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Abstract

The fuzzy rating scale was introduced as a tool to measure intrinsically ill-defined/
imprecisely-valued attributes in a free way. Thus, users do not have to choose a value
from a class of prefixed ones (like it happens when a fuzzy semantic representation
of a linguistic term set is considered), but just to draw the fuzzy number that better
represents their valuation or measurement. The freedom inherent to the fuzzy rating
scale process allows users to collect data with a high level of richness, accuracy,
expressiveness, diversity and subjectivity, what is especially valuable for statistical
purposes.

This paper presents an inferential approach to analyze data obtained by using
the fuzzy rating scale. More concretely, the paper is to be focussed on testing
different hypothesis about means, on the basis of a sound methodology which has
been stated during the last years. All the procedures that have been developed to
this aim will be presented in an algorithmic way adapted to the usual generic fuzzy
rating scale-based data, and they will be illustrated by means of a real-life example.

Keywords: computational intelligence and information management, fuzzy sets,
fuzzy rating scale, random fuzzy numbers, stochastics and statistics

1. Introduction

In connection with the statistical analysis of fuzzy-valued data, several methods
have been suggested to test hypotheses about the population means of the random
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processes generating such data. More concretely, when these random processes
are modeled by means of random fuzzy sets (or fuzzy random variables in Puri &
Ralescu’s sense, 1986) one can find the following testing methods for the Aumann-
type fuzzy means:

• one-sample ones, to test the (‘two-sided’) null hypothesis that the population
Aumann-type fuzzy mean of a random fuzzy set equals a given fuzzy value
(see, for instance, Körner, 2000; Montenegro et al., 2004; González-Rodŕıguez
et al., 2006b);

• two-sample ones, to test the (‘two-sided’) null hypothesis of the equality of
the population Aumann-type fuzzy means of two random fuzzy sets being
either independent (see Montenegro et al., 2001) or dependent (see González-
Rodŕıguez et al., 2006a);

• k-sample/ANOVA ones, to test the (‘two-sided’) null hypothesis of the equality
of the population Aumann-type fuzzy means of k random fuzzy sets which are
either independent (see Gil et al., 2006; González-Rodŕıguez et al., 2012) or
dependent (see Montenegro et al., 2009).

For detailed reviews on the problem, one can see the paper by Colubi (2009), as well
as the recent one by Blanco-Fernández et al. (2014a,b).

The above-mentioned testing methods have been developed to deal with gen-
eral fuzzy-valued data, but most of the practical situations they apply to concern
fuzzy number-valued data. In this respect, an important source of fuzzy number-
valued data in real-life is associated with using (either consciously or not) the fuzzy
rating scale to assess valuations/ratings to intrinsically ill-defined attributes like
quality/satisfaction/perception/attitude/judgement...

To show the potentiality of these testing methods in analyzing data coming from
the use of the fuzzy rating scale, this paper presents each of the methods in an
algorithmic way, and illustrates their application on a real-life example involving
several fuzzy datasets.

Although algorithms for different tests are to be first presented for general fuzzy
values (irrespective of their shape and dimensionality), their steps will also be par-
ticularized to trapezoidal fuzzy data, as those we obtain when the usual fuzzy rating
scale is considered. In this way, and to a certain extent, this paper aims to be a
kind of ‘instruction manual’ for the use of testing techniques about means in dealing
with (trapezoidal) fuzzy rating scale-based data.

For this purpose, Section 2 recalls the ideas and mechanism for the fuzzy rating
scale and its application to valuate items in a questionnaire, along with some related
tools and models. Section 3 presents the real-life example and how the fuzzy rating
scale has been applied to get the fuzzy datasets to be analyzed later. Section 4
presents different tests for fuzzy means (one-sample, independent/dependent two-
sample and independent/dependent ANOVA) by means of algorithms, including
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their particularization to trapezoidal fuzzy data; once each algorithm is described, it
is applied to some of the datasets from the real-life example. In Section 5, as a matter
of comparative analysis, some of the statistical conclusions are to be compared with
those drawn from the use (for the same items) of a Likert scale or a numerical/fuzzy
linguistic encoding. The paper ends with some concluding remarks about related
open problems.

2. Preliminaries

By a fuzzy-valued datum we mean a fuzzy set on a finite-dimensional Euclidean
space. More concretely, we will consider fuzzy vectors or fuzzy numbers having
compact support set, that is,

Definition 2.1. A (bounded) fuzzy value is a mapping Ũ : R
p → [0, 1] (with

p ∈ N) such that for each α ∈ [0, 1] its α-level set

Ũα =

{
{x ∈ R

p : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R
p : Ũ(x) > 0} if α = 0

(with cl = topological closure) is a nonempty closed, convex and bounded set in R
p.

When p = 1, the fuzzy value is referred to as a fuzzy number.

A well-known key feature in applying fuzzy sets to model data is that for each
x ∈ R

p the number Ũ(x) is usually interpreted as the ‘degree of compatibility’ of x

with the concept represented by (or the property describing) Ũ .
Fuzzy values are especially suitable to cope with the imprecision of human

thought and experience in attributes such as quality, satisfaction, perception, atti-
tude, and so on. The flexibility and expressiveness of fuzzy sets allow us to properly
model and describe values from such attributes.

The fuzzy rating scale, introduced by Hesketh et al. (1988), arises from in-
teracting the abilities of fuzzy sets to formalize mathematically valuations which
are intrinsically imprecise, to precisiate such valuations through a continuum, and
to develop mathematical computations with the formalized valuations. On the ba-
sis of this scale, users establish their valuations (often responses to the items of a
questionnaire) by drawing fuzzy numbers (usually a trapezoidal or, in particular, a
triangular one) in a completely free way.

When open-ended valuations/responses are formalized in terms of arbitrary fuzzy
numbers, they show a clear meaning. Nevertheless, they do not need to (and,
actually, should not) be translated into words.

The guideline for drawing the fuzzy number that better expresses the valua-
tion/response according to the fuzzy rating scale can be schematized as follows (see
Hesketh et al., 1988; De la Rosa de Sáa et al., 2015):
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Step 1. A reference bounded interval/segment is first considered ([0, 10] or [0, 100]
being the most frequent choices). The end-points are often labeled in accor-
dance with their meaning referring to the degree of agreement, satisfaction,
quality, and so on.

Step 2. The core, or 1-level set, associated with the response is determined. It
corresponds to the interval (or singleton) of the real values (value) within
the reference one which are (is) considered to be ‘fully compatible’ with the
valuation/response.

Step 3. The support (or its closure or 0-level set), associated with the valuation/
response is determined. It corresponds to the interval of the real values
within the reference one which are considered to be ‘compatible to some
extent’ with the response.

Step 4. The two intervals are ‘linearly interpolated’ to get a trapezoidal fuzzy num-
ber

The freedom inherent to fuzzy rating scale-based data entails a gain of informa-
tion and accuracy, which is certainly crucial for statistical purposes. In this regard,
Hesketh et al. (2011) have indicated the need for statistical techniques to analyze
fuzzy data. Although a few studies have been carried out to analyze fuzzy rating
scale-based data (e.g., Hesketh et al., 1988; Hesketh & Hesketh, 1994; Hesketh et
al., 1995; Takemura, 1999, 2007), these studies have been descriptive ones based on
either on defuzzification processes or the end-points of the core 0- and 1-level sets.

To develop statistics with fuzzy rating scale-based data, two operations with
them are frequently considered. The usual fuzzy arithmetic with fuzzy values is the
one based on Zadeh’s extension principle (Zadeh, 1975), which in case of dealing
with fuzzy numbers coincides level-wise with the usual interval arithmetic.

Let Fc(R) denote the space of (bounded) fuzzy numbers. Then,
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Definition 2.2. If Ũ , Ṽ ∈ Fc(R), then the sum of Ũ and Ṽ is defined as the

fuzzy number Ũ + Ṽ ∈ Fc(R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α =
[
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
.

If Ũ ∈ Fc(R) and γ ∈ R, the product of Ũ by the scalar γ is defined as the

fuzzy number γ · Ũ ∈ Fc(R) such that for each α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
=

{ [
γ inf Ũα, γ sup Ũα

]
if γ ≥ 0,

[
γ sup Ũα, γ inf Ũα

]
if γ < 0.

It is well-known that, except when Ũ reduces to the indicator function of a
singleton, Ũ + (−1) · Ũ 6= 1{0} (indicator of the singleton {0}, which is the neutral
element for the fuzzy sum). Consequently, it is not possible to establish a difference
operator between fuzzy numbers that is always well-defined and preserves all the
properties of the difference of real numbers. Many of the drawbacks associated with
this non-linearity can be often overcome in statistical developments by using suitable
metrics, like the parameterized L2 one by Bertoluzza et al. (1995) (see Trutschnig
et al., 2009, for a deep and more general study about).

Definition 2.3. Let θ > 0 and assume Ũ , Ṽ ∈ Fc(R). The mid/spr distance (or

Bertoluzza et al.’s distance) between Ũ and Ṽ is given by

Dθ(Ũ , Ṽ ) =

√∫

[0,1]

([
mid Ũα −mid Ṽα

]2
+ θ

[
spr Ũα − spr Ṽα

]2)
dα,

with mid Ũα = (inf Ũα+sup Ũα)/2 denoting the centre/mid-point of the corresponding

level interval Ũα and spr Ũα = (sup Ũα− inf Ũα)/2 denoting the spread/radius of the

level interval Ũα.

When two trapezoidal fuzzy numbers Ũ = Tra(a, b, c, d) and Ũ ′ = Tra(a′, b′, c′, d′)

are considered, then Dθ(Ũ , Ũ ′) can be expressed in terms of the midpoints and radii

of the support and core sets. More concretely, Dθ(Ũ , Ũ ′) equals

√
(m−m′)2 + (m−m′)2 + (m−m′)(m−m′) + θ(s− s′)2 + θ(s− s′)2 + θ(s− s′)(s − s′)

3
,

where m = (a+ d)/2, m = (b+ c)/2, s = (d− a)/2 and s = (b− c)/2.

The weighting parameter θ is frequently chosen to be θ = 1 or θ = 1/3, leading
to the particular metrics

D1(Ũ , Ṽ ) = ρ2(Ũ , Ṽ ) =

√
1

2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα,
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introduced by Diamond & Kloeden (1990), and

D1/3(Ũ , Ṽ ) =

√∫

[0,1]

∫

[0,1]

[
Ũ

[λ]
α − Ṽ

[λ]
α

]2
dλ dα,

with Ũ
[λ]
α = λ sup Ũα + (1 − λ) inf Ũα, that is, weighing uniformly the squared dis-

tances between the convex linear combinations of the end-points of the different
level intervals.

To develop a well-stated methodology to analyze fuzzy data, and especially when
inferential targets are involved, we need a formal model for the random mechanism
generating fuzzy number-valued data. This model should integrate randomness (to
generate data) and fuzziness (because of the intrinsic nature of these data).

Random fuzzy sets (originally coined as fuzzy random variables by Puri & Ralescu,
1986) result in a well-defined and sound model within the probabilistic setting, which
allows us to extend or preserve almost all the fundamentals from statistical inference.
In this way, it should be highlighted that, although extending statistical methods to
the analysis of fuzzy data is not at all a simple task because of the problems that
will be described at the beginning of Section 4, with the use of random fuzzy sets
one can properly and immediately refer to their (induced) distribution, parameters,
independence, and so on. Furthermore, one can make use of the key notions in
inferential statistics like the p-value of a test, its consistency, etc., without needing
to introduce a special statistical setting to deal with fuzzy data.

Consider a random experiment which is mathematically modeled by means of a
probability space (Ω,A, P ).

Definition 2.4. A random fuzzy number (or one-dimensional random fuzzy set,
for short RFN) associated with (Ω,A, P ) is a mapping X : Ω → Fc(R) such that
for all α ∈ [0, 1] the α-level mapping Xα is a compact random interval (that is, for
all α ∈ [0, 1] the real-valued mappings inf Xα and supXα are random variables).

Remark 2.1. Since a mapping X : Ω → Fc(R) is an RFN if and only if it is a Borel-
measurable mapping with respect to a certain σ-field associated with Dθ (see, for
instance, Colubi et al., 2001), the Borel-measurability allows us to trivially induce
from P the distribution of the RFN X , and refer to the independence of RFNs.

In performing inferential analysis about the distribution of RFNs, the best known
involved parameters are the Aumann-type mean value by Puri & Ralescu (1986) and
the Fréchet-type variance by Lubiano et al. (2000).
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Definition 2.5. Let (Ω,A, P ) be the probability space modeling a random experi-
ment and X be an associated RFN.

The Aumann-type mean of X is the fuzzy number Ẽ(X ) ∈ Fc(R), if it exists,
such that for all α ∈ [0, 1]

(
Ẽ(X )

)

α
= [E(inf Xα), E(supXα)] ,

with E denoting the mean value of the corresponding real-valued random variable.
The Dθ Fréchet-type variance of X is the real number σ2

X , if it exists, given
by

σ2
X = E

[(
Dθ(X , Ẽ(X )

)2
]
.

3. Real-life example

In this section a real-life example is presented. This example will be considered
in Section 4 to illustrate the potentiality of the approach to hypotheses testing for
means.

For many years, questionnaires have been important tools for assessing attitudes
regarding a lot of educational issues (see, as instances of some recent studies about,
Rutkowski & Rutkowski, 2010; Haelermans & De Witte, 2012; Rutkowski et al.,
2013; Nikolaidis & Dimitriadis, 2014; Ballouard et al., 2015; Peró et al., 2015).

The example concerns the well-known questionnaire TIMSS-PIRLS 2011. The
International Association for the Evaluation of the Educational Achievement (IEA),
Trends in International Mathematics and Science Study (TIMSS) and Progress in
International Reading Literacy Study (PIRLS) have provided information about
home supports and school environments for teaching and learning. For this purpose,
questionnaires on reading, mathematics and science have been conducted on the
same students, and also additional questionnaires having been filled by their parents,
teachers and school management team. Having data on the same students makes
it possible to perform valuable investigations and researchers can apply a variety of
modeling techniques to explore these important issues.

In 2011, the Spanish Institute of Educational Evaluation (INEE) has commis-
sioned some members of our Department of Statistics, Operations Research and
DM at the University of Oviedo in Spain to develop an analysis with data collected
through some of the TIMSS/PIRLS questionnaires conducted in Spanish schools
(see Corral-Blanco et al., 2013, for a summary of conclusions). These questionnaires
have been standard ones in what concern responses, since most of the involved items
had to be answered according to the 4-point Likert scale given by A1 = disagree

a lot, A2 = disagree a little, A3 = agree a little and A4 = agree a

lot.
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Conclusions from these studies have been certainly interesting. Anyway, our col-
leagues have been wondering whether adapting these questions with the fuzzy rating
scale approach would yield somewhat different statistical conclusions. To corrobo-
rate such an intuitive idea, an introductory inferential analysis has been performed.
For this purpose nine items have been chosen from the Student questionnaires, the
items being displayed in Table 1.

reading in school

R.1 I like to read things that make me think

R.2 I learn a lot from reading

R.3 Reading is harder for me than any other subject

mathematics in school

M.1 I like mathematics

M.2 My teacher is easy to understand

M.3 Mathematics is harder for me than any other subject

science in school

S.1 My teacher taught me to discover science in daily life

S.2 I read about in my spare time

S.3 Science is harder for me than any other subject

Table 1: Questions selected from the TIMSS-PIRLS 2011 Student Questionnaires

These nine items have been originally conceived to be answered in accordance
with the four-point Likert scale {A1,A2,A3,A4}. Of course, an immediate way
to incorporate Fuzzy Logic in analyzing these items is to handle them by means
of a fuzzy linguistic scale (see, for instance, Zadeh, 1975; Tong & Bonissone, 1980;
Pedrycz, 1989; Herrera et al., 1998, 2008; Lalla et al., 2008; Roszkowska & Wachow-
icz, 2015; Yan & Ma, 2015).

Nevertheless, from a statistical viewpoint the fuzzy rating scale adds a clear
diversity and subjectivity which cannot be captured through a fuzzy linguistic one
and definitely provides a much richer information. For this reason, the questionnaire
form involving these nine items, along with a few more ones about students’ support
resources at home, has been adapted to allow a double-type response, namely, the
original Likert and a fuzzy rating scale-based one (see Figure 1 for QuestionM.2, and
see http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html

for the full paper-and-pencil and computerized versions).
In this way, each of the nine questions in Table 1 is assumed to be filled in

accordance with both the 4-point Likert and the fuzzy rating scales with reference
interval [0, 10] (Spain uses a 10-point grading scale for elementary and high schools,
so it could mean a proper simile for students). To ease the relationship between the
two scales, four light circular marks have been placed indicating the usual numerical
encoding of the four Likert categories with respect to the interval [0, 10].
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M.2 My teacher is easy to understand

Figure 1: Example of the double-response form to a question

The questionnaire has been conducted on 69 fourth grade students from Colegio
San Ignacio (Oviedo-Asturias, Spain). Although a first analysis has been considered
in Gil et al. (2015), this paper aims to enlarge, detail and complete it by paying
attention to testing about means procedures and results. Some students have used
the computer-administered format, whereas the others have filled the paper-and-
pencil one. The training of the 9-year-old children has taken up to fifteen minutes,
and was essentially based on the notion of trapezium they already knew, making
them identify the upper base with the total compatibility degree and the lower
one with the compatibility to some extent, and then legs joining both bases. In
spite of the short training and, because of the students being nine-year-old, the
rather naive mathematical background of the respondents, there have been few more
missing responses with the Likert than with the fuzzy rating scale. This has been
a first interesting conclusion: of course, fuzzy rating scale-based questionnaires are
not trivial to respond and there is a need for a certain training, but the fuzzy spirit
seems not to be difficult to follow.

The complete dataset for the study to be developed in Section 4 can be found in
http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html.

4. Testing hypotheses about means

When one attempts to develop statistics with fuzzy rating scale-based data, some
distinctive features with respect to the real-valued case should be taken into account,
namely,

• one cannot make use of a difference operator which is well-defined and pre-
serves all the properties from the real-valued case;

• there is no ‘universally accepted’ total order between fuzzy numbers;
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• there are not realistic and wide models for the distributions of random fuzzy
numbers;

• there are not Central Limit Theorems for RFNs which can be directly applied
for inferential purposes (thus, although CLTs for random fuzzy sets can be
found in the literature - see, for instance, Wu, 1999, and Krätschmer, 2002
- either restrictive conditions for the values the random fuzzy sets take on
have been assumed or the limit Gaussian random element cannot be always
guaranteed to be identifiable with a random fuzzy set).

At this point, the involvement of suitable metrics like Dθ plays a crucial role
in overcoming most of the associated drawbacks. This is mainly due to the fact
that thanks to these metrics the space of fuzzy numbers endowed with the fuzzy
arithmetic can be isometrically embedded via the support function (Puri & Ralescu,
1985) into a convex cone of a Hilbert space of functions endowed with the usual
functional arithmetic and a certain metric (see González-Rodŕıguez et al., 2012, for
details about). This embedding entails a convenient identification of fuzzy numbers
with functions in a Hilbert space, allowing us

• to apply the bootstrapped Central Limit Theorem for generalized spaces by
Giné & Zinn (1990), when we deal with the means of random fuzzy sets; thus,
while the Central Limit Theorem for generalized spaces could not be directly
applied because of not having guarantees for the limit elements to take values
within the convex cone the space of fuzzy numbers is embedded into, the use
of bootstrap techniques along with the convexity of the cone circumvent such
problems;

• to particularize several statistical methods from the so-called Functional Data
Analysis; although at first glance all Functional Data Analysis methods could
be particularized, special caution should be paid in being certain that the
particularization does not lead us out of the cone the space of fuzzy numbers
is embedded into.

Moreover, we can always try to develop ad hoc procedures (see, for instance,
Montenegro et al., 2001, 2004; Gil et al., 2006; González-Rodŕıguez et al., 2009).

Testing methods for (Aumann-type) means with fuzzy (vector or number-valued)
data have been obtained by first developing asymptotic results and later approximat-
ing these results by means of the bootstrapped central limit theorem. In ANOVA’s
case, the most recent approach has consisted in developing a functional data analy-
sis approach and later particularize it also thanks to the bootstrapped central limit
theorem. The procedures obtained in this way make use of the same fundamen-
tals that methods for real-valued data. Thus, most of the statistical conclusions
are based on the computation of the p-value, which make full sense in this random
fuzzy sets-based methodology. The p-value can be intuitively viewed as a kind of
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indicator of the sustainability of the null hypothesis (the smaller the p-value, the
stronger evidence against the hypothesis). Furthermore, the obtained methods have
been proved to be consistent, and they can be suitably applied even with small to
moderate sample sizes.

As, already commented, the one-sample, two-sample and k-sample procedures
are to be recalled in an algorithmic way, and each of the steps allowing it will be
particularized to the usual fuzzy rating scale-based data, i.e., trapezoidal ones. Each
of the procedures will be illustrated with the analysis of some of the items in the
considered real-life example (in which θ has been chosen to equal 1/3).

It should be remarked that, although the fuzzy rating scale has been stated on
the basis of triangular/trapezoidal fuzzy numbers, this assumption is not essential
for the hypotheses testing methods we describe and apply in this section. How-
ever, such a simple shape, which can be easily explained through the notions of
triangle and trapezium, makes the training easier to understand almost irrespec-
tive of the background of respondents, as the considered real-life example corrobo-
rates. Furthermore, their use is also supported by arguments provided by Pedrycz
(1994), Grzegorzewski (2008), Grzegorzewski & Pasternak-Winiarska (2011), Ban et
al. (2011), and others, who have soundly discussed how triangular and trapezoidal
fuzzy numbers can be considered to describe or approximate fuzzy data. Recently,
an additional supporting argument has been given through an empirical sensitivity
analysis which has been carried out about the effect of the shape of fuzzy data on
several statistical measures (see Lubiano et al., 2015).

To simplify notations along the following subsections, if Ũ is a trapezoidal fuzzy
number, the midpoint and radii of the support Ũ0 and core Ũ1 will be denoted by

m(Ũ) = mid Ũ0, m(Ũ) = mid Ũ1, s(Ũ) = spr Ũ0, s(Ũ) = spr Ũ1.

Furthermore, if x̃i is a trapezoidal fuzzy datum we will denote:

mi = m(x̃i), mi = m(x̃i), si = s(x̃i), si = s(x̃i).

4.1. One-sample test for the mean with fuzzy rating scale-based data

To test the null hypothesis that the Aumann-type mean of an RFN X equals
a given fuzzy number Ũ , one can consider the bootstrapped algorithm by Colubi
(2009) approximating the one-sample test for the mean of an RFN (see Körner,
2000; Montenegro et al., 2004; González-Rodŕıguez et al., 2006b), which is now
algorithmically summarized.

Let x̃n = (x̃1, . . . , x̃n) be a sample of independent observations from the RFN

X , and let Ũ ∈ Fc(R). Then, the algorithm to test the null hypothesis H0 : Ẽ(X )

= Ũ (or, equivalently, H0 : Dθ

(
Ẽ(X ), Ũ

)
= 0) proceeds as follows:
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Step 1. Compute the value of the statistic

Tn =
An(x̃n, Ũ)

Bn(x̃n)
=

[
Dθ

(
1
n
· (x̃1 + . . .+ x̃n), Ũ

)]2

1
n−1

∑n
i=1

[
Dθ

(
x̃i,

1
n
· (x̃1 + . . .+ x̃n)

)]2 .

If all sample data x̃i are trapezoidal, then the sample mean is also trapezoidal, and

An(x̃n, Ũ) =

[
1

n

n∑

l=1

ml −m(Ũ)

]2

+

[
1

n

n∑

l=1

ml −m(Ũ)

]2

+

[
1

n

n∑

l=1

ml −m(Ũ )

]
·

[
1

n

n∑

l=1

ml −m(Ũ)

]

+ θ




[
1

n

n∑

l=1

sl − s(Ũ )

]2

+

[
1

n

n∑

l=1

sl − s(Ũ)

]2

+

[
1

n

n∑

l=1

sl − s(Ũ)

]
·

[
1

n

n∑

l=1

sl − s(Ũ)

]

 ,

Bn(x̃n) =
1

n− 1

n∑

i=1




[
1

n

n∑

l=1

(ml −mi)

]2

+

[
1

n

n∑

l=1

(ml −mi)

]2

+

[
1

n

n∑

l=1

(ml −mi)

]
·

[
1

n

n∑

l=1

(ml −mi)

]



+
θ

n− 1

n∑

i=1



[
1

n

n∑

l=1

(sl − si)

]2

+

[
1

n

n∑

l=1

(sl − si)

]2

+

[
1

n

n∑

l=1

(sl − si)

]
·

[
1

n

n∑

l=1

(sl − si)

]
 .

Step 2. Fix the bootstrap population to be
{
x̃1, . . . , x̃n

}
.

Step 3. Obtain a sample of independent observations from the bootstrap population,
x̃∗

n
= (x̃∗

1, . . . , x̃
∗
n).

Step 4. Compute the value of the bootstrap statistic

T ∗
n =

An

(
x̃∗

n
, x̃n

)

Bn(x̃
∗

n
)

.

If all sample data x̃i are trapezoidal, then the bootstrap data are also trapezoidal and the sample means
(original and bootstrap) are too, whence

An

(
x̃∗

n, x̃n

)
=

[
1

n

n∑

l=1

(m∗

l −ml)

]2

+

[
1

n

n∑

l=1

(m∗

l −ml)

]2

+

[
1

n

n∑

l=1

(m∗

l −ml)

]
·

[
1

n

n∑

l=1

(m∗

l −ml)

]

+ θ




[
1

n

n∑

l=1

(s∗l − sl)

]2

+

[
1

n

n∑

l=1

(s∗l − sl)

]2

+

[
1

n

n∑

l=1

(s∗l − sl)

]
·

[
1

n

n∑

l=1

(s∗l − sl)

]

 .

Step 5. Steps 3 and 4 should be repeated a large number B of times to get a set of
estimates, denoted by {t∗1, . . . , t

∗
B}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t
∗
B}

which are greater than Tn.

To illustrate the application of this test we consider the following:

Example 4.1. Consider the fuzzy rating scale dataset associated with the responses
to item M.2 (‘My math teacher is easy to understand’) in the real-life example in
Section 3 for the n = 66 students who responded to this question using both scales.
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Assume that we aim to test whether the (population) Aumann-type mean of the
responses equals the usual fuzzy linguistic encoding of the two higher values in a
4-point Likert scale, namely, Ũ3 (encoding A3, see Table 2 and also Figure 2 later

explained), Ũ4 (encoding A4, see Table 2 and Figure 2), or its average .5 · (Ũ3+ Ũ4)
(see Table 2).

FRS FRS hypothetical hypothetical hypothetical
sample data sample mean mean Ũ3 mean Ũ4 mean .5 · (Ũ3 + Ũ4)

M.2

p-value .000∗∗∗ .000∗∗∗ .097

Table 2: On the top, the sample fuzzy rating scale-based responses and sample mean (on the
left), along with three hypothetical means (on the right) in connection with Question M.2; on the
bottom, the corresponding p-values in testing the hypothetical means (∗∗∗p < .001)

The p-values obtained after applying the preceding algorithm (with B = 1000)
indicate that the two fuzzy linguistic terms for A3 and A4 should be rejected at
any significance level as the population mean response to M.2. Evidences against
are not as categorical in case we consider as the hypothetical mean the average of
A3 and A4 (in the usual fuzzy arithmetic sense), since the p-value equals .097.

Example 4.2. Consider, separately, the fuzzy rating scale datasets associated with
the responses to item M.2 for the 43 students who have responded to the question
by using the computerized form and the 23 students filling the paper-and-pencil one
(see sample datasets and means on the top of Table 3).

First, we aim to test whether the (population) Aumann-type mean of the re-
sponses equals the original trapezoidal fuzzy number which appears in the com-
puterized form as the default answer (i.e., a pattern to illustrate the type of valid
answers and to ease the response: by only moving its four 0- and 1-levels end-points
it is possible to get the wanted trapezoidal fuzzy answer). Such default answer is the
trapezoidal fuzzy number Tra(2.5, 3.75, 6.25, 7.5). This test could indicate, in case
of significant differences for the computer users, that the pattern can make their
responses being close to it. In both cases, the p-values obtained from the preceding
algorithm (with B = 1000) equal 0, so the pattern trapezoidal fuzzy number in the
computerized version should be rejected at any significance level as the population
mean response to M.2 for both groups of students.

13



On the other hand, if the null hypothesis considers as the population mean the
trapezoidal fuzzy number Tra(5, 6.5, 7.5, 9), then the hypothesis would be rejected
at many of the usual significance levels for the students filling the paper-and-pencil
form, whereas evidences against such a null hypothesis are not that strong for the
students using the computerized version. Actually, the two-sample test in the next
section will show that the version of the questionnaire influences to some extent the
response to M.2.

paper & pencil computerized
sample data and mean sample data and mean

p-value

p&p p&p comput comput

h
y
p
o
th

e
ti
c
a
l
m

e
a
n

.000∗∗∗ .000∗∗∗

h
y
p
o
th

e
ti
c
a
l
m

e
a
n

.010∗∗ .267

Table 3: p-Values in testing the hypothetical means (on the left) for sample datasets for paper-and-
pencil responses and computer responses (on the top) in connection with Question M.2 (∗∗p < .01,
∗∗∗p < .001)

4.2. Two-sample test for means with fuzzy rating scale-based data
(independent samples)

To test the null hypothesis of equality of the Aumann-type means of two RFNs
X and Y , one can consider the bootstrapped algorithm by Colubi (2009) approximat-
ing the two-sample test for the means of two RFNs for independent samples (see
Montenegro et al., 2001), which is now algorithmically summarized.

If X and Y are two independent RFNs, consider a sample of independent ob-
servations from X , x̃n1

= (x̃1, . . . , x̃n1), and a sample of independent observations
from Y , ỹn2

= (ỹ1, . . . , ỹn2).

Then, the algorithm to test the null hypothesis H0 : Ẽ(X ) = Ẽ(Y) (i.e., H0 :

Dθ

(
Ẽ(X ), Ẽ(Y)

)
= 0) proceeds as follows:
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Step 1. Compute the value of the statistic

Tn1,n2 =
An1,n2(x̃n1

, ỹn2
)

Bn1(x̃n1
)

n1
+

Bn2(ỹn2
)

n2

,

where

An1,n2(x̃n1
, ỹn2

) =

[
Dθ

( 1

n1

· (x̃1 + . . .+ x̃n1),
1

n2

· (ỹ1 + . . .+ ỹn2)
)]2

,

Bn1(x̃n1
) =

1

n1 − 1

n1∑

i=1

[
Dθ

(
x̃i,

1

n1
· (x̃1 + . . .+ x̃n1)

)]2
,

Bn2(ỹn2
) = +

1

n2 − 1

n2∑

j=1

[
Dθ

(
ỹj,

1

n2
· (ỹ1 + . . .+ ỹn2)

)]2
.

If all sample data x̃i and ỹj are trapezoidal, then the bootstrap data are also trapezoidal and the sample means
are too, whence denoting the mid and spr for values ỹ’s by m′ and s′

An1,n2
(x̃n1

, ỹn2
) =

[
1

n1

n1∑

i=1

mi −
1

n2

n2∑

j=1

m′

j)

]2

+

[
1

n1

n1∑

i=1

mi −
1

n2

n2∑

j=1

m′

j)

]2

+ θ

[
1

n1

n1∑

i=1

si −
1

n2

n2∑

j=1

s′j)

]2

+ θ

[
1

n1

n1∑

i=1

si −
1

n2

n2∑

j=1

s′j)

]2

+

[
1

n1

n1∑

i=1

mi −
1

n2

n2∑

j=1

m′

j)

]
·

[
1

n1

n1∑

i=1

mi −
1

n2

n2∑

j=1

m′

j)

]
+ θ

[
1

n1

n1∑

i=1

si −
1

n2

n2∑

j=1

s′j)

]
·

[
1

n1

n1∑

i=1

si −
1

n2

n2∑

j=1

s′j)

]
.

Step 2. Fix the bootstrap populations to be as follows (to ensure that bootstrap
populations fulfill the null hypothesis, one can add to each value in each
sample the mean of the other one):
{
x̃1 +

1
n2

· (ỹ1 + . . .+ ỹn2), . . . , x̃n1 +
1
n2

· (ỹ1 + . . .+ ỹn2)
}
,

{
ỹ1 +

1
n1

· (x̃1 + . . .+ x̃n1), . . . , ỹn2 +
1
n1

· (x̃1 + . . .+ x̃n1)
}
.

Step 3. Obtain a sample of independent observations from each bootstrap popula-
tion, say x̃∗

n1
= (x̃∗

1, . . . , x̃
∗
n1
) and ỹ∗

n2
= (ỹ∗1, . . . , ỹ

∗
n2
).

Step 4. Compute the value of the bootstrap statistic

T ∗
n1,n2

=
An1,n2(x̃

∗

n1
, ỹ∗

n2
)

Bn1(x̃
∗

n1
)

n1
+

Bn2(ỹ
∗

n2
)

n2

.

Step 5. Steps 3 and 4 should be repeated a large number B of times to get a set of
B estimates, denoted by {t∗1, . . . , t

∗
B}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t
∗
B}

being greater than Tn1,n2.
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To illustrate the application of this method we consider the following:

Example 4.3. Consider in connection with item M.2 the sample of the 43 students
who have responded by using the computerized form and the sample of 23 students
filling the paper-and-pencil format. Table 4 gathers the responses in accordance
with both the fuzzy rating scale and the original 4-point Likert one.

measurement scale fuzzy rating 4-point Likert

sample data
computp&p

p-value .014∗ .572

Table 4: Fuzzy rating scale-based responses and sample means (in thick black line) to Question
M.2, 4-point Likert responses to Question M.2, and the corresponding p-values in testing for the
equality of means (∗p < .05)

If we aim to test whether there is or not a significant difference in the mean
fuzzy rating scale response to M.2 depending of the filled version, we can apply the
last algorithm, since the two samples correspond to independent populations. The
use of this algorithm (with B = 1000) allows us to determine the bootstrap p-value
which equals .014 and indicates that at many of the nominal significant levels one
can consider there are significant differences in the mean response to M.2 depending
on the version of the questionnaire students have filled. Actually, this conclusion is
coherent with those in testing the second null hypothesis in Example 4.2.

posed question R.1 R.2 R.3 M.1 M.2 M.3 S.1 S.2 S.3

fuzzy rating scale p-value .135 .051 .601 .311 .014∗ .069 .032∗ .615 .083

Likert p-value .886 .452 .105 .950 .572 .001∗∗ .445 .707 .256

Table 5: Analyzing the influence of the filled version of the questionnaire on the fuzzy
rating and Likert responses to items R.1 to S.3 (∗p < .05, ∗∗p < .01)

To additionally illustrate the fact that conclusions can be very different if one
considers the 4-point Likert scale (the originally considered for the whole TIMSS-
PIRLS questionnaire) we will can make use of the well-known two-sample Mann-
Whitney-Wilcoxon test for the Likert data and, by using any standard statistical
package, we get a p-value equal to .572, so we can conclude the influence of the filled
version seems not to be well-supported by the sample data.
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If this analysis is enlarged to involve the nine questions in Table 1 we get the
p-values in Table 5. Although the (paper & pencil vs. computerized) version of
the questionnaire does not generally affect significantly most of the mean responses,
conclusions are different depending on the considered measurement scale (see, for
instance, the results for M.2, M.3 and S.1).

Similar analyses could be developed for the influence of either sex or the fact that
students hold shared or individual room at home. All the p-values can be shown to
be over .05 with both scales (for most of the items the p-values are much greater
than .05).

4.3. Two-sample test for means with fuzzy rating scale-based data
(linked samples)

To test the null hypothesis of equality of the Aumann-type means of two RFNs X
and Y , one can consider the bootstrapped algorithm by Colubi (2009) approximating
the two-sample test for the means of two RFNs for linked samples (see González-
Rodŕıguez et al., 2006a), which is now algorithmically summarized.

If (X ,Y) is a two-dimensional random fuzzy set (that is, a mapping from Ω to
Fc(R)× Fc(R) for which α-levels are compact convex random sets of R2), consider
a sample of independent observations from it,

(
(x̃1, ỹ1), . . . , (x̃n, ỹn)

)
. Denote x̃n =

(x̃1, . . . , x̃n) and ỹn = (ỹ1, . . . , ỹn).

Then, the algorithm to test the null hypothesis H0 : Ẽ(X ) = Ẽ(Y) (i.e., H0 :

Dθ

(
Ẽ(X ), Ẽ(Y)

)
= 0) proceeds as follows:

Step 1. Compute the value of the statistic

Tn =
An(x̃n, ỹn)

Cn(x̃n, ỹn)
=

[
Dθ

(
1
n
· (x̃1 + . . .+ x̃n),

1
n
· (ỹ1 + . . .+ ỹn)

)]2

1
n

n∑

i=1

[
Dθ

(
x̃i +

1
n
· (ỹ1 + . . .+ ỹn), ỹi +

1
n
· (x̃1 + . . .+ x̃n)

)]2

If all sample data x̃i and ỹi are trapezoidal, then the bootstrap data are also trapezoidal and the sample means
are too, whence

Cn(x̃n, ỹn) =
1

n

n∑

i=1

[
1

n

n∑

l=1

(mi +ml −m′

i −m′

l)

]2

+
1

n

n∑

i=1

[
1

n

n∑

l=1

(mi +ml −m′

i −m′

l)

]2

+
θ

n

n∑

i=1

[
1

n

n∑

l=1

(si + sl − s′i − s′l)

]2

+
θ

n

n∑

i=1

[
1

n

n∑

l=1

(si + sl − s′i − s′l)

]2

+
1

n

n∑

i=1

[
1

n

n∑

l=1

(mi +ml −m′

i −m′

l)

]
·

[
1

n

n∑

l=1

(mi +ml −m′

i −m′

l)

]

+
θ

n

n∑

i=1

[
1

n

n∑

l=1

(si + sl − s′i − s′l)

]
·

[
1

n

n∑

l=1

(si + sl − s′i − s′l)

]
.
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Step 2. Fix the bootstrap populations to be as follows (to ensure that bootstrap
populations fulfill the null hypothesis, one can add to each value in each
sample the mean of the other one):
{(

x̃1 +
1
n
· (ỹ1 + . . .+ ỹn), ỹ1 +

1
n
· (x̃1 + . . .+ x̃n)

)
,

. . . ,
(
x̃n +

1
n
· (ỹ1 + . . .+ ỹn), ỹn +

1
n
· (x̃1 + . . .+ x̃n)

)}
.

Step 3. Obtain a sample of independent observations from each bootstrap popula-
tion, say {(x̃1, ỹ1)

∗, . . . , (x̃n, ỹn)
∗} and, for the sake of simplicity, denote

(x̃∗
i , ỹ

∗
i ) = (x̃i, ỹi)

∗ and x̃∗

n
= (x̃∗

1, . . . , x̃
∗
n), ỹ

∗

n
= (ỹ∗1, . . . , ỹ

∗
n).

Step 4. Compute the value of the bootstrap statistic

T
∗
n =

An(x̃
∗

n
, ỹ∗

n
)

Cn(x̃
∗

n
, ỹ∗

n
)
.

Step 5. Steps 3 and 4 should be repeated a large number B of times to get a set of
B estimates, denoted by {t∗1, . . . , t

∗
B}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t
∗
B}

being greater than Tn.

To illustrate the application of this method we consider the following:

Example 4.4. If we aim to test the equality of mean responses to some pairs of
items from Table 1, samples are clearly linked, so one can apply the last algorithm.

Table 6 gathers the responses in accordance with both the fuzzy rating scale
and the original 4-point Likert one, and also collects the corresponding p-values, in
testing the equality of mean responses for the two first items in reading, R.1 vs R.2,
and the two first items in math, M.1 vs M.2.

These p-values being equal to 0 indicate that differences are unequivocally sig-
nificant at any significance level one can usually consider, and whatever the involved
measurement scale may be. By looking at the sample means (in black thick line),
it can be concluded that: students are aware about how much one can learn from
reading, although they do not like that much reading things that made them think;
although students seem to like their math teacher more than they like math.

For the last two pairwise comparisons the conclusions coincide for fuzzy rating
scale-based data and Likert-type ones. However, this not always happens, as one
can see, for instance, in testing the equality of mean responses to items R.1 vs S.1
or M.3 vs S.3. The conclusions for the Likert responses are based on the well-known
two-sample sign test.
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Testing equality of means fuzzy rating scale data and means 4-point Likert scale data

R.1 vs R.2

p-value .000∗∗∗ .000∗∗∗

M.1 vs M.2

p-value .000∗∗∗ .000∗∗∗

Table 6: p-Values in testing the equality of mean responses to items R.1 vs R.2, and M.1 vs M.2
(∗∗∗p < .001)

In accordance with the p-values in Table 7: there are no strong evidences against
the equality of mean responses to items R.1 vs S.1, this assertion being better
supported when Likert-type data are analyzed; there are no strong evidences against
the equality of mean fuzzy rating scale-based responses to items M.3 vs S.3, whereas
differences are significant at all the usual significance levels when Likert-type data
are considered.

Testing equality of means fuzzy rating scale data and means 4-point Likert scale data

R.1 vs S.1

p-value .153 .868

M.3 vs S.3

p-value .205 .000∗∗∗

Table 7: p-Values in testing the equality of mean responses to items R.1 vs S.1, and M.3 vs S.3
(∗∗∗p < .001)
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4.4. One-way ANOVA test with fuzzy rating scale-based data
(independent samples)

To test the null hypothesis of equality of the Aumann-type means of k RFNs,
X1, . . . ,Xk, one can consider the bootstrapped algorithm approximating the multi-
sample test for the means of k RFNs (see Gil et al., 2006, and also Colubi, 2009,
and González-Rodŕıguez et al., 2012, for recent updates for the case of independent
samples), which is now algorithmically summarized.

If X1, . . . ,Xk are independent RFNs, consider a sample of independent obser-
vations x̃j = (x̃1j , . . . , x̃njj) from Xj , j = 1, . . . , k, the k samples being also in-

dependent. Denote x̃n1+...+nk
= (x̃11, . . . , x̃n11, . . . , x̃1k, . . . , x̃nkk), x̃j = 1

nj
· (x̃1j

+ . . .+ x̃njj) and x̃(−j) = x̃1 + . . .+ x̃j−1 + x̃j+1 + . . .+ x̃k.

Then, the algorithm to test the null hypothesis that H0 : Ẽ(X1) = . . . = Ẽ(Xk)

(which is equivalent to H0 :
∑k

j=1

[
Dθ

(
Ẽ(Xj), Ẽ

(
1
k
·(X1+ . . .+Xk)

))]2
= 0) proceeds

as follows:

Step 1. Compute the value of the statistic

Tn1,...,nk
=

∑k
j=1 nj · Anj ,n1+...+nk

(x̃j, x̃n1+...+nk
)

∑k
j=1

nj−1

nj
Bnj

(x̃j)

=

k∑

j=1

nj

[
Dθ

(
1
nj

· (x̃1j + . . .+ x̃njj),
1

n1+...+nk
· (x̃11 + . . .+ x̃nkk)

)]2

k∑

j=1

1
nj

nj∑

i=1

[
Dθ

(
x̃ij ,

1
nj

· (x̃1j + . . .+ x̃njj)
)]2

.

Step 2. Fix the bootstrap populations to be as follows:{
x̃1j + x̃(−j), . . . , x̃njj + x̃(−j)

}
, for each j = 1, . . . , k (to get bootstrap

populations fulfilling the null hypothesis).

Step 3. Obtain a sample of independent observations from each bootstrap pop-
ulation, say x̃∗

j
= (x̃∗

ij , . . . , x̃
∗
njj

), j = 1, . . . , k, and denote x̃∗

n1+...+nk

= (x̃∗
11, . . . , x̃

∗
n11

, . . . , x̃∗
1k, . . . , x̃

∗
nkk

).

Step 4. Compute the value of the bootstrap statistic

T ∗
n1,...,nk

=

∑k
j=1 nj · Anj ,n1+...+nk

(x̃∗

j
, x̃∗

n1+...+nk
)

∑k
j=1

nj−1

nj
Bnj

(x̃∗

j
)

.

Step 5. Steps 3 and 4 should be repeated a large number B of times to get a set of
B estimates, denoted by {t∗1, . . . , t

∗
B}.
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Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t
∗
B}

being greater than Tn1,...,nk
.

To illustrate the application of this method we consider the following:

Example 4.5. In the ANOVA study to be now described, the samples come from
the levels of the factor ‘mark taken by the students in the last examination of
the subject-matter’ (an additional question included in the conducted student’s
questionnaire). This factor has been assumed to act at 4 levels, associated with

G1 = [0, 6], G2 = (6, 8], G3 = (8, 9], G4 = (9, 10].

The choice of these levels, which can influence on the final conclusions, has been
based on attempting to get a rather balanced distribution of students among groups.
The consider attribute has been the fuzzy rating scale-based response to Question
M.2, in short FRS.

To additionally illustrate the fact that conclusions can be very different depend-
ing on the involved scale, we will also consider the 4-point Likert scale and two of
its common encodings (namely,

− the usual numerical encoded one re-scaled to the reference interval [0, 10], in
short NELikert (for which A1 ≡ 0, A2 ≡ 10/3, A3 ≡ 20/3 and A4 ≡ 10).

− the set of four terms with its usual fuzzy linguistic encoded semantics re-scaled
to [0, 10], in short FLELikert (see Figure 2).

Figure 2: A usual fuzzy linguistic encoding of a 4-point Likert scale re-scaled to [0, 10]

To analyze Likert-type data we have made use of the well-known Kruskal-Wallis
test and, for the rest of data types the last algorithm (has been employed, leading
to the p-values in Table 8.

The p-values displayed in Table 8 clearly shows that the mark taken in the
last examination in Math definitely affects the fuzzy rating scale response to item
M.2, whereas there is not a great evidence of this influence when Likert data are
considered.
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FRS FRS FRS Likert KW-Likert

data group means p-value data p-value

M.2

G1

G2

G3

G4

.000∗∗∗

A1 A2 A3 A4

G1 0 2 3 2

G2 0 1 6 11

G3 2 0 5 9

G4 0 1 4 14 .167

FLELikert FLELikert FLELikert NELikert NELikert

data group means p-value data p-value

G1 0 2 3 2

G2 0 1 6 11

G3 2 0 5 9

G4 0 1 4 14

G1

G2

G3

G4

.002∗∗

0 10/3 20/3 10

G1 0 2 3 2

G2 0 1 6 11

G3 2 0 5 9

G4 0 1 4 14 .006∗∗

Table 8: ANOVAs tests on the effect of the mark taken in the last examination (acting at 4
levels/groups) on the response to Question M.2 in accordance with different scales (∗∗p < .01,
∗∗∗p < .001)

This difference in the statistical conclusions seems to be due in this case not only
to the scale, but partially to the applied statistical method, since when the ANOVA
for fuzzy data is applied to encoded Likert data the influence is also significant for
most of the usual nominal significance levels.

4.5. One-way ANOVA test with fuzzy rating scale-based data
(linked samples)

To test the null hypothesis of equality of the Aumann-type means of k RFNs,
X1, . . . ,Xk, one can consider the bootstrapped algorithm approximating the multi-
sample test for the means of k RFNs (see Montenegro et al., 2009), which is now
algorithmically summarized.

If (X1, . . . ,Xk) is a k-dimensional random fuzzy set (that is, a mapping from Ω to
Fc(R)× (k times). . . ×Fc(R) for which α-levels are compact convex random sets of Rk),
consider a sample of independent observations from it,

(
(x̃11, . . . , x̃1k), . . . , (x̃n1, . . . ,

x̃nk)
)
. Denote x̃n·k = (x̃11, . . . , x̃1k, . . . , x̃n1, . . . , x̃nk), x̃j = (x̃1j , . . . , x̃nj), x̃j

= 1
n
· (x̃1j + . . .+ x̃nj) and x̃i� =

1
k
· (x̃i1 + . . .+ x̃ik).

Then, the algorithm to test the null hypothesis that H0 : Ẽ(X1) = . . . = Ẽ(Xk)

(i.e., H0 :
∑k

j=1

[
Dθ

(
Ẽ(Xj), Ẽ

(
1
k
· (X1 + . . .+ Xk)

))]2
= 0) proceeds as follows:

Step 1. Compute the value of the statistic

Tn·k =

∑k
j=1An,n·k(x̃j , x̃n·k)

∑k
j=1Cn

(
(x̃1j , . . . , x̃nj), (x̃1�, . . . , x̃n�

)
)
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=

k∑

j=1

[
Dθ

(
1
n · (x̃1j + . . . + x̃nj),

1
n·k · (x̃11 + . . . + x̃nk)

)]2

k∑

j=1

1
n

n∑

i=1

[
Dθ

(
x̃ij +

1
n·k · (x̃11 + . . .+ x̃nk),

1
n · (x̃1j + . . .+ x̃nj) +

1
k · (x̃i1 + . . .+ x̃ik)

)]2
.

Step 2. Fix the bootstrap populations to be as follows:
{
(x̃11, . . . , x̃1k), . . . , (x̃n1, . . . , x̃nk)

}
.

Step 3. Obtain a sample of independent observations from each bootstrap popula-
tion, say

(
(x̃11, . . . , x̃1k)

∗, . . . , (x̃n1, . . . , x̃nk)
∗
)
and, for the sake of simplicity,

denote (x̃∗
i1, . . . , x̃

∗
ik) = (x̃i1, . . . , x̃ik)

∗ for i = 1, . . . , n, x̃∗

n·k
= (x̃∗

11, . . . , x̃
∗
n1,

. . . , x̃∗
1k, . . . , x̃

∗
nk), x̃∗

j
= (x̃∗

1j , . . . , x̃∗
nj), x̃∗

j = 1
n
· (x̃∗

1j + . . . + x̃∗
nj) and

x̃∗

i� =
1
k
· (x̃∗

i1 + . . .+ x̃∗
ik).

Step 4. Compute the value of the bootstrap statistic

T
∗
n·k =

k · Ck

(
(x̃∗

1, . . . , x̃
∗

k), (x̃1, . . . , x̃k)
)

∑k
j=1Cn

(
(x̃∗

1j , . . . , x̃
∗
nj), (x̃

∗

1�, . . . , x̃
∗

n�

)
)

where Cn and Ck use the notation in Step 1 of Subsection 4.3.

Step 5. Steps 3 and 4 should be repeated a large number B of times to get a set of
B estimates, denoted by {t∗1, . . . , t

∗
B}.

Step 6. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . , t
∗
B}

being greater than Tn·k.

To illustrate the application of this method we consider the following:

Example 4.6. Table 9 gathers the fuzzy rating scale-based responses to items R.3,
M.3 and S.3 along with their mean values and the corresponding ANOVA’s p-value.

Testing equality of means fuzzy rating scale data and means p-value

R.3, M.3 and S.3 .000∗∗∗

Table 9: p-Values in testing the equality of mean responses to items R.3, M.3 and S.3 (∗∗∗p < .001)
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This p-value being equal to 0 indicates that differences are unequivocally signif-
icant at any significance level one can usually consider. By looking at the sample
means (in black thick line), it can be concluded that: on the average and in contrast
to other subjects, students consider reading as being less hard whereas, although
math and science are viewed as harder, the comparison is more precise (narrower
fuzzy mean) for math than for science. In case we wish to compare fuzzy rating scale
with Likert conclusions (in this dependent samples case by using Friedman test) we
would get also a p-value equal to 0.

It should be commented that, although the two-sample testing for the equality
of mean fuzzy rating scale responses to M.3 vs S.3 has not shown strong evidences
against such an equality, the other pairwise comparisons do. Moreover, it should be
taken into account that the sample of students is not exactly the same because the
pairwise comparison M.3 vs S.3 involves one more student.

5. Concluding remarks

With this paper we have attempted to illustrate the potentiality of the already
developed methodology for testing about means of fuzzy data, especially in case we
deal with fuzzy rating scale-based ones.

All statistical analyses have been performed using R version 3.0.1 (The R Core
Team, 2013), and the test procedures with independent samples have been run using
the SAFD package (Trutschnig & Lubiano, 2012).

It should be remarked that there are many other studies to be developed, al-
though they are beyond the length of this paper and also will depend in practice on
the real interests users can have. Furthermore, there are many statistical methods to
be developed yet. Among these ones, one can mention the developments of testing
procedures about the equality of medians or other location measures, or even about
the equality of distributions of random fuzzy numbers. These are some of the open
problems we plan to tackle in a near future.

We would like finally indicate that the hypothesis testing methodology in this
paper differs from some other ones also involving fuzzy data (see, among others,
Filzmoser & Viertl, 2004, in which a fuzzy p-value is considered and Hryniewicz,
2006, in which a possibilistic approach is followed), but most of them refer to real-
valued parameters of certain underlying random variables, whereas this paper in-
volves fuzzy-valued ones and p-values should be probabilistically interpreted.
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L., Uşak, M., Zuffi, M., & Bonnet, X. (2015). Factors influencing schoolchildren’s responses to
a questionnaire in wildlife conservation education. International Journal of Science Education,
37, 469–483.

Ban, A., Coroianu, L., & Grzegorzewski, P. (2011). Trapezoidal approximation and aggregation.
Fuzzy Sets and Systems, 177, 45–59.

Bertoluzza, C., Corral, N., & Salas, A. (1995). On a new class of distances between fuzzy numbers.
Mathware & Soft Computing, 2, 71–84.

Blanco-Fernández, A., Casals, M.R., Colubi, A., Corral, N., Garćıa-Bárzana, M., Gil, M.A.,
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