. Denote R̂n = (∪i∈IR̃i(a, b))∩R̄. By mim-
icking the argument above in this proof, one easily checks that the relation R̂n

is a total relation that is a min-compatible extension of R such that Ref(R) ≤
Ref(R̃), Trans(R) ≤ Trans(R̃). Moreover, since R̃i(a0, b0) ≤ β = 1/n for all
i ∈ I, then R̂n(a0, b0) ≤ 1/n. Then for each n we have that R̂n is a relation that
is a min-compatible extension of R such that Ref(R) ≤ Ref(R̃), Trans(R) ≤
Trans(R̃) satisfying R̂n(a0, b0) ≤ 1/n. Therefore ∩n∈NR̂n(a0, b0) = 0 = R(a0, b0).

Theorem 5.1 can be regarded as a (double) fuzzy generalization of Donaldson
and Weymark’s [15] intersection theorem, thus answering an open question in
Georgescu [17, Sect. 1]. It bears some comparison with Höhle and Blanchard
[25, Corollary II.8], where linear order extensions of antisymmetric preorders
are considered instead. And it introduces indicators into the analysis of the
representability of fuzzy relations.

We can now derive a clear-cut statement on the representation of fuzzy
preorders as follows:

Corollary 5.4. Consider the minimum t-norm. Then every fuzzy preorder
R is the intersection of the collection of fuzzy total preorders R̃ that are min-
compatible extensions (resp., compatible extensions) of it.

6 Concluding remarks

In this contribution we continue the line of inspection in Alcantud and Dı́az [2].
The driving question of our analysis is: to what extent can the characterizations
presented by Alcantud [1] be generalized to the fuzzy set context? The main
contribution of [1] is the proposal of necessary and sufficient conditions to ensure
the existence of a crisp total preorder extension of a crisp preorder when some
additional conditions are imposed, which extends the approach in the Szpilrajn
theorem. For the analysis of the fuzzy counterpart of the problem, the main
concept under inspection –compatible extensions– depends on the construction
of associated strict preference relations. In our companion paper [2] we consider
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the widely acknowledged construction for the strict preference and the indiffer-
ence relations based on generators. In this paper we focus on the alternative
construction used by Georgescu [17].

Our results prove that the tighter construction adopted here is more suitable
to produce arguments on compatible extensions of fuzzy preorders. We believe
that this fact supports the view that this alternative construction is much closer
to the crisp spirit than the construction from generators.

Furthermore, the fact that some results are related to the indicators of the
discussed properties means that they can be expressed in a fuzzy logic and
thanks to Georgescu [21, Section 3], integrated into fuzzy modal systems.
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[27] E. Szpilrajn. Sur l’éxtension de l’ordre partiel. Fundamenta Mathematicae,
16 , 386–389 (1930).

[28] G. Yi. Continuous extension of preferences. Journal of Mathematical Eco-
nomics, 22 , 547–555 (1993).

[29] L. Zadeh. Fuzzy sets. Information and Control, 3 , 338–353 (1965).

[30] L. Zadeh. Similarity relations and fuzzy orderings. Information Sciences,
3 , 177–200 (1971).

28


