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Abstract 

New tomographic images of the upper mantle beneath the westernmost 

Mediterranean suggest that the evolution of the region experienced two subduction-related 

episodes. First subduction of oceanic and/or extended continental lithosphere s, now 

located mainly beneath the Betics at depths greater than 400 km, took place on a NW-SE 

oriented subduction zone. This was followed by a slab-tear process that initiated in the 

east and propagated to the west, leading to westward slab rollback and possibly lower 

crustal delamination. The current position of the slab tear is located approximately at 4W, 

and to the west of this location the subducted lithosphere is still attached to the surface 

along the Gibraltar arc. Our new P-wave velocity model is able to image the attached 

subducted lithosphere as a narrow high-velocity body extending to shallow depths, 

coinciding with the region of maximum curvature of  the Gibraltar Arc, the occurrence of 

intermediate-depth earthquakes, and anomalously thick crust. This thick crust has a large 

influence in the measured teleseismic travel time residuals and therefore in the obtained P-

wave tomographic model. We show that removing the effects of the thick crust 

significantly improves the shallow images of the slab and therefore the interpretations 

based on the seismic structure. 

1. Introduction 

The Gibraltar Arc, located in the western Mediterranean region, is the tightly 

curved western limit of the Alpine orogenic system (Figure 1). It is formed by the Betic 

chain in the southern Iberian Peninsula and the Rif mountains in northern Morocco. The 

arc, also referred to as the Betic-Rif system, encloses the Alboran Sea, a Neogene 

extensional basin. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 3 

The process or processes responsible for the formation and present-day structure of 

the Gibraltar Arc continue to be the subject of intense debate, with two major families of 

models being proposed: subduction-related processes (e.g. active subduction, slab 

rollback, slab tear, asymmetric delamination) and convective removal of the lithosphere 

(for a review of the different models see Platt et al., 2013 and references therein). A 

growing number of geophysical data collected in the last decade have improved our 

understanding of the region, predominantly favoring the slab rollback process, but still no 

single model has received a general consensus (see Gutscher et al., 2012; Platt et al., 2013 

for recent reviews). 

The Gibraltar Arc exhibits features that combined are characteristic (if not 

exclusive) of a subduction zone: deep seismicity, arc volcanism and an accretionary prism. 

Deep seismicity in the Betic-Rif is distributed in two zones: a slightly curved, N-S band of 

intermediate-depth events with foci between 70 and 120 km in the region of maximum 

curvature of the arc; and a tight cluster of deep-focus earthquakes beneath Granada with 

depths of about 625 km with two major events in 1954 (Mw 7.8, Chung and Kanamori, 

1976) and 2010 (Mw 6.3, USGS). The intermediate-depth earthquakes dip very steeply to 

the center of the arc suggesting a small Wadati-Benioff zone. Their focal mechanisms are 

variable but indicate downdip tension (Ruiz-Constán et al., 2011). Volcanic rocks in the 

Alboran Basin are geochemically similar to volcanic rocks from active subduction zones 

(e.g. Izu–Bonin and Aeolian island arcs) and consist of low-K (tholeiitic) and medium- to 

high-K calc-alkaline series (Duggen et al., 2005). Finally, the Gulf of Cadiz, together with 

the western part of the external Rif and Betics have long been identified as an accretionary 

prism or wedge (e.g. Gutscher et al., 2009). 

Another characteristic feature of most subduction zones is the existence of a 

positive P-wave velocity anomaly in the mantle that, in the case of the Alboran region, 
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extends continuously from shallow depths to the base of the transition zone (660 km 

seismic discontinuity). This feature has been identified by many authors (Blanco and 

Spakman, 1993; Calvert et al., 2000; Piromallo and Morelli, 2003; Spakman and Wortel, 

2004) and has also been the subject of recent studies, some using a similar dataset to this 

one (Bezada et al., 2014; Bezada et al., 2013; Bonnin et al., 2014; Monna et al., 2013). 

Although most studies agree in the general shape of the anomaly, they differ in aspects 

that have important geodynamic implications. Is the high-velocity body attached to the 

surface and where? Do intermediate-depth earthquakes occur in regions of high or low P-

wave velocity? Does the high velocity anomaly continue to the east along the coast of 

North Africa? Is the high velocity anomaly continuous or broken into different blocks?  

In order to answer these questions, and to better understand the past and present-

day evolution of the region, a number of projects have been carried out recently using 

different methodologies and approaches. As part of the TOPO-IBERIA project (2007-

2013) the IberArray network, consisting of seismic, geodetic, and magnetotelluric 

instruments was deployed in Spain and Morocco (Díaz et al., 2009). In coordination with 

the seismic component of IberArray, which included approximately 200 sites equipped 

with broadband seismic instruments, other temporary broadband networks were deployed 

in Morocco, Spain, Portugal and France, filling coverage gaps in some regions and 

densifying others (Figure 1). Concurrently, permanent seismic monitoring networks in the 

western Mediterranean have increased the number of stations and upgraded their 

instrumentation to broadband, contributing to provide a very dense coverage of high-

quality seismic stations. 

The objective of this study is to make use of the waveform data from this large 

number of newly available broadband instruments to obtain improved images of the 
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mantle beneath the Gibraltar Arc and to address some of the unresolved geodynamical 

problems in the region. 

2. Data 

The data used in this study are P-wave arrival times of distant earthquakes 

recorded in broadband seismometers in the western Mediterranean region. In order to 

obtain very precise arrival times (both relative and absolute) we have first collected 

continuous waveform data for most of the permanent and temporary broadband stations 

operating in the Iberian Peninsula, Morocco and the Canary Islands from 2007 to 2012 

both inclusive. We have then extracted from the continuous recordings time windows that 

include the theoretical first-arriving P wave, and used a phase picking method based on 

simulated annealing (Chevrot, 2002) that exploits the waveform similarity of distant 

events recorded on nearby stations. 

2.1. Compilation of broadband seismograms 

Permanent broadband networks in the region include both monitoring networks 

and research networks. Beginning in the 2000s most of the national monitoring networks 

in the region upgraded their instrumentation from short period to broadband, improved 

their real-time communications, and adopted GPS timing. These networks include those 

operated by the Instituto Geográfico Nacional (IGN, Spain, 55 broadband stations – all 

numbers are approximate and indicate the stations for which we have obtained waveform 

data), Instituto Português do Mar e da Atmosfera (IPMA, Portugal, 15 stations), Institut 

Cartogràfic i Geològic de Catalunya (ICGC, Catalonia, Spain, 17 stations), and Instituto 

Andaluz de Geofísica (IAG, Andalusia, Spain, 15 stations). Other relevant permanent 

research networks in the region are operated by the Spanish Royal Navy Observatory 
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(ROA) and the University of Lisbon. Finally individual stations from global and regional 

networks (GSN, GEOFON, MedNet) are also located in the study region (Figure 1). 

While permanent networks in the region contribute a considerable number of 

stations (120 approximately), their distribution is not ideal for applying imaging methods 

based on teleseismic tomography. Stations are concentrated in the seismically active areas, 

resulting in a very heterogeneous coverage with large spatial variations in station density. 

The situation is worse in Morocco, where the coverage of permanent broadband stations is 

very sparse. To alleviate this problem the temporary network IberArray was designed to 

fill the gaps from permanent networks and provide an homogenous station spacing of 60 

km in Spain. This was achieved in 3 consecutive deployments from south to north starting 

in 2007 and ending in 2013 that resulted in a total of 167 sites (Díaz et al., 2009; Figure 

1). In addition 19 IberArray stations were installed in northern Morocco, and were later 

moved to the center and south, resulting in a total of 39 sites in Morocco. 

Subsequently other temporary networks have been installed in Spain and Morocco 

both expanding and densifying the coverage of IberArray. The PASSCAL experiment 

PICASSO deployed 90 stations along a roughly north-south profile extending from the 

Iberian Massif and crossing the Strait of Gibraltar and the Atlas mountains (Figure 1). 

Additional stations deployed by the University of Münster, Germany (15) and Bristol, UK 

(6) have greatly improved the coverage in previously unsampled regions of the Atlas and 

Anti-Atlas mountains of southern Morocco (Figure 1). 

Finally the Portuguese experiment WILAS and the French experiment PYROPE 

have extended the homogeneous coverage of IberArray into the western part of the Iberian 

Peninsula and southern and western France respectively. Data from these experiments 

have only recently become available and were not used in this study. 
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2.2 Data extraction and preparation 

From this extensive dataset of more than 326 permanent and temporary broadband 

stations we have extracted P and PKP vertical component seismograms from teleseismic 

events with M  5.8 recorded between 2008 and 2012. We apply to the selected 

seismograms a short period WWSSN filter (bandpass between 0.75 s and 1 s), and then 

we extract a time window starting 5 s before and ending 10 s after the theoretical arrival 

time of the first arrival (P or PKPdf), computed in the ak135 model (Kennett et al., 1995). 

A typical teleseismic event is recorded by approximately 250 stations.  

2.3. Cluster analysis 

Once the windows containing the P wave are extracted, a cluster analysis is 

performed, following the algorithm by Knuth (1968) which associates traces according to 

their degree of similarity, quantified with correlation coefficients. Since teleseismic P 

waves recorded by a regional array are expected to have similar waveforms, the main 

cluster contains all the traces for which we can reliably pick P wave onsets. This step is 

important, because it allows us to automatically reject poor data, simplifying the 

subsequent visual inspection of seismic traces. 

2.2. Measurements of differential and absolute travel times 

The waveform similarity of teleseismic P waves can also be exploited for 

accurately measuring relative arrival times by cross-correlation. The multichannel cross-

correlation technique (MCCC) introduced by VanDecar and Crosson (1990)  has been 

very popular to determine accurate relative arrival times of teleseismic waves recorded by 

regional arrays. However, this technique requires preliminary picks on each trace, that is 

both tedious and difficult to perform on noisy records. To keep the procedure automatic, 

we follow the approach introduced by Chevrot (2002) which consists in finding the 
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average waveform recorded by the array and the time delays at each station that minimize 

the misfit function: 

 

                     

 

   

 

   

 

where N is the number of seismograms, M is the number of samples, di is the 

observed record at station i, s is the average waveform, and τi its delay at station i. Note 

that we use a L1 norm to reduce the effects of strong incoherent arrivals in the coda of the 

P wave. This minimization problem is solved by simulated annealing (Kirkpatrick et al., 

1983). For more details on the algorithm we refer the reader to Chevrot (2002). 

Once the minimum of the misfit function E has been found after a few thousands 

iterations all the records can be aligned with the average or reference waveform. We can 

then pick the absolute onset of the P wave on this reference waveform, which has larger 

signal-to-noise ratio than the individual recordings. Once we have obtained the absolute 

pick for the reference waveform, we can convert all the relative time delays τi to absolute, 

by simply adding them to the absolute pick. We thus measure both absolute and relative 

arrival times, with a precision comparable to measurements based on cross-correlations. 

However, by solving the global minimization problem E, we avoid getting trapped into 

secondary maxima of the correlation functions, as in the approach by VanDecar and 

Crosson (1990). 

The results of this automatic processing are then visually inspected and outliers 

(e.g. stations with bad timing or wrong polarity) and noisy traces are eliminated. On 

average, it takes a couple of minutes to process an event recorded by about 250 stations. 

With this method it is possible to process efficiently large datasets to obtain clean and 

high quality travel time measurements. After analyzing the entire dataset, we kept 195 
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earthquakes from which a total of 13,366 P residuals and 482 PKPdf residuals were 

obtained.  

2.3. Examples 

In Figure 2 we show maps of the distribution of P-wave travel time residuals for 

two events occurring in different regions and therefore with different azimuths for the 

incoming P waves. The first event (Figure 2a) occurred in Svalbard and the azimuth is 

from the north. The distribution of the residuals is characterized by positive values 

(corresponding to late arrivals and therefore to seismic velocities slower than average) for 

most of the Betics and northern Rif. El Moudnib et al. (2015) show in their Figure 2b the 

distribution of residuals for a local earthquake in the region that is remarkably similar to 

the one observed in our Figure 2a, suggesting that these teleseismic late arrivals are most 

likely caused by crustal structure (i.e. sediments and thick crust). This strong signature of 

crustal structure in the distribution of residuals stresses the need for realistic crustal 

corrections, in order to correctly eliminate the influence of the crust and therefore obtain 

only the mantle structure. 

A second event (Figure 2b) occurred in Afghanistan and with an azimuth from the 

east shows a pattern of the station residuals that is almost the opposite of the first event. 

The Betics and Rif are now characterized by negative residuals (corresponding to early 

arrivals and therefore to seismic velocities faster than average). This effect is most likely  

caused by the waves traveling through the high velocity anomaly located in the upper 

mantle beneath the Alboran region. This qualitative analysis of the travel time data 

emphasizes first the need for accurate crustal corrections, and second the existence of a 

significant signal from the upper mantle in the Alboran region. 
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3. Tomographic method 

A detailed description of the methodology can be found in Chevrot et al. (2014). 

Here we describe only the most relevant aspects, and those that are specific of this study. 

3.1. Crustal corrections 

Teleseismic travel time residuals are affected by variations in crustal structure but 

their ability to resolve it are very limited. Therefore, the most common approach is to 

apply crustal corrections to the residuals to remove the effect of the crust and obtain a 

mantle-only model. This implies that crustal structure must be known independently (a 

priori). 

The main issue with the computation of crustal corrections is the accuracy of the a 

priori crustal model. Global crustal models such as CRUST2.0 (Bassin et al., 2000) are not 

suitable to obtain accurate estimates of crustal effects on P residuals. An alternative is to 

consider more detailed regional crustal models. For the Iberian Peninsula, different crustal 

models are available in the literature. The model by Ziegler and Dèzes (2006) for western 

and central Europe has been constructed from a compilation of published regional Moho 

maps. The model by Gómez-Ortiz et al. (2011) has been derived from the map of gravity 

anomalies, whereas the model by Díaz and Gallart (2009)  is based upon a compilation of 

deep seismic sounding studies in the Iberian Peninsula. While this last source of 

information is probably the most reliable, their final crustal model appears to be distorted 

in poorly sampled regions by the interpolation method used. A simple comparison of these 

models reveals that they give very different pictures of the crustal roots beneath the Betics, 

with highly variable amounts of crustal thickening.  

Because of this large variability in published crustal models we have thus decided 

to construct a new crustal model from the compilation of the raw estimates coming from 

seismic profiles made by Díaz and Gallart (2009) and from crustal thicknesses estimated 
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using receiver functions (e.g. Mancilla et al., 2013; Mancilla et al., 2012). To fill the gaps, 

we have computed receiver functions at other stations with available waveform data for 

which we determined the Moho depth. Figure 3 shows the map of apparent crustal 

thickness obtained by interpolating the complete dataset over a regular 0.05° grid. The 

main feature in the crustal map is the existence of thick crust beneath the Betic-Rif 

system, particularly in the most curved part of the Gibraltar arc. Crustal thickness there 

can reach more than 45 km, while the average crustal thickness in the stable part of Iberia 

is approximately 31 km, close to the standard 35 km crustal thickness in the ak135 

reference Earth model (Kennett et al., 1995). 

3.2. Model parameterization and inversion 

The tomographic model is parameterized in a spherical grid with homogeneous 

blocks of dimension of 0.25° in latitude and longitude, and 25 km in depth, down to 900 

km depth. Rays are traced in the ak135 reference Earth model (Kennett et al., 1995). 

Following an algorithm similar to Spakman and Bijwaard (2001), we construct an 

irregular block model which agglomerates the small blocks of the initial regular grid in the 

poorly sampled parts of the model. This construction reduces the size of the inverse 

problem and improves its conditioning. To regularize the inversion, we add penalty 

conditions on the L2 norm and on the Laplacian of the tomographic model. The variance 

reduction obtained after 500 iterations of the LSQR algorithm (Paige and Saunders, 1982) 

is around 70%. This rather large reduction of travel time residuals is a strong indication of 

the quality of our data set and of the low level of noise in the travel time measurements. 
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4. Results 

4.1. Effects of crustal corrections 

Including crustal corrections in addition to ellipticity and station elevation 

corrections improves the variance reduction by about 4%,which is quite significant. Figure 

4 shows the comparison of the model results obtained with and without crustal corrections 

for two selected depth layers of the model (75-100 km and 125-150 km). The differences 

are more significant for the shallowest layers of the model, but the effect of not taking into 

account crustal structure can extend to greater depths. 

4.2. Resolution 

We have evaluated the resolving power of our dataset using checkerboard 

reconstruction tests. In Figure 5 we show the results of these tests, for anomalies with 

sizes of 1. As it can be observed in those figures, reconstruction of the checkerboard 

pattern is very good in the uppermost mantle for the southern Iberian Peninsula and 

northern Morocco, including the Alboran region. The region with good reconstruction of 

the synthetic anomalies becomes larger for deeper layers, which is consistent with the 

increase in the area with crossing rays. 

4.3. Model description 

In Figure 6 we show several horizontal slices of the final model from the 

uppermost mantle to the bottom of the transition zone. At all depths, the most conspicuous 

feature is the high velocity body located beneath the Alboran basin and the Betic 

cordillera. Down to 200 km this high velocity body has an arcuate shape, coinciding with 

the most curved segment of the Betic-Rif chain, but shifted to the east. With depth, the 

anomaly tends to move towards the east, giving the appearance of an east-dipping slab 

(upper 300 km in Figure 7a). However, with increasing depth, the anomaly starts to lose 
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the arcuate shape and even seems to break into blobs (see for examples Figures 6c and 

6d). Below 400 km the anomaly seems to be continuous again and, instead of curved, 

exhibits a linear character with a NE-SW orientation coincident with the orientation of the 

Betic cordillera. Other high velocity anomalies but with smaller amplitudes are observed 

beneath the Iberian Massif and Moroccan Meseta. 

In addition to the high velocity anomalies, multiple, smaller low velocity 

anomalies occur throughout the region. Most of these anomalies correspond to regions 

with Neogene volcanism (e.g. Figure 6a). Although there is a general good 

correspondence, some volcanic areas (Calatrava, Cabo de Gata) are located in the edges of 

the low velocity anomalies, not in the center. Similarly a small but prominent low velocity 

anomaly beneath the Strait of Gibraltar is not associated with surface volcanism. 

5. Discussion 

Here we will describe the robust, most prominent features of the P-wave velocity 

model and discuss their geodynamic implications. We will also compare our model with 

previous studies not only to identify the common characteristics, but also to emphasize the 

new features found. A particularly useful comparison will be with the model of 

(Villaseñor et al., 2003), hereafter referred to as VSE03, because of its complementary 

characteristics to the one presented here. Both models are based on P-wave arrival times 

but the dataset and methodology used are independent. VSE03 uses the same 

methodology of Bijwaard et al. (1998) with a greatly increased regional and teleseismic 

dataset of arrival times from earthquakes occurred between 1964-2002 reported by the 

ISC and relocated with the EHB method (Engdahl et al., 1998). For comparison, the 

model presented here uses teleseismic arrival times from earthquakes that occurred 

between 2008-2012 and measured by us, mostly in temporary broadband stations. Both 
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tomographic methods use ray theory but while in this study we invert relative P and PKPdf 

arrival times in a regional model, in VSE03 absolute arrival times of P, PKP, and depth 

phases (pP, pwP) were inverted in a global model (a detailed comparison of both models 

is shown in the Supplementary Material). Other relevant models for comparison are those 

of  Bezada et al. (2014); Bezada et al. (2013) and Bonnin et al. (2014) that were obtained 

using a similar dataset but with a finite frequency approach instead of ray theory. Monna 

et al. (2013) provide another recent teleseismic P-wave model that incorporates a new 

dataset from a temporary OBS deployment in the Gulf of Cadiz and has therefore 

improved resolution in that region. 

As has been seen in previous studies, the most conspicuous feature in the region is 

a high-velocity anomaly located mainly beneath the Alboran Sea and Betics that extends 

from the top of the mantle down to the bottom of the transition zone (i.e. the 660 km 

discontinuity) and is interpreted here as a subducted slab or slabs. 

In its shallow part this anomaly has an arcuate shape, mimicking the curvature of 

the Gibraltar arc. Although teleseismic models such as this one are not very reliable for 

imaging the most shallow layers, there seems to be a clear boundary at approximately 

4W that separates high velocities beneath the western Betics from low velocities to the 

east. At approximately this location a number of recent studies based on different kinds of 

geophysical data propose the existence of a tear in the slab: Rosell et al. (2011) using 

magnetotelluric data; Ruiz-Constán et al. (2011) using focal mechanisms of intermediate-

depth earthquakes; Mancilla et al. (2013) using receiver functions and GPS. With 

increasing depth we observe that the eastern limit of the high velocity anomaly (Alboran 

slab) beneath Spain moves progressively towards the east (Figures 6 and 8). This 

geometry is also seen in VSE03 as shown in Garcia-Castellanos and Villaseñor (2011) and 

the Supplementary Material, and in Bezada et al. (2013) and Monna et al. (2013). This is 
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consistent with a west-propagating slab tear, with its current location at approximately 

4W beneath the western Betics. Slab contours shown in Figure 8 also seem to suggest 

another tear in the southern side of the slab, along the Moroccan coast, although much 

shorter in length. The existence of a northern and southern tear would provide an 

explanation for the change in magma chemistry along the margins of the Alboran Sea 

(Duggen et al., 2003), for the long duration of the shallow connection between the 

Mediterranean and the Atlantic needed to explain the large amount of salt precipitated 

during the Messinian Salinity crisis, and for the later closure of those connections and 

subsequent desiccation of the Mediterranean (Garcia-Castellanos and Villaseñor, 2011). 

Between 75 and 175 km depth (Figures 6a and 6b) the high velocity anomaly 

defines a continuous and narrow slab (less than 100 km thick on a horizontal cross 

section) with an asymmetric crescent shape (the northern or Betic branch extending more 

to the east than the southern or Rif branch). In this depth range, earthquake hypocenters 

are clearly located within the high-velocity anomaly (Figure 7). Although this is the most 

frequent observation in subducting slabs elsewhere, previous studies in this region 

(including VSE03) have found the intermediate-depth seismicity associated with low 

velocities, leading to interpretation as subducted or delaminated continental crust (e.g. 

Morales et al., 1999; Valera et al., 2008). The probable reason for obtaining low velocities 

in the vicinity of the Alboran intermediate-depth earthquakes (at least in the case of 

VSE03) is not taking into account crustal corrections, which are particularly important in 

that region, where an unusually thick crust has been found (Figure 3). The result obtained 

here that intermediate-depth earthquakes occur inside the high velocity anomaly, and 

therefore inside the slab, does not rule out the existence of continental subduction and/or 

delamination. In fact these two processes are a plausible explanation for the observation of 
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an anomalously thick crust (> 50 km) in the westernmost Gibraltar arc (Mancilla et al., 

2013), where topography is relatively low. 

In Figure 8 we have drawn contours of the top of the slab from 100 to 400 km 

depth (defined here when the high velocity anomaly reaches a value of +1%). These 

contours show an east-dipping, 200 km wide slab. The curvature of the slab decreases to 

the east, while its steepness increases in that direction. This geometry is consistent with a 

process of rollback of a narrow slab towards the west. This rollback process is still 

currently active, as evidenced by GPS and focal mechanisms of local earthquakes in the 

western Rif and Betics (Fadil et al., 2006; Koulali et al., 2011; Mancilla et al., 2013; 

Palano et al., 2013; Perouse et al., 2010). 

Below 400 km there is a change in the shape of the high velocity anomaly. The 

predominant shift of the high velocity anomaly to the east with increasing depth is 

replaced by a near-vertical SW-NE trending anomaly located beneath the Alboran Sea and 

most of the Betic range (Figures 6, 8). The western limit of the anomaly from 400 to 660 

km is approximately constant at 5.5W, while it widens and extends toward the east with 

increasing depth. This change in slab geometry below 400 km depth suggests the 

existence of at least two subduction stages: first the subduction of Ligurian-Thetis 

lithosphere in a NW-dipping (e.g. Faccenna et al., 2004) or a SE-dipping direction 

(Vergés and Fernandez, 2012), followed by east-dipping subduction and westward slab 

rollback. This change in subduction is also in agreement with the observed ages and 

directions of extension in the Alboran region. The most recent (from ~27 to 9 Ma) and 

faster extension episode in the Alboran basin has an E-W direction, consistent with 

backarc extension caused by westward slab rollback. This was preceded by a less 

pronounced NNW-SSE extensional episode (Martínez-Martínez and Azañón, 2002), in a 

direction perpendicular to the deep high velocity anomaly. In both cases the extension 
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directions are orthogonal to the strike of the subduction, consistent with a mechanism of 

backarc extension. 

The geometry of the slab below 400 km has also an important implication for the 

validation of proposed evolution models for the westernmost Mediterranean. Models that 

propose exclusively westward slab rollback to explain the current configuration of the 

Alboran region (e.g. Faccenna et al., 2004; Rosenbaum et al., 2002) are compatible with 

the seismic structure observed down to 400 km. However, westward slab rollback alone 

cannot explain the presence of high velocity material in the transition zone beneath the 

western Alboran sea, right below the position where the slab is currently attached to the 

surface (e.g. El Moudnib et al., 2015; Mancilla et al., 2013). The position of the deep high 

velocity anomaly beneath the Alboran basin and the Betics (Figure 8) and the absence of 

high velocity anomalies beneath northern Africa east of 2W at any depth, suggests that 

this slab was attached to the Iberian lithosphere and subducted in SSE direction beneath 

Africa. However from the evidence presented here we cannot rule out the opposite 

scenario (e.g. Faccenna et al., 2004; Rosenbaum et al., 2002). In fact the N-S cross section 

of our model shown in Figure 7b illustrates a near vertical slab below 300 km depth, but 

with a small northward dip, compatible with northward subduction of Africa beneath 

Iberia. 

In addition to the high velocity anomalies associated with the Alboran slab, our 

model also exhibits regions of significant low velocity anomalies (less than 1%). Since the 

anomalies in our model are referred to the layer average, these may not be actual low 

velocities with respect to global averages such as PREM or ak135. However, comparison 

of the low velocities of our model with those in VSE03 (which are referred to ak135) 

show that they coincide well in location and amplitude indicating that they are actual 

relative low velocities with respect to the global average (see Supplementary Material). 
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This confirms that there is very little deviation of the average velocity in our regional 

model from the global average, as expected from the large extent of the region covered in 

our study. Amplitudes of low velocity anomalies in ray-based travel time models are 

known to be underestimated (e.g. due to wavefront healing), therefore the values presented 

here are lower bounds of the absolute value of the anomalies. This has to be taken into 

account when using seismic velocity anomalies obtained with this methodology to infer 

thermal and compositional variations. 

Since a likely origin of low velocities in the mantle is higher temperatures with 

respect to the surrounding mantle, we compare the location of the most significant low 

velocity anomalies with areas of recent volcanism and proposed thin lithosphere. 

In the uppermost mantle (i.e. above 250 km) there are four well defined regions of 

relative low velocities that surround the Alboran Sea high velocity anomaly (Figure 6a,b). 

Three of them coincide remarkably well with areas of Neogene volcanism: Levante-

Valencia Trough, eastern Rif, and Middle Atlas. A fourth anomaly, possibly connected to 

the Middle Atlas anomaly, extends beneath the Gibraltar Strait and eastern Gulf of Cadiz, 

but does not exhibit any surface expression of recent volcanism. These features have 

already been described in previous tomographic studies based on travel times (Bezada et 

al., 2014; Bezada et al., 2013; Bonnin et al., 2014) and surface wave dispersion 

(Palomeras et al., 2014). 

The first and largest of these anomalies, the Levante-Valencia Trough, is centered 

approximately on the northeastern end of the Betic range. This low velocity region 

probably extends eastwards beneath the Valencia Trough (as observed in VSE03) but our 

dataset does not have sufficient sampling in that region. From west to east and following 

an ENE trend, the Campo de Calatrava, Cofrentes-Picasent, and Valencia Trough volcanic 

fields are associated with this anomaly. The Campo de Calatrava volcanic province is 
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located in the western edge of the anomaly near the southeastern limit of the Iberian 

Massif, while the much smaller Cofrentes-Picasent volcanics coincide with the center of 

the anomaly. Although here the absolute values of the anomaly are the largest, the volume 

of erupted material is small, and the heat flow values in the area and other geothermal 

indicators are not significantly large (e.g. Fernandez et al., 1998). The low velocity 

anomaly extends eastward into the Valencia Trough, where numerous submarine volcanic 

outcrops exist, emerging in the Columbretes Islands (e.g. Martí et al., 1992). This low 

velocity anomaly extends down to approximately 300 km depth, both in our model and in 

VSE03. At greater depths, low velocities decrease in magnitude and move to the central 

Iberian Peninsula. 

The second largest low velocity anomaly in size is located beneath the Middle 

Atlas (see also Bezada et al., 2014; Palomeras et al., 2014). In this case the location of the 

maximum absolute value of the anomaly coincides with the location of the Middle Atlas 

basaltic province, which is the area of largest and youngest volcanism in Morocco, 

covering a surface of ca. 960 km
2
 (El Azzouzi et al., 2010). The volcanism in this region 

has been proposed as the result of a thin lithosphere (less than 90 km) leading to an 

asthenospheric uprising (El Azzouzi et al., 2010; Fullea et al., 2010). This coincides well 

with our model and other recent ones (Bezada et al., 2014; Palomeras et al., 2014), that 

shows here well defined low velocities from 70 to 200 km depth. Below that depth, low 

velocities fade out and are replaced by a small-amplitude high-velocity zone down to the 

top of the transition zone. 

Three other anomalies branch out from the Middle Atlas low velocity anomaly: to 

the NNW (Strait of Gibraltar - Gulf of Cadiz), NE (eastern Rif) and SW (High Atlas - 

Anti-Atlas). The NNW anomaly, in spite of large absolute values in the top 200 km, has 

no associated surface volcanism. The NE anomaly coincides with the eastern Rif volcanic 
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fields of Guelliz, Gourougou and Oujda. The easternmost Oujda field is in the center of 

the anomaly, while Guelliz and Gourougou, located more to the west, border with the 

Alboran Sea high velocity anomaly. Finally, the SW anomaly follows the trend of the 

central and western High Atlas and northern Anti-Atlas. This is in good agreement with 

lithospheric modeling results (e.g. Fullea et al., 2010; Teixell et al., 2005) that indicate the 

presence of thin lithosphere (< 100 km) beneath these regions. This would explain not 

only the observed low velocity anomalies, but other features such as high topography with 

modest tectonic shortening, the absence of large crustal roots to support elevation, and the 

occurrence of alkaline magmatism contemporaneous to compression in the volcanic 

provinces of the Middle Atlas and Anti-Atlas (Siroua,11-2 Ma; Saghro, 9.6-2.9 Ma). 

At depths greater than 300 km the correlation between low velocity anomalies and 

Cenozoic volcanism begins to disappear. The only exception occurs beneath the Anti-

Atlas, where the absolute value of the anomaly even intensifies with depth. Since this area 

is on the edge of our model, this anomaly could be the result of smearing in the vertical 

direction because of the lack of crossing rays. For the same reason we cannot confirm the 

continuation of this low velocity anomaly to the west into the Canary Islands, as the model 

below 300 km seems to indicate. Some authors have proposed the existence of a corridor 

in the sublithospheric mantle extending from the Canary Islands to the Alboran sea that 

would be responsible for the observed Cenozoic volcanism in Morocco (Duggen et al., 

2009). Oyarzun et al. (1997) propose that volcanism in western North Africa and in the 

European Cenozoic rift systems (Goes et al., 1999; Ziegler, 1992) might be caused by a 

single, long-lived mantle upwelling. Our results support a single low velocity anomaly 

extending from at least the westernmost Atlas (and possibly from the Canary Islands) to 

the Alboran Sea. This anomaly, however seems to be disconnected from the Levante-

Valencia Trough anomaly by the high velocities of the Alboran slab and the Iberian 
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Massif. The resulting structure would be of two independent, roughly SW-NE trending 

low velocity anomalies. This geometry is also observed in VSE03, where the Levante-

Valencia Trough anomaly continues north into the Central European volcanic province. 

6. Conclusions 

We have obtained new images of the upper mantle beneath the westernmost 

Mediterranean region using teleseismic travel time tomography. We have used a new 

dataset of high-quality P-wave arrival times recorded on permanent and temporary 

broadband instruments in the region. Due to the higher quality and coverage of the new 

dataset, we are able to define with more detail features that were observed in previous 

models based on ISC arrival times. The dominant feature of the model is a high velocity 

anomaly that extends from the base of the crust down to the 660 km discontinuity. We 

interpret this anomaly as subudcted lithospheric slab or slabs. The deepest part of the 

anomaly (below 400 km depth) would correspond to a SW-NE oriented subduction zone 

(dipping either to the NW or the SE) that would have consumed all the available oceanic 

lithosphere of the Ligurian Tethys between Iberia and Africa. A second episode of 

westward slab rollback would be responsible for the formation of the Alboran basin and 

the velocity anomaly observed above 400 km depth. Currently this anomaly is attached to 

the Iberian plate, but only in the westernmost part of the Gibraltar arc. 

Teleseismic tomography using ray theory cannot recover accurately the magnitude 

of the velocity anomalies (particularly low velocities). However, with the ray coverage of 

our dataset, the parameterization, smoothing, and crustal corrections used, we are able to 

resolve small scale features, such as an arcuate, concave to the east, high velocity slab-like 

anomaly that exactly coincides with the geometry of the intermediate depth seismicity 

(Figure 6a). 
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We also find a clear relationship between shallow low velocity regions and 

volcanism. All significant low velocity anomalies (with the exception of the Strait of 

Gibraltar-Gulf of Cadiz anomaly) contain recent volcanic fields and, conversely, no recent 

volcanic field occur in regions of shallow high velocity anomalies. However, in some 

cases volcanic fields are located in the edges of the anomalies, while in others in the 

region of maximum absolute value of the anomaly. This indicates that temperature alone 

is not the only controlling factor of surface volcanism, or that not all low velocity 

anomalies are caused by thermal anomalies, and differences in composition might play a 

role. 
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Figure captions 

Figure 1. Location map of the study region showing the different structural units. The 

broad-band stations used are shown as triangles and color coded according to the network. 

CC: Campo de Calatrava volcanics, Cf: Cofrentes, CG: Cabo de Gata volcanics, Col: 

Columbretes Islands, GGO: Guelliz, Gourougou and Oujda volcanics, MA: Middle Atlas, 

Pc: Picassent. 

Figure 2. Examples of distributions of P-wave travel time residuals for two earthquakes: 

a) Svalbard, Norway, and b) SE Afghanistan. The residuals at each station is indicated by 

a circle. The side of the circle is related to the absolute value of the residual according to 

the legend. Positive (slow) residuals are shown in red, and negative (fast) residuals in 

blue. Arrows indicate the approximate incoming direction of the wavefront to the center of 

the network. 

Figure 3. Map of crustal thickness used to compute crustal corrections. Contour lines are 

drawn every 2 km. 

Figure 4. Comparison of results of the tomographic inversion with and without crustal 

corrections for two shallow layers of the model. Results without crustal corrections are 

shown in the left panels, and with crustal corrections in the right: a) layer of the model 

between 75-100 km depth obtained without crustal corrections; b) same as a) but with 

crustal corrections; c) layer of the model between 125-150 km depth obtained without 

crustal corrections; d) same as c) but with crustal corrections. 

Figure 5. Results of a checkerboard reconstruction test to estimate the resolving power of 

the arrival time dataset used. The synthetic model consists of two checkerboard patterns 

located between 100-150 km and 375-425 km. Each checkerboard is made of anomalies 

with sizes of 1  1 and alternating positive and negative velocity anomalies of 2% with 
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respect to the average P-wave velocity for each layer. a) Reconstructed model for the layer 

125-150 km depth. b) Reconstructed model for the layer 400-425 km depth. 

Figure 6. Horizontal slices of the P-wave velocity model for different depths. The 

location of Neogene volcanic rocks is indicated by diamonds. Thin lines indicate the limits 

of the structural provinces shown in Figure 1. The location of the vertical profiles shown 

in Figure 7 is indicated as thick lines in b). a) Horizontal slice of the model from 75-100 

km. Green circles indicate epicenters of earthquakes from the IGN catalog that occur 

inside this layer; b) horizontal slice for 125-150 km; c) horizontal slice for 225-250 km; d) 

horizontal slice for 325-350 km; e) horizontal slice for 475-500 km; f) horizontal slice for 

625-650 km. CC: Campo de Calatrava volcanics, Cf: Cofrentes, CG: Cabo de Gata 

volcanics, Col: Columbretes Islands, GGO: Guelliz, Gourougou and Oujda volcanics, 

MA: Middle Atlas, IM: Iberian Massif, and MM: Moroccan Meseta. 

 

Figure 7. a) W-E cross section of the model from the Gulf of Cadiz to the Alboran Sea 

across the Strait of Gibraltar. b) S-N cross section of the model along the -4W meridian. 

The location of the profiles is shown in Figure 6b. Green circles are projected hypocenters 

of earthquakes in the IGN catalog that are closer than 100 km to the profiles. 

Figure 8. Geometry of the high velocity anomaly beneath the Alboran region. Lines 

labeled from 100 to 400 indicate the location of the top of the anomaly/slab for that depth 

in km (picked as the eastern contour of the +1% velocity anomaly at each depth). The blue 

area corresponds to the +1% contour of the high velocity anomaly at 450 km depth. The 

two arrows indicate the propagation path of the proposed northern and southern slab tears. 

The gray area indicates the region where earthquakes with slab-tear mechanisms occur 

(according to Ruiz-Constán et al., 2011). Red circles indicate the epicenters of 

intermediate-depth earthquakes (h > 70 km) in the IGN catalog from 2000-present.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Highlights 

 

New P wave model of Iberia-Africa collision zone 

 

Crustal corrections needed for accurate imaging of the mantle 

 

Seismic structure suggests at least two episodes of subduction 


