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Abstract

Tree encodings of programs are well known for their rep-
resentative power and are used very often in Genetic Pro-
gramming. In this paper we experiment with a new data
structure, named straight line program (slp), to represent
computer programs. The main features of this structure are
described and new recombination operators for GP related
to slp’s are introduced. Experiments have been performed
on symbolic regression problems. Results are encouraging
and suggest that the GP approach based on slp’s consis-
tently outperforms conventional GP based on tree struc-
tured representations.

1. Introduction

Genetic Programming (GP) can be seen as any direct
evolution method of computer programs with the purpose
of inductive learning. This general definition makes GP
independent of the data structures used for the represen-
tation of the evolved programs. The size, the shape and
the contents of these computer programs can dynamically
change during the evolution process. Usually, these pro-
grams are represented either by LISP S-expressions or by
directed trees with ordered branches (see [14]). Neverthe-
less other variants of Genetic Programming have emerged
in recent years. Besides the traditional tree representation of
programs, several representation models, as linear or graph
representation have been developed ([3]). Linear Genetic
Programming (LGP) is a GP variant that evolves sequences
of instructions from an imperative programming language
or from a machine language. The term linear, in this case,
refers to the data structure used in the program representa-
tion, constituted by sequences of assignments of operations
over constants or variables to another variables. With this

simple representation non-linear expressions can be gener-
ated. One of the first applications of linear bit sequences
in GP appears in [7]. Other recent contributions are those
in [2], where a general linear approach was introduced, and
also [18], where the first GP approach that operates directly
on an imperative representation was presented. For a com-
plete overview on LGP the reader is referred to [5].

This paper focuses on the study of the performance of a
new data structure for representing programs in the linear
GP paradigm: straight line programs (slp). In the present
work straight line programs are considered as linear repre-
sentations of programs, but they could also be considered as
graph representations (see section 2 below). For this linear
representation we develop ad-hoc recombination operators
which seem to be more suited for symbolic regression tasks
than the straightforward generalizations given by one point
crossover, k point crossover and uniform crossover, com-
monly used in most linear GP existing approaches.

A particular class of straight line programs, known in the
literature as arithmetic circuits, have a large history and con-
stitute the underling computation model in the field of Al-
gebraic Complexity Theory (see [6] for an overview on this
subject). Arithmetic circuits with the standard arithmetic
operations {+,−, ∗, /} are the natural model of computa-
tion to study the computational complexity of algorithms
solving problems which have an algebraic flavor. They have
been used in linear algebra problems ([4] and [17]), in quan-
tifier elimination ([9], [13]) and in algebraic geometry ([10],
[11] and [12]). In [15] non-trivial lower bounds for the com-
plexity of straight line programs and arithmetic networks
solving decisional problems are exhibited. A recent the-
oretical study of the capacity of straight line programs as
classifiers in Machine Learning can be found in [16].

We present experimental results obtained in testing our
linear GP approach, based on slp’s, on symbolic regression
problems and compare them to results obtained on the same
problems by similar approaches which use tree encoding



of programs. We envision our development as the simplest
possible implementation of a general scheme for evolving
slp’s driven by a fitness function that reflects their ability to
solve the considered problem. In this sense, the results de-
scribed in this paper are just a basic step towards a GP sce-
nario in which the slp structure is used to solve real world
problems. The paper is organized as follows: in section 2
we define the data structure straight line program as well as
some properties and related concepts. Section 3 describes
the slp-GP approach for solving symbolic regression prob-
lem instances. In section 4 we present some experimental
results of the execution of our implemented algorithm con-
sidering several classes of target functions. Finally, section
5 draws some conclusions and addresses future research di-
rections.

2. The data structure straight line program

Let F = {f1, . . . , fn} be a set of functions, where fi

has arity ai, for 1 ≤ i ≤ n, and let T = {t1, . . . , tm}
be a set of terminals. A straight line program (slp) over
F and T is a finite sequence of computational instructions
Γ = {I1, . . . , Il} where:

Ik ≡ uk := fjk
(α1, . . . , αajk

); with fjk
∈ F,

αi ∈ T for all i if k = 1 and αi ∈ T ∪ {u1, . . . , uk−1} for
1 < k ≤ l.

The terminal set T satisfies T = V ∪ C, where
V = {x1, . . . , xp} is a finite set of variables and C =
{c1, . . . , cq} is a finite set of constants. The number of in-
structions l is the length of Γ.

Note that if we consider the slp Γ as the code of a pro-
gram, at each instruction Ii a new variable ui is introduced.
So the number of variables that do not belong to the termi-
nal set T, coincides with the number of instructions and also
with the length of Γ. Thus, in the following we will denote
a slp Γ = {I1, . . . , Il} by Γ = {u1, . . . , ul}. Each of the
non-terminal variables ui can be considered as an expres-
sion over the set of terminals T constructed by a sequence
of recursive compositions from the set of functions F. We
will denote by SLP (F, T ) the set of all slp’s over F and T.

Example Let F be a set of three binary arithmetic opera-
tions F = {+,−, ∗} and let T = {1, x1, x2} be the set of
terminals. In this situation any slp Γ ∈ SLP (F, T ) is a
sequence of polynomials in two variables with integer coef-
ficients. If we consider the following slp of length 5:

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x1 + 1
u2 := u1 ∗ u1

u3 := x2 + x2

u4 := u2 ∗ u3

u5 := u4 − u3

(1)

the term computed in u5 is the polynomial

2x2(x1 + 1)2 − 2x2

Remark Every slp Γ = {u1, . . . , ul} over F and T can be
represented by a directed graph GΓ = (V, E). The set of
vertices is V = T ′ ∪ {u1, . . . , ul}, where T ′ contains all
terminals involved in the computation. The set of edges E
is constructed as follows: for every k, 1 ≤ k ≤ l, we draw
an edge (uk, αi) for each i ∈ {1, . . . , ajk

}. Note that T ′

is the set of leaves of GΓ and is a subset of the set T of
terminals . Figure 1 is a directed graph representing the slp
described in equation 1

Figure 1. Directed graph representing a slp

u5 := -

u4 := *

u2 := *

u1 := +

x1 1

u3 := +

x2 x2

To define a semantic function associated to a slp we con-
sider an output space as follows. Let Γ = {u1, . . . , ul}
be a slp over F and T. An output set of Γ, O(Γ) =
{ui1 , . . . , uit}, is any set of non-terminal variables of Γ.
Provided that V = {x1, . . . , xp} ⊂ T is the set of ter-
minal variables, the semantic function of Γ, denoted as
ΦΓ : Ip → Ot, satisfies ΦΓ(a1, . . . , ap) = (b1, . . . , bt),
where bj stands for the value of the expression over V of the
non terminal variable uij

when we substitute variable xk by
ak; 1 ≤ k ≤ p. Throughout this paper the output set O(Γ)
will always be constituted by only one variable, hence our
slp’s will compute multivariate functions with values in IR.

Given two slp’s Γ1 and Γ2 over F and T ; they will be
said equivalent if they have the same semantic functions;
i.e. ΦΓ1 ≡ ΦΓ2 .

Let Γ = {u1, . . . , ul} be a slp over F and T with output
set O(Γ) = {ui0}, 1 ≤ i0 ≤ l. Then is easy to see that
the slp Γ′ = {u1, . . . , ui0} is equivalent to Γ. Note that



for the computation of the semantic function ΦΓ, at most
u1, . . . , ui0 are necessary. Hence ΦΓ ≡ ΦΓ′ . From now on
we will assume without loss of generality that the output set
of Γ is O(Γ) = {ul}.

2.1. Effective and non-effective code in slp’s

Let us consider the following slp over F = {+, ∗,−}
and T = {1, x, y},

Γ ≡

⎧⎪⎪⎨
⎪⎪⎩

u1 := x ∗ 1
u2 := u1 + y
u3 := u2 ∗ u2

u4 := u1 ∗ y

Let O(Γ) = {u4} be the output of Γ. Note that if we want to
compute the value of the semantic function of Γ for an input
(a1, a2) ∈ IR2, i.e. ΦΓ(a1, a2) ∈ IR, it is not necessary to
compute the intermediate values of u2 and u3. In this case
the assignments u2 and u3 in Γ could be considered as non-
effective code and should be removed. After eliminating u2

and u3 and renaming the remainder assignments in Γ, a new
slp Γ′ is obtained:

Γ′ ≡
{

u1 := x ∗ 1
u2 := u1 ∗ y

The slp Γ′ is equivalent to Γ since they have the same se-
mantic function Φ : IR2 → IR, Φ(x, y) = x ∗ y, if we
consider for Γ′ the output set O(Γ′) = {u2}.

In general, for computing the effective code of a slp Γ =
{u1, . . . , ul} we first need to establish a relation in the set
of the non-terminal variables. In this sense, we will say that
uiRuk if ui appears in the functional expression assigned
to uk. Formally:

Let Γ = {u1 . . . , ul} be a slp over F and T . We define
the following relation in the set {u1, ..., ul}. Assume ui :=
fji(α1, . . . , αaji

) and uk := fjk
(β1, . . . , βajk

), with i < k.
Then uiRuk if and only if ui = βs, for some s, 1 ≤ s ≤
ajk

. If we consider R̄, as the reflexive and transitive closure
of R, then it constitutes an order relation over {u1, . . . , ul}.

Provided that O(Γ) = {ul}, the effective code of Γ is
the set of non-terminal variables involved in the process of
evaluation of ul for an input value of the terminal variables.
We shall denote this set by S = {ui ∈ Γ / uiR̄ul} =
{ui1 , . . . , uim}, assuming that i1 < . . . < im. For obtain-
ing S we construct a non decreasing chain of sets S0 ⊆
S1 ⊆ · · · ⊆ St = S, where S0 = {ul} and in general
Sk = Sk−1 ∪ {ui ∈ Γ / ∃uj ∈ Sk−1; uiRuj} being R the
relation defined above. It is easy to see that the above chain
of sets becomes stationary after finitely many steps. In the
worst case St becomes Γ. Also it is clear that uim = ul and
that we can construct a new slp Γ′ = {u′

1, . . . , u
′
m} con-

sidering the assignment instructions in S and a renaming

function R over S such that R(uik
) = u′

k. Note that Γ′ is
equivalent to Γ as a direct consequence of the construction
process and it satisfies:

u′
iR̄u′

m ∀i ∈ {1, . . . , m} (2)

If Γ = Γ′ we will say that Γ is an effective slp.

2.2 Computation of the semantic function

Let F be a set of functions and let T be a set of terminals
with set of variables V = {x1, . . . , xn}. The strategy for
computing the semantic function of a slp Γ = {u1, . . . , ul}
over F and T that consists of evaluating the non-terminal
variables following the declaration order in Γ, is not a good
method when Γ is not an effective slp. In practice is better
to obtain the effective slp equivalent to Γ and then evaluate
this one. The following algorithm describes this method.

Algorithm for computing the semantic function
Input:A slp Γ = {u1, . . . , ul} over F and T, with output
set O(Γ) = {ul}; and a vector of values (a1, . . . , an) where
ai is the value of variable xi.
Output:ΦΓ(a1, . . . , an)

1. Computation of the above described set S =
{ui1 , . . . , uim}, i1 < . . . < im, by means of the partial
sets Sk.

2. For j = 1 to m evaluate uij
replacing each occurrence

of xi by ai and each occurrence of uik
, with k < j, by

its value, which was previously computed.

3. Return the value of uim

3. GP with slp’s for solving symbolic regression
problems

The problem of symbolic regression consists of finding
in symbolic form a function that fits a given finite sample set
of data points. More formally, we consider an input space
X = IRn and an output space Y = IR. We are given a
set of m pairs sample z = (xi, yi)1≤i≤m. These examples
are drawn according to an unknown probability measure ρ
on the product space Z = X × Y and they are indepen-
dent identically distributed (i.i.d.). The goal is to construct
a function f : X → Y which predicts the value y ∈ Y
from a given x ∈ X. The criterion to choose function f is a
low probability of error. The empirical error of a function f
w.r.t. z is:

εz(f) =
1
m

m∑
i=1

(f(xi) − yi)2 (3)

which is known as the mean square error (MSE).



The symbolic regression problem has been approached
by Genetic Programming in several contexts. Usually, in
this paradigm a population of tree-like structures which en-
code expressions, is evolved following the Darwinian prin-
ciple of survival and reproduction of the fittest. Throughout
this paper we adopt straight line programs as the structures
that evolve within the process. One of the advantages is
that the slp structure allows the result of a subexpression
to be reused multiple times during calculation. This per-
mits to express more complex calculations with less amount
of instructions and the resulting individuals are, in general,
more compact in terms of size. The step size of variations
may also be easier to control in a slp structure than in a tree
structure. In fact, using non-effective code, we can force the
same size for all slp’s in the selected search space. Never-
theless, how much advantage evolution can take from these
features strongly depends on the design of the recombina-
tion operators.

At a very high level language, the whole genetic pro-
gramming algorithm that we have implemented is as fol-
lows:

generate a random initial population
evaluate the individuals
while (not termination condition) do

for i= 1 to Population_size do
Op:= random value in [0,1]
if (Op < Prob_cross)
then do crossover
if (Op < Prob_cross + Prob_mut)
then do mutation
if (Op < Prob_cross + Prob_mut
+ Prob_repr)
then do reproduction
evaluate new individuals
insert in New_pop

update population with New_pop

3.1. The Initial population

Let F = {f1, . . . , fn} be a set of functions, where fi

has arity ai i = 1 . . . n, and let T = {t1, . . . , tm} be a set
of terminals, as they appear in section 2. The generation of
each slp in the initial population is done as follows.

For the first instruction u1 select fj1 ∈ F at random.
Whenever this function is selected, for each argument i ∈
{1, . . . aj1} of fj1 , an element αi from T is randomly cho-
sen.

In general the construction of the instruction uk, k > 1,
also begins by a random selection of fjk

∈ F. Now, for i =
1, . . . , ajk

, we randomly choose αi ∈ T ∪ {u1, . . . , uk−1}.
In practice, an upper bound L for the length of the slp

individuals involved in the GP process, is necessary. So,

given this upper bound, the first step of the generation pro-
cess for each slp could be the random selection of the length
l ∈ {1, . . . , L}.

Note that the slp’s generated with the above strategy
could be non-effective. Nevertheless, our aim is to per-
mit non-effectiveness during the evolution process. On the
other hand we will maintain homogeneous populations of
equal length individuals. In this sense the length will be
a parameter of the algorithm. For this purpose, given a
slp Γ = {u1, . . . , ul} and L ≥ l, we can construct Γ′ =
{u1, . . . , ul−1, u

′
l, . . . , u

′
L−1, u

′
L}, where u′

L = ul and u′
k,

for k = l to L − 1, is any instruction satisfying the condi-
tions in the slp’s definition. Considering O(Γ′) = O(Γ), is
easy to see that Γ′ is equivalent to Γ.

3.2. Fitness function

In GP, we measure fitness in some way and then use this
measurement to simulate nature and to control the opera-
tions that modify the structures in our artificial population.
The most common approach is to assign to each individ-
ual in the population a fitness value by means of some well
defined explicit evaluative procedure. So a fitness function
that operates over the search space is defined. Some gen-
eral type of fitness in the GP context can be seen in [14]. In
our case, the procedure to compute the fitness value of a slp
individual will always involve the computation of the val-
ues of the corresponding semantic function over the given
sample set of values for the terminal variables. So given
z = (xi, yi) ∈ IRn × IR, 1 ≤ i ≤ m, for any slp Γ over F
and T we will define the fitness of Γ as follows:

Fz(Γ) = εz(ΦΓ) =
1
m

m∑
i=1

(ΦΓ(xi) − yi)2 (4)

That is, the fitness is the empirical error of the semantic
function of Γ w.r.t. the sample set of data points z. We
will use the algorithm presented in 2.2 within the process to
compute the fitness of Γ.

3.3. Recombination operators

Because our representation by means of slp’s consists
of a finite sequence of instructions and taking into account
that all individuals have the same length, the well known
crossover methods such as uniform crossover, one point
crossover or two point crossover, can be adapted to our sit-
uation in a natural way. However experimental testing of
these generalizations does not provide good results when
dealing with slp structures. Due to this situation we have
designed a new ”ad-hoc” crossover operation that produces
another type of information exchange between the two par-
ents. The objective is to carry subexpressions from one par-



ent to the other. A subexpression is represented by an in-
struction ui and all the instructions that are used to evaluate
ui. This is just the effective piece of code of the slp that is
needed to compute the expression, over the terminal vari-
ables, associated to ui. Formally, this crossover operator is
as follows.

Crossover Let Γ = {u1, . . . , uL} and Γ′ = {u′
1, . . . , u

′
L}

be two slp’s over F and T. First, a position k in Γ is ran-
domly selected; 1 ≤ k ≤ L. We consider again the defined
relation R, for the description of the set:

Suk
= {uj ∈ Γ / ujRuk} = {uj1 , . . . , ujm

} (5)

with the assumption that j1 < . . . < jm. As it was men-
tioned above, the set Suk

is the effective piece of the code
of Γ related to the evaluation of uk. Next we randomly se-
lect a position t in Γ′ with m ≤ t ≤ L and we modify
Γ′ by making the substitution of the subset of instructions
{u′

t−m+1, . . . , u
′
t} in Γ′, by the instructions of Γ in Suk

suitably renamed. The renaming function R over Suk
is

defined as R(uji) = u′
t−m+i, for all i ∈ {1, . . . ,m}. With

this process we obtain the first offspring from Γ and Γ′. For
the second offspring we symmetrically repeat this strategy,
but now we begin by randomly selecting a position k′ in Γ′.
As example, let us consider the following slp’s

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := u1 ∗ x
u4 := u3 + u2

u5 := u3 ∗ u2

Γ′ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := u1 + y
u3 := u1 + x
u4 := u2 ∗ x
u5 := u1 + u4

If k = 3 then Su3 = {u1, u3}, and t must be selected in
{2, . . . , 5}. Assumed that t = 3, the first offspring will be:

Γ1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := x + y
u3 := u2 ∗ x
u4 := u2 ∗ x
u5 := u1 + u4

For the second offspring, if the selected position in Γ′ is
k′ = 4, then Su4 = {u1, u2, u4}. Now if t = 5, the off-
spring will be:

Γ2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := x ∗ x
u4 := u3 + y
u5 := u4 ∗ x

The mutation is asexual and acts on only one parent. This
operation introduces random changes in the individual. Mu-
tation can be beneficial in reintroducing diversity in a popu-
lation that may be tending to converge prematurely to a local
optimum. The first step when mutation is applied to a slp Γ
consists of selecting an instruction ui ∈ Γ at random. Then

a new random selection is made within the arguments of the
function f ∈ F that constitutes the instruction ui. The final
step is the substitution of the selected argument by another
one in T ∪ {u1, . . . , ui−1} randomly chosen. The formal
definition of the mutation operation is as follows.
Mutation Let Γ = {u1, . . . , uL} be a slp over F and T. Let
ui = f(α1, . . . , αn) be the selected mutation point, where
f ∈ F, αk ∈ T ∪ {u1, . . . , ui−1}. The mutation of Γ at
point i yields:

Γ′ = {u1, . . . , ui−1, u
′
i, ui+1, . . . , uL}, (6)

where u′
i = f(α1, . . . , αj−1, α

′
j , αj+1, . . . , αn), αj �=

α′
j ∈ T ∪ {u1, . . . , ui−1} with j ∈ {1, . . . , n}. j and α′

j

are both randomly selected.
Reproduction consists of copying an individual from the

current population to the new population.
We use generational replacement between populations,

but in the construction process of the new population the
offsprings generated do not necessarily replace their par-
ents. After crossover we have four individuals: two parents
and two offsprings. We rank them by their fitness values
and we pick one individual from each of the two first lev-
els of the ranking. If, for example, three of the individ-
uals have equal fitness value, we only select one of them
and the one selected in the second place is in this case the
worst of the four individuals. This strategy prevents prema-
ture convergence and maintains diversity in the population.
Also because the above process, we obtain better results if
the individuals involved in the recombination operators are
randomly selected, instead of using the more usual fitness-
based selection methods.

4. Experiments

4.1. Experimental setting

We have run our implemented algorithm based on GP
with straight line programs considering two groups of target
functions. The first group of functions includes the follow-
ing three functions that were also used for experimentation
in [19] and [20].

F (x, y, z) = (x + y + z)2 + 1 (7)

G(x, y, z) =
1
2

x +
1
3

y +
2
3

z (8)

K(x, y, z, w) =
1
2

x +
1
4

y +
1
6

z +
1
8

w (9)

The second group of functions is constituted by five func-
tions of several classes: trigonometric functions, polyno-
mial functions and one exponential function. These func-



tions are the following:

f1(x) = x4 + x3 + x2 + x
f2(x) = e−sin 3x+2x

f3(x) = 2.718 x2 + 3.1416 x
f4(x) = cos(2x)
f5(x) = min{ 2

x , sin(x) + 1}

(10)

The experimental results obtained with the first group of tar-
get functions are compared with those obtained using stan-
dard GP based on tree structures ([20] and [19]). The exper-
imental settings for this first group are summarized in table
1. Function // indicates the protected division i.e. x//y

Table 1. Summary of experiment setup for
runs with F, G and K as target functions

Number of sample points 30
Population size 200
Crossover rate 0.9
Mutation rate 0.05
Reproduction rate 0.05
Maximum slp’s length L 12
Function set F {+, −, ∗, //}
Variables V {x, y, z, w}
Constants C {c1, . . . , c6}
Runs per function 100

returns x/y if y �= 0 and 1 otherwise. The sample points
are randomly generated in the range [−100, 100]. The con-
stants ci, 1 ≤ i ≤ 6, take random values in [0, 1]. For each
target function, the constants are fixed before the beginning
of the first run and conserve the assigned values along the
100 runs.

The experimental settings for the second set of test func-
tions are basically the same as described in table 1 with the
following differences: in this case there are univariate func-
tions, the set of constants is {0, 1, 2} for the five functions,
the basic set of functions F = {+,−, ∗, //} is incremented
with other operations, some of the functions have a partic-
ular interval range for the set of sample points. These last
two aspects are described in table 2 for each of the five func-
tions.

For all the executions, evolution finished after 107 basic
operations have been computed. We define the computa-
tional effort (CE) as the total number of basic operations
that have been computed up to that moment.

4.2. Experimental results

A useful tool for comparing performances of evolution-
ary strategies is the average over all runs of the best fitness

Table 2. Interval ranges for sample points and
function set for the second group of target
functions.

Function Range Function set

f1 [−5, 5] F ∪ {sqrt}
f2 [−π

2 , π
2 ] F ∪ {sqrt, sin, cos, exp}

f3 [−π, π] F ∪ {sin, cos}
f4 [−π, π] F ∪ {sqrt, sin}
f5 [0, 15] F ∪ {sin, cos}

values at termination. This measure is known as the mean
best fitness (MBF). As in hard real-life optimization prob-
lems the solution is unknown, one common attitude is to
measure performance after a specified amount of CE. For
problems with known solutions, such as those considered in
this work, the success rate (SR), defined as the ratio of suc-
cessful runs with respect to the total number of runs which
have been finished after reaching a specific CE, is a good
indicator of algorithmic effectiveness (see [8], [1]).

In this study we compare, for the three functions belong-
ing to the first group, our plain GP strategy based on slp’s
with the GP strategy based on trees. For this comparative,
the MBF and the SR are computed. Following [20], for
these functions, a run will be considered successful if an in-
dividual with a fitness value lower than 30 has been evolved.

Figure 2. Best average fitness against CE over
100 independent runs for standard GP with
trees and standard GP with slp’s. Results on
function F.
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In Figures 2, 3 and 4 the mean best fitness is plotted



Figure 3. Results on function G.
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Figure 4. Results on function K.
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against computational effort over the target functions F, G
and K, for the two considered data structures (trees and
slp’s). As shown by the figures, GP with slp’s outperforms
standard GP with trees on every tested function.

Table 3 shows the success rate for 100 independent runs.
In terms of SR the representation based on slp’s is much bet-
ter than the representation based on trees for the three tested
functions. Considering next the successful runs and using
the slp as data structure, we show in table 4 the mean best
fitness and the absolute best obtained fitness (ABF) after the
maximum computational effort of 107 basic operations was
reached.

As conclusion, for the above studied target functions, the
use of slp’s as data structure in GP is more effective than the
standard tree data structure.

The results of the execution of our algorithm over the
second group of five functions are displayed in table 5.

Table 3. Success rate calculated over 100 in-
dependent runs for standard GP with trees
and standard GP with slp’s.

Function Tree-GP Slp-GP

F 55 90
G 88 100
K 72 84

Table 4. Mean best fitness and absolute best
fitness calculated over the success runs for
GP with slp’s.

Function MBF ABF

F 5,09 · 10−1 5 · 10−4

G 3,52 5,68 · 10−3

K 5,26 5,67 · 10−2

There we present the success rate and also the MBF and
the ABF for the successful runs. In this case, an execution
will be considered successful if an individual of fitness near
zero is found. We can observe that our GP approach based
on slp’s also performs quite well on this set of target func-
tions: for all of them but f2 the success rate is 100%.

Table 5. Success rate, mean best fitness and
absolute best fitness for the GP approach
based on slp’s.

Function SR MBF ABF

f1 100 3,40 · 10−7 2,15 · 10−8

f2 90 3,28 · 10−1 2,03 · 10−10

f3 100 9,04 · 10−2 2,13 · 10−6

f4 100 1,15 · 10−3 1,03 · 10−11

f5 100 8,40 · 10−3 6,94 · 10−4

5. Conclusions and future research

We have experimented with a new data structure for
representing computer programs inside the GP paradigm:
straight line programs. This data structure allows to express
complex expressions with less amount of instructions than
the tree data structure. We have also designed appropriated
recombination operators for slp’s. Using this data structure



a standard GP strategy has been implemented for solving in-
stances of the symbolic regression problem. Experimenta-
tion has been performed on two sets of target functions. On
the first set of functions our strategy based on slp’s consis-
tently outperforms standard GP: our slp encoding exhibited
higher convergence rate and better quality solutions. On the
second set of functions our slp encoding exhibited a success
rate of 100% (except on more complicated test function f2).
From these experimental results we conclude that, inside the
GP scenario, straight line programs constitute a promising
data structure to represent programs.

As anticipating in the introduction, both the algorithm
and the corresponding experimental results, despite offer-
ing interesting outcomes themselves, must be looked upon
as the first basic step towards a more general long-term goal.
The final, long term achievement that we would like to pur-
sue is the definition of a GP scheme based on straight line
encoding of programs capable of dealing with some real-
world hard problems. Future work includes a more ex-
tensive experimentation over random target functions us-
ing several penalty functions to perform model regulariza-
tion: complexity regularization using the length of the slp
structure and structural risk minimization based on Vapnik-
Chervonenkis dimension (see [22] and [21]). Another nat-
ural ”next step” in our research is the combination of the
plain GP approach developed here with other methods such
as optimization by gradient descendent and with coopera-
tive co-evolution as it is done in [20].
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César Luis Alonso and José Luis Montaña are supported
by spanish grant TIN2007-67466-C02-02. Jorge Puente is
supported by Spanish grant TIN2007-67466-C02-01.

References

[1] T.Bäck. Evolutionary Algorithms in Theory and Practice. Ox-
ford University Press, Oxford. 1996.

[2] W. Banzhaf. Genetic Programming for Pedestrians. S. For-
rest (ed.) Proceedings of the Fifth International Conference
on Genetic Algorithms (IGGA’93). pp.638–. Morgan Kauf-
mann, San Francisco, CA. 1993.

[3] W. Banzhaf, P. Nording, R. Keller, F. Francone. Genetic Pro-
gramming - An Introduction: On the Automatic Evolution of
Computer Programs and its Applications. Morgan Kaufmann
Series in Artificial Intelligence. Morgan Kaufmann, Heilder-
berg - San Francisco. 1998.

[4] S. J. Berkowitz. On comomputing the determinant in small
parallel time using a small number of processors. Information
Processing Letters 18:147-150. 1984.

[5] M. Brameier; W. Banzhaf. Linear Genetic Programming.
Springer 2007.

[6] P. Bürguisser, M. Clausen, M. A. Shokrollahi. Algebraic
Complexity Theory. Comprehensive Studies in Mathematics.
Springer. 1997.

[7] N.L. Cramer. A Representation for the Adaptive Generation
of Simple Sequential Programs. J. Grefenstette (ed.) Procced-
ings of the First International Conference on Genetic Algo-
ritms (IGA’85). pp. 183–187. 1985.

[8] A. Eiben, M. Jelasity. A critical note on experimental research
methodology in EC. In Proc. of the Congress on Evolutionary
Computation (CEC 2002). pp.582–587. 2002.

[9] N. Fitchas, A. galligo, J. Morgenstern. Algorithmes rapides en
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