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Abstract

Scheduling the charging periods for a large set of electric vehicles with the objec-
tive of satisfying the user demands may be a very hard problem due to the physical
constraints of the charging stations. In this paper, we consider a problem of this
family which is motivated by a real life situation where a set of users demand
electric charge while their vehicles are parked. Each stall has a charging point
which is connected to one of the lines of a three-phase electric feeder. There are
power constraints that limit the number of vehicles that can be charging at the
same time on the same line and balance constraints that limit the difference in the
number of vehicles charging in every two lines. We model this problem in the
framework of Dynamic Constraint Satisfaction Problem (DCSP) with Optimiza-
tion, and propose a solution procedure that requires solving a sequence of CSPs
over time. Each one of these CSPs requires in its turn solving three instances of
a one machine sequencing problem with variable capacity. This procedure was
implemented on a simulator of the charging station and evaluated on a number
of instances defined from different scenarios of vehicle arrivals and energy re-
quirements. The results of the experimental study show clearly that the proposed
algorithm is effective and that it produces schedules much better than those com-
puted by a classic dispatching rule.

ISome preliminary results of this research work has been discussed in (Hernández-Arauzo
et al., 2013)
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1. Introduction

It is well known that the use of Electric Vehicles (EVs) may have a posi-
tive impact on both the economies of the countries and the environment due to
promoting the use of alternative sources of energy and relieving the dependency
of foreign petrol. Furthermore, the energy stored in EVs may be utilized as an
ancillary service resource (Kang et al., 2013) for regulating frequency and volt-
age profiles as well as to compensate fluctuations in renewable energy generation
(Dallinger, 2014). At the same time, the emerging fleet of EVs introduces some
inconveniences such as the additional load on the power system and the time re-
quired to charge the batteries. As pointed in (EDSO, 10 April 2012), one of the
challenges in EVs’ technology is developing smart systems for charging control
to avoid increasing peak demand. This has given rise to the design of some algo-
rithms for charging control (Wu et al., 2012). Most of these algorithms try to fill
the overnight valley in demand in order to reduce daily cycling and operational
cost of power plants (Gan et al., 2007). This raises the issue of coordinating EVs
charging patterns (Ma et al., 2013) that may be addressed by means of central-
ized or distributed strategies. In the first case, a central operator decides when
and at what rate every EVs will charge; while in the second, individual EVs de-
termine their own charging pattern on the basis of time-of-day or electricity price,
for example.

In this paper we consider a real life problem that requires scheduling the charg-
ing intervals of a set of EVs that demand power while they are parked in their own
spaces within a community car park. A charging station is installed in the car park
so that each space has an independent charging point. A centralized control sys-
tem establishes the available power at each charging point over time. If the power
demand is very large during a given time period, not all the requiring vehicles can
be charged simultaneously, as the contracted power is limited. So, in these situ-
ations, an appropriate scheduling policy is necessary to organize and control the
charging intervals of the vehicles along the time they are in the car park (Sedano
et al., 2013).

We propose modeling the problem of computing such a schedule in the frame-
work of Dynamic Constraint Satisfaction Problems (DCSP) with Optimization.
As it is usual, one problem of this class requires solving a number of CSPs over

2



time. In order to solve each one of these CSPs, we propose an algorithm that re-
quires solving a number of instances of a one machine scheduling problem with
variable machine capacity. The scheduling algorithm is evaluated by means of
simulation and compared with the Latest Starting Times (LST) rule.

The rest of the paper is organized as follows. In the next section we summarize
the characteristics of the charging station that are relevant from the point of view
of the scheduling algorithm. Then, we review some of the recent literature related
to EVs charging. After this, we give a problem definition; firstly, we define the
problem as if it were a static CSP and then we give a more realistic definition as a
DCSP. We follow with a detailed description of the solving procedure. Finally, we
report the results of the experimental study and give some conclusions and ideas
for future research.

2. Description of the charging station

In this section we summarize the main characteristics of the electrical structure
and the operation mode of the charging station. These elements are detailed in
(Sedano et al., 2013). Figure 1 shows a schema of the distribution net of the
charging station which is designed to be installed in a community park where
each user has his/her own stall. The net is feeded by a three-phase source of
electric power with a voltage between phases of 400v. Each stall has a charging
point and receives power from a single-phase at 230v; it can supply energy at
a constant rate (2.3Kw) in the so called mode I (Sedano et al., 2013). So, for
a given contracted power, there is a maximum number of vehicles charging in
each line at the same time. Also, the consumption in the three lines should be
similar at any time. Otherwise, the net is imbalanced and there is current in the
neutral point. In this case, there are power losses which are in direct ratio with
the imbalance. Moreover, in the Spanish law (BOE, 22 September 2013) there are
legal restrictions about imbalanced systems which do not allow the installation
of devices that produce large imbalances without the consentient of the supplier
company.

The operation of the station is controlled by a distributed system comprising a
master and a number of slaves. Every two consecutive charging points in the same
line are under the control of the same slave. The master access the database where
the vehicles’ data and the charging schedule are stored. It receives information
about the state of the charging vehicles from the slaves, and transmits to the slaves
starting times and durations of charging intervals. So the slaves are responsible
for activating and deactivating charging points as well as registering asynchronous
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Figure 1: General structure of the distribution net of charging stations. It is
formed by different parts such as: (1) power source, (2) three-phase electric power,
(3) charging points, (4) masters, (5) server with database, (6) communication RS
485, (7) communication TCP/IP, (8) slaves.

events such as a new vehicle arriving to the system. When entering in the station,
the user parks the vehicle in his own stall (as he cannot use the stall of another
user) and connects the vehicle to the charging point. Then, he has to provide the
charging time and and the time he will take the vehicle away. From these data, the
control system schedules the charging periods of the vehicles.

In this paper we consider a simplified model of the charging station which
make the following assumptions: the user never takes the vehicle away before
the declared due date and the battery does not get completely charged before the
charging time indicated by the user. Even though they are unrealistic assumptions,
the model may be adapted to dealing with these situations by introducing new
asynchronous events.

In principle, each time a new vehicle requires charging, the current schedule
may get unfeasible and so a new schedule should be built. However, in order
to avoid the system to collapse if many of such events are produced in a very
short period of time, due to the fact that a new schedule could not be obtained in
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the short time interval from one event to the next, new schedules are computed
at most at time intervals of length ∆T (typically 120s). In order to do that, the
protocol is the following: every ∆T time units a supervisor program, running on
the server, checks for the events produced in the last interval. If at least one event
was produced that may make the current schedule unfeasible, then the scheduler
is executed to obtain a new feasible schedule which is applied from this time
onwards.

3. Literature review on scheduling of electric vehicle charging

In this section we review some recent works dealing with scheduling the
charge periods of electric vehicles. Our purpose is to demonstrate that this is
a hot topic of research and that the problem has been considered from different
points of view. In all cases, the proposed scheduling algorithms are evaluated by
simulations.

A scenario where a number of EVs have to be scheduled over T time slots
satisfying due date constraints is considered in (Gan et al., 2007). Each EV may
be charged at different rates in different time slots and the objectives are mini-
mizing the peak demands and filling the valleys of power availability. To solve
this problem, the algorithm ODC (optimal decentralized charging) is proposed in
(Gan et al., 2011). The reduction of peak power consumption is also considered
in (Kim et al., 2012), where feasible schedules are built based on the activation
time, the deadline, and the power load profile of each charging task. In (Kang
et al., 2013), a real-time scheduling EV charging system is proposed that extends
the valley-filling charging strategy so that it tries to optimize total load variance
and owners’ preferences. Based on EVs requirements, the scheduler establishes
a feasible charging schedule in accordance with the power constraints and sends
activation/deactivation signals to the charging stations.

In (Lopes et al., 2009), some charging strategies are evaluated using a three
phase power flow. The load imbalance between phases is an objective to be min-
imized. This makes a difference with considering the imbalance as a hard con-
straint, as we do in this paper, which makes more difficult to find feasible sched-
ules.

In (Wu et al., 2012) a framework is proposed that operates in two steps. Firstly,
a loading scheduling algorithm determines the purchase of energy for the day-
ahead and then a dispatch algorithm distributes energy to the vehicles. A vehicle
charging facility with N charging docks is described in (Tran et al., 2013). Based
on different information availabilities about arrivals, charging times and deadlines,
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a scheduling algorithm decides which dock the vehicle is assigned. The vehicles
in a dock are then sequentially scheduled in a First Come First Served basis.

In (Ma et al., 2013), the authors develop a strategy to coordinate charging
of large populations of autonomous EVs using concepts from non-cooperative
games. The objective is minimizing the overnight valley. The existence of a
unique Nash equilibrium that almost satisfies the optimum is proved. This method
is based on a decentralized control strategy that utilizes real-time marginal elec-
tricity price information and allows each EV to implement its own charging con-
trol so that it may minimize its individual charging cost.

In (Clement-Nyns et al., 2010), the impact of Plug-in Hybrid EVs (PHEVs) on
the distribution grid is analyzed. The authors try to reduce power losses or voltage
deviation by means of coordinate charging when these vehicles are charged at
home. The relationship between feeder losses, load factor and load variance are
also analyzed in (Sortomme et al., 2011), where three charging algorithms are
developed with the objective of minimizing the impact of charging EVs on the
distribution system.

In (Sundstrm and Binding, 2010), the authors consider two models of battery
behavior, linear and quadratic, and propose an approach implemented on IBM
ILOG CPLEX library to optimize the vehicle battery charging with the objective
of optimizing costs, power balancing over time and energy levels.

4. Modeling frameworks

Given the characteristics of the charge scheduling problem, we propose to
use the dynamic constraint satisfaction problem framework (DCSP) introduced
in (Dechter and Dechter, 1988) as modeling framework. A DCSP is a sequence
of CSPs, 〈P1, P2, . . . , Pn〉, where each Pi, 1 < i ≤ n, is derived from Pi−1 by
adding and removing a limited number of constraints. Some variants of the DCSP
framework has been proposed that capture other characteristics such as dynamic
domains of the variables, state variables which are controlled by the physical sys-
tem and not by the decision maker, or the uncertainty about the presence of some
constraints. However, none of these characteristics appears in the version of the
charging scheduling problem considered here. All of these and other frameworks
are surveyed in (Verfaillie and Jussien, 2005).

There are two main types of methods to solve a DCSP: reactive and proactive.
A reactive algorithm does not use knowledge of the possible changes, so it may
not produce robust solutions, but at the same time it may react better to any kind
of change. On the contrary, a proactive method is able to exploit any available
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knowledge and so it may produce robust or flexible solutions. In both cases, the
algorithms may either reuse the solutions of the previous CSP or compute a new
solution from scratch. Each of these options has its own advantages and draw-
backs. Solution reuse may speed up the calculation of a new solution, but at the
same time may prevent the algorithm from obtaining a better one. Applications of
both methods can be found in the literature, for example in (Le and Pang, 2013)
a reactive scheduling framework is proposed to improve energy efficiency in flex-
ible manufacturing systems. The goal is minimizing the sum of energy cost and
tardiness penalty. The dynamic nature of the problem comes from power con-
sumption uncertainties of the jobs. Also, in (Ghezail et al., 2010) the authors
consider proactive scheduling and propose a method based on graphical represen-
tations to analyze how perturbations may affect to a schedule. They consider the
classic flow shop scheduling problem as case study.

From all the above, we have opted to use a reactive method with the purpose
of obtaining a good solution for each CSP. In the next sections we give the formal
definition of the problem as a DCSP and describe the proposed algorithms. Before
this, we also give a formal definition of the problem as a static CSP, which assumes
a complete knowledge in advance about vehicle arrivals. This helps to understand
the subsequent dynamic definition.

5. Definition of the PI problem as a static CSP

As we have pointed, if the problem data, i.e., the arrival times of the vehicles
and their charging times and due dates were known in advance, the problem could
be formalized as a static CSP. Even though this is not the case for our problem,
we consider here a static version of it. The main purpose is to clarify the overall
problem; however, this definition could also be useful to obtain solutions which
could be compared with those of the dynamic problem. In the next subsections
we give the problem data, the goal, the problem constraints and the evaluation
function to be optimized.

5.0.1. Problem data
In an static instance P of the PI problem there are 3 charging lines Li, 1 ≤

i ≤ 3, each one having ni charging points. N > 0 is the maximum number of
charging points that can be active at the same time in each one of the three lines.
The line Li receives a number of Mi vehicles {vi1, . . . , viMi

} from a time 0 up to
a planning horizon. Each vehicle vij is characterized by an arrival time tij ≥ 0,
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a charging time pij and a time at which the user is expected to take the vehicle
away, or due date, dij by which the battery of the vehicle should be charged.

There is also a parameter ∆ ∈ [0, 1] which controls the maximum imbalance
among the lines.

5.0.2. Goal
The goal is to get a feasible schedule for P, i.e., assigning starting times to the

decision variables stij for each vehicle vij , 1 ≤ i ≤ 3, 1 ≤ j ≤Mi, satisfying the
constraints and optimizing the evaluation function.

5.0.3. Constraints
I. For all vehicle vij , stij ≥ tij .

II. No preemption is allowed, so a vehicle vij cannot be disconnected before its
charging time Cij is reached, i.e., Cij = stij + pij .

III. The number of active charging points in a line at a given time cannot exceed
N , i.e.,

max
(t≥0;i=1,2,3)

Ni(t) ≤ N (1)

where Ni(t) denotes the number of charging points of line Li which are
active during the time interval [t, t+ 1).

IV. The maximum imbalance between any two lines Li and Lj is controlled by
the parameter ∆ as

max
(t≥0;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (2)

5.0.4. Evaluation function
The evaluation function is the total tardiness defined as∑

i=1,2,3;j=1,...,Mi

max(0, Cij − dij) (3)

which must be minimized.
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6. Definition of the PI problem as a DCSP

The PI problem may be naturally considered as a dynamic problem due to
the fact that the arrival of vehicles is not known in advance. For this reason, an
instance P can be defined as a sequence of instances, P1,P2, . . . of a static CSP
termed PII. Each Pk is defined (see the next Section) from the set of vehicles in
the system which have not yet completed their charging periods1.

To solve this problem, we adopted here a similar strategy to that used in
(Rangsaritratsameea et al., 2004) for the dynamic Job Shop Scheduling problem
where the jobs are unknown until they arrive. In that paper, the authors propose
to build a new schedule at each ”rescheduling point” combining all previous oper-
ations that have not started processing together with operations arriving after the
previous rescheduling point.

Due to technological restrictions, we do not consider rescheduling each time
a new vehicle arrives. Instead, we consider rescheduling each time the Supervisor
is activated. The new schedule involves the vehicles which have arrived from the
previous point together with all the vehicles in the system which have not yet
started to charge.

6.1. Solving the dynamic PI problem
Algorithm 1 shows a simulation of the actual algorithm to solve a dynamic

PI problem. In the simulation, the problem data and the sequence of times for
the Supervisor to be executed are given to the algorithm. The algorithm iterates
on this sequence of times T1, T2, . . . . In the iteration k, i.e., at time Tk, a new
instance Pk of PII is created if some vehicle arrived in [Tk−1, Tk). Pk includes
all the vehicles in the system that have arrived before Tk and that have yet not
started to charge. This instance is solved and the new solution S defines starting
times st∗ij for all the vehicles in Pk. The solution S remains active at least along
[Tk, Tk+1). This means that for all st∗ij ∈ [Tk, Tk+1), stij is fixed to st∗ij in the
solution to the P instance and so the vehicle is disconnected at the completion
time Cij = stij + psij . If no vehicle has arrived in [Tk−1, Tk) then the current
solution in this interval remains active at least in the next one [Tk, Tk+1).

1We use here a formulation that differs from the conventional definition given in (Dechter and
Dechter, 1988) where a DCSP is a sequence P0, P1, . . . of static CSPs in which Pi is a restriction
or a relaxation of Pi−1. As we will see in the next sections, we also consider a sequence of CSPs
to solve a PI instance. However, each of these instances may be obtained from the previous one
by adding new constraints and doing some relaxations.
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7. Definition of the PII problem

The PII problem can be defined as a static CSP as follows: In an instance Pk,
we are given a set of vehicles {vi1, . . . , vili , . . . , vimi

} at time Tk in each line Li,
1 ≤ i ≤ 3. Each vehicle vij requires a charging time pij and has a due date dij .
The vehicles vi1, . . . , vili are already active, as they started to charge at a time
t < Tk and have not yet finished, i.e., Cij = stij + pij > Tk. While the vehicles
vili+1, . . . , vimi

have not yet started to charge. So, in the iteration k, the capacity
of the line Li to charge new vehicles, denoted Mk

i (t), is given by

Mk
i (t) = N −

∑
1≤j≤li

Xij(t), t ≥ Tk (4)

where

Xij(t) =

{
1, t < Cij

0, t ≥ Cij

(5)

The objective is to obtain a feasible schedule for all vehicles in the system
such that all of them can be sorted out, even if no new vehicles arrive after Tk.
This requires assigning starting times st∗ij to all vehicles unscheduled at time Tk,

Algorithm 1 Solving the PI problem.
Require: The data of a P instance of the PI problem: tij , pij and dij for all vehicles vij ;

and the sequence of times T1, T2, . . . at which the Supervisor is activated.
Ensure: A schedule S for P defined by the time each vehicle starts to charge stij and the

total tardiness produced by this schedule.
S = ∅;
for all k = 1, 2, . . . do

if a new vehicle vij has arrived at a time t = tij ∈ [Tk−1, Tk) then
Generate a new instance Pk of the problem PII with all vehicles vij s.t. tij < Tk
and that have not started charging yet;
Calculate a solution S to Pk; {A solution S defines starting times st∗ij ≥ Tk to
schedule all vehicles vij that are not active at Tk}

end if
Establish S as the current solution along [Tk, Tk+1); i.e., for each st∗ij ∈ S such that
Tk ≤ st∗ij < Tk+1, set stij = st∗ij in the final schedule S, i.e., vij will start charging
at st∗ij ;

end for
return the schedule S for P and its total tardiness;
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which are compatible with the starting times of the vehicles already scheduled
before Tk. This means that all the constraints naturally derived from the static PI
problem must be satisfied.

Also, the evaluation function will be, in principle, minimizing the total tardi-
ness. However, as the solution to Pk is expected to be useful along a short time
period (hopefully along a small number of iterations), we will try to maximize the
number of charging vehicles at the beginning. So, we could consider a time hori-
zon th at which a new event may be expected and try to maximize the charge along
the interval [Tk, Tk + th]. This new objective may be expressed as maximizing∫ Tk+th

Tk

(N1(t) +N2(t) +N3(t))dt (6)

where Ni(t); i = 1, 2, 3 denotes the number of active vehicles in line Li at time t.

7.0.1. What changes from Pk to Pk+1

As we have pointed, Pk+1 is obtained from Pk by adding new constraints and
doing some relaxations. In this case, the only relaxation comes from the vehicles
that started to charge along the interval [Tk, Tk+1) as these vehicles take part in
Pk, but not in Pk+1. So, if no vehicle started to charge in that interval, there
is no relaxation from Pk to Pk+1. At the same time, there are three types of
new constraints that may appear in Pk+1 w.r.t. Pk. The first one is due to the
difference in the capacity of each line Li; clearly Mk+1

i (t) ≤ Mk
i (t), for all t, as

we can consider Mk
i (t) = 0, t < Tk. The second constraint is due to the starting

times of the vehicles which are not scheduled before Tk+1 so that they remain in
Pk+1, as stij ≥ Tk in Pk and stij ≥ Tk+1 in Pk+1, while the due dates dij are
the same in both problems. Finally, the third constraint is given by the vehicles
arriving in [Tk, Tk+1).

So, Pk+1 is never a relaxation of Pk due to the fact that the first constraint is
always added. However, if no new vehicles arrive in [Tk, Tk+1), it is clear that the
solution to Pk can be trivially adapted to Pk+1.

7.1. Solving the PII problem
The PII problem is really hard to solve because of the constraint derived from

constraint (IV) of the static PI problem, which for the instance Pk may be ex-
pressed as

max
(t≥Tk;1≤i,j≤3)

(|Ni(t)−Nj(t)|/N) ≤ ∆ (7)
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It is not easy to build a schedule satisfying this constraint and at the same time
maximizing expression (6). To solve this problem, we propose to use a dispatch-
ing rule and a more sophisticated algorithm based on problem decomposition.

7.1.1. Solving PII with dispatching rule
We propose to use the following dispatching rule, termed LST (Latest Starting

Time), to solve each Pk instance. The unscheduled vehicles at time Tk in the
system are sorted in accordance with their latest starting times given by dij − pij
from low to high values; then these vehicles are scheduled in this order and each
one is given the earliest starting time such that the scheduled vehicles satisfy all
the constraints. In this way, the vehicles that arrived before Tk but have not yet
started to charge by Tk+1 may be assigned a different starting time in the next
schedule.

This rule can be easily implemented, but the restriction that the balance con-
straint must be satisfied after scheduling each vehicle is very strong and may
clearly prevent the algorithm from reaching near optimal solutions.

7.1.2. Solving PII by problem decomposition
We propose here a more sophisticated method to maintain the balance con-

straints which does not require keeping these constraints after each operation is
scheduled. The method relies on the following ideas. First of all, we establish
profiles of maximum charge, Nmax

i (t), i = 1, 2, 3. Then, to solve Pk, we try to
obtain a schedule for each line Li, so that Ni(t) is as close as possible to Nmax

i (t)
for t ≥ Tk while it satisfies the constraint

Ni(t) ≤ Nmax
i (t), t ≥ Tk (8)

If the combination of the solutions to the three lines does not give rise to a
feasible solution to Pk, the profiles Nmax

i (t) must be adjusted and new schedules
have to be computed for one or more lines.

The problem of calculating a schedule for a line subject to a maximum load is
denoted PIII herein and the instance of this problem which consist in scheduling
the vehicles in the lineLi, subject to the profileNmax

i (t) at time Tk, is denoted Pki.
So, our proposed method starts from some initial profiles and then these profiles
are updated as long as the solutions obtained to the Pki instances, 1 ≤ i ≤ 3, do
not make up a solution to the Pk instance.

Algorithm 2 describes the calculation of a solution to a Pk instance. The
algorithm starts from trivial profiles Nmax

i (t) and then iterates until a solution is
reached. In each iteration, it solves the three Pki instances subject to the profiles

12



Algorithm 2 Solving the PII problem.
Require: The data of an instance Pk of the PII problem: pij and dij for all unscheduled

vehicles vij that arrived by Tk; and the values stij and pij for all vehicles scheduled
before Tk such that stij + pij ≥ Tk.

Ensure: A schedule S for Pk defined by the time each vehicle starts to charge st∗ij and
the total tardiness produced by this schedule.
Set the initial profiles to Nmax

i (t) = N, t ≥ Tk, 1 ≤ i ≤ 3;
while Pk remains unsolved do

Solve the instances Pki under the current profilesNmax
i (t); {The three PIII instances

get solved with charge profiles Ni(t)}
Let t′ ≥ Tk be the earliest time such that an imbalance exists, i.e., Ni(t

′)−Nj(t
′) >

∆×N for some 1 ≤ i, j ≤ 3;
if there exists such a time t′ then

Adjust the profile of maximum load for the line Li so that Nmax
i (t) ≤ Nj(t

′) +
∆×N , t ≥ t′;

else
The solutions to the Pki instances, 1 ≤ i ≤ 3, make up a solution S to Pk;

end if
end while
return the schedule S for Pk and its total tardiness;

Nmax
i (t). If these solutions make up a solution for Pk, the algorithm finishes;

otherwise, some profile is adjusted from the earliest time t′ at which an imbalance
is detected onwards. In this way, the profiles are maintained as large as possible
at the beginning and so, hopefully, the evaluation function given in expression (6)
is maximized. As it can be expected, the adjustment of the profiles is the most
controversial operation in this algorithm. We consider this issue in Section 9.

8. Definition of the PIII problem

In an instance Pki of the PIII problem we are given the set of vehicles {vi1, . . . ,
vili , . . . , vimi

} at time Tk in the line Li. Additionally, we are given a maximum
charge profile for the line Li, Nmax

i (t), t ≥ Tk.
The objective is to obtain a schedule for the vehicles, i.e., starting times st∗ij ≥

Tk for the inactive vehicles vili+1, . . . , vimi
, such that the following two con-

straints, derived from the PII instance, are satisfied:

i. st∗ij ≥ Tk, for each inactive vehicle.
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ii. Ni(t) ≤ Nmax
i (t), for all t ≥ Tk.

The evaluation function is the total tardiness, defined as∑
j=li+1,...,mi

max(0, Cij − dij) (9)

which must be minimized.

8.1. Solving the PIII problem
The Pki problem can be viewed as that of scheduling a number ofmi− li jobs,

all of them available at time Tk, on a machine whose capacity varies along the time
and the objective is minimizing the total tardiness. The processing time of the jobs
are the charging times of the vehicles vili+1, . . . , vimi

, respectively. Each job can
use only one slot of the machine at a time. In other words, the machine is a cu-
mulative resource with variable capacity. Cumulative scheduling has been largely
considered in the literature, mainly in the context of the Resource Constrained
Project Scheduling Problem (RCPSP). However, to the best of our knowledge,
cumulative resources with time dependent capacity have not been considered yet.

In our case, the capacity of the machine is defined by the profile Nmax
i (t)

and the vehicles already scheduled vi1, . . . , vili , which complete charging at times
Cij ≥ Tk. So, the capacity of the machine may be expected to be increasing at the
beginning, as long as the scheduled vehicles complete charging, and decreasing
at the end, as the profiles Nmax

i (t) are non increasing along time. To be concrete,
the capacity of the machine at time t for the line Li, Capki (t), is calculated as

Capki (t) = min(Mk
i (t), Nmax

i (t)), t ≥ Tk (10)

We denote this problem as (1, Cap(t)||
∑
Ti) following the conventional no-

tation (α|β|γ) proposed in (Graham et al., 1979). Figure 2 shown an instance of
this problem.

8.1.1. Solving the (1, Cap(t)||
∑
Ti) problem

In the simple case where the capacity Cap(t) is non decreasing, the problem is
equivalent to the problem of identical parallel machines with variable availability
denoted (P,NCinc||

∑
Ti) following the notation used in (Schmidt, 2000), where

P is the number of parallel machines and Ninc denotes that the availability of
machines is non decreasing along the time. Scheduling problems with machine
availability appear in many situations, for example when maintenance periods are
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Figure 2: An instance of the (1, Cap(t)||
∑
Ti) obtained at a time Tk where three

vehicles are charging in line j and the profile of maximum load has been adjusted
from τ1 to N − 1 and from τ2 to N − 2.

considered, with different profiles of machine availability. This kind of problems
is surveyed in (Ma et al., 2010).

In (Koulamas, 1994), the (P ||
∑
Ti) problem, in which all the machines are

continuously available, is proved to be at least binary NP-hard. An efficient sim-
ulated annealing algorithm for this problem is proposed in (Sang-Oh Shim and
Kim, 2007). In this algorithm, the starting solution is obtained by means of the
apparently tardiness rule. This rule was adapted for similar problems in (Kaplan
and Rabadi, 2012), to deal with ready times and due date constraints. In this paper,
we propose to adapt this rule to solve the (1, Cap(t)||

∑
Ti) problem as follows:

let Γ(α) be the earliest starting time for an unscheduled job in the partial schedule
α built so far. Then for all unscheduled jobs that can start at Γ(α) a selection
probability is calculated as

Πj =
1

pj
exp

[
−max(0, dj − Γ(α)− pj)

gp

]
(11)

where p is the average processing time of the jobs and g is a look-ahead parameter
to be fixed empirically. These probabilities may be applied deterministically, i.e.,
the job j with the largest probability is selected to be scheduled next, or prob-
abilistically. In principle, we will consider the first option in the experimental
study.
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9. Profiles of maximum load

As we have pointed, the balance among the lines is the most critical issue of
the whole charge scheduling algorithm. In order to deal with it, we propose to use
the following model for the profiles of maximum load. A profile Nmax

i (t) is given
by a stepwise non increasing function of the form:

Nmax
i (t) =

{
δj τj ≤ t < τj+1, 1 ≤ j < k
δk τk ≤ t

(12)

where N ≥ δ1 > · · · > δk and τ1 < · · · < τk, k ≥ 1. We represent this profile as
a sequence of tuples as: 〈(δ1, τ1), (δ2, τ2), . . . , (δk, τk)〉.

In Algorithm 2, the initial profiles are Nmax
i (t) = 〈(N, 0)〉 for all three lines.

Then, these profiles are adjusted as long as new imbalances are found after the
solutions of the three PIII instances. In particular, when an imbalance of the form
Ni(t

′)−Nj(t
′) > ∆×N is detected, then the profile Nmax

i (t) is modified in such
a way that a new element (δ, τ) = (∆ × N + Nj(t

′), t′) is inserted and all tuples
(δj, τj) with δj > δ and τj > τ are removed from Nmax

i (t).
This is a very simple model which helps to keep the load in the three lines as

large as possible at the beginning, hopefully along the interval [T, T + th]. How-
ever, it may have some inconvenience as well. For example, a new imbalance may
be produced at a time just after to t′. To avoid this drawback, we could adjust the
new tuple as (δ − δH , τ − τH), where δH ≥ 0 and τH ≥ 0 are parameters to be
established empirically. Also, the next imbalance may be at a time lower than t′

due to the non-preemption constraint. In any case, the value of Nmax
i (t), for each

time t, is non increasing along the subsequent adjustments. This guarantees that
Algorithm 2 terminates after a finite number of steps. Figure 3 shows a situa-
tion where the profile of the line Lj undergoes two adjustments before reaching a
compatible solution with that of line Li.

10. Experimental study

As it was done in the models summarized in Section 3, we evaluated the
scheduling algorithm by simulation. To do that, we have firstly defined a set
of instances of the PI problem and then we implemented a simulator to run the
Algorithm 1, termed EVS (Electric Vehicle Scheduling) herein. In the next sub-
section, we give the details of the benchmark defined and summarize the results
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Figure 3: Illustration of adjustments of the profile of maximum load of the line
Lj to get a compatible schedule with that of line Li. ∆=0.2 and N=5, so the
maximum difference in the number of active EVs in the two lines is 2.

of the experimental study1. Then we evaluate the proposed EVS algorithm and
compare it with the algorithm derived form the dispatching rule described LST.
Finally, we include a subsection were we discuss the results and some aspects of
the proposed model.

10.1. Definition of the benchmark set
We consider that the charging station is installed in a car park with 180 spaces

distributed in the three lines2. We have generated some benchmarks considering a
time horizon of one day and different profiles of arriving times, battery load, due
dates and distribution among the lines. In particular, we have defined the following
three benchmark sets corresponding to three plausible situations. The first one
represents a profile that may be expected in a normal weekly day with vehicles
arriving on the whole day through, but with arrival peaks at some times. In this

1The instances and more details of the experimental study are available at
http://www.di.uniovi.es/iscop (Repository).

2These vehicles should naturally be distributed uniformly among the three lines. However,
for the purpose of generating scenarios with different characteristics, we will consider different
distributions.
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Table 1: Summary of percentages and probability distributions used to generate
the arrival time for each percentage of instances in the three scenarios considered.
U(x, y) denotes uniform distribution in the interval [x, y] and N(x, y) denotes
normal distribution with mean x and standard deviation y. x and y are given in
minutes.

scenario 1 scenarios 2 and 3
%vehicles Arrival time %vehicles Arrival time

10 U(0, 1440) 20 U(0, 1440)
20 N(510, 15) 80 N(870, 30)
10 N(720, 15)
50 N(1170, 15)
10 N(1350, 15)

setting, we consider that 10% of the vehicles arrive uniformly along the day, 20%
arrive around 8:30, 10% around 12:00, 50% around 19:30 and the remaining 10%
around 22:30. In order to simulate these conditions, we have used the probability
distributions given in the first two columns of Table 1 (scenario 1). Also, we have
considered two more special situations where most of the vehicles arrive almost at
the same time; in this case, we consider two due date profiles. Table 1 (scenarios
2 and 3) shows the probability distributions used to generate the arrival times of
these instances.

Regarding the charge of the batteries at the time the vehicles arrive to the car
park, in the three scenarios we consider that 10% of them are at about 80% of their
capacity, 30% at about 50%, 30% at about 35% and the remaining 30% at about
12%; the charging times are then calculated assuming that all the vehicles require
charging at 100% of their capacity, 23 Kwh, and that the charging rate is 2.3 Kw.
Two different due date profiles are considered; in scenarios 1 and 2 they are about
4, 6, 8 and 11 hours respectively after the arrival time, while in scenario 3 they are
about 2, 5, 6 and 9 hours respectively, so representing much more tight due dates.
The percentages and distributions used to generate all these values are given in
Table 2.

In the three cases, we consider two different profiles of distribution of vehicles
along the lines. In the first one (type 1) the vehicles are uniformly distributed,
while in the second (type 2) the distribution is 10%, 30% and 60% respectively on
lines 1, 2 and 3. Also, we consider four values for the parameter ∆, 0.2, 0.4, 0.6
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Table 2: Summary of percentages and probability distributions used to generate
the initial charges and due dates for all the instances. Times are expressed in
minutes.

%vehicles Initial charge (in percent) Due date Sc. 1,2 Due date Sc. 3
10 N(80, 10) N(240, 120) N(120, 60)
30 N(50, 15) N(360, 120) N(300, 60)
30 N(35, 7.5) N(480, 120) N(360, 60)
30 N(12, 6) N(660, 120) N(540, 60)

and 0.8, which establishes the maximum imbalance among every two lines; and
three different values for parameterN , 20, 30 and 40, which defines the maximum
number of vehicles that can be charging at the same time in the same line. So,
combining all these options we have 72 classes of instances in all; 30 instances of
each class were generated.

For all the instances, the generated data are consistent, i.e., tij + pij ≤ dij . To
ensure this, the charging time is set as pij = dij − tij if the randomly generated
value were larger than this. It may be expected that, for a given ∆, instances of
type 1 will be easier to solve than instances of type 2 with the same or lower ∆,
due to the fact that for the first instances the imbalance constraint seems to be
easier to fulfill than for the second. This means that the number of adjustments
of the maximum profiles may be much larger for the first instances than for the
seconds. Also, it seems reasonable to expect that the lower the value of N , the
larger the tardiness of the solutions.

It is also worth noting that solving one PI instance from a 24 hours scenario
requires solving 720 PII instances, as ∆T is set to 2 minutes in the experiments,
which in its turn requires solving at least 2160 PIII instances, being this number
too much optimistic due to the required profile of maximum load adjustments.

10.2. Evaluation of the proposed algorithm
To evaluate EVS, we start considering different values for the lookahead pa-

rameter g, see exp.(11). Table 3 summarizes the values of the total tardiness ob-
tained for all instances with four values of g, 0.25, 0.50, 0.75 and 1.00. In all
cases, the parameters δH and τH are set to 0. As it was expected, the instances
of the scenario 3 produce the largest tardiness as they represent situations where
the due dates are more tight w.r.t. the arrival times and most of the vehicles arrive
around the same time. Also, the lowest tardiness is obtained for the instances of
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Table 3: Summary of results from EVS with four values of parameter g, the
values are averaged for each scenario. The reported values have to be multiplied
by E+06 to represent tardiness in minutes.

Value of parameter g
scenario 0.25 0.50 0.75 1.00

1 2.024 2.033 2.038 2.045
2 3.081 3.096 3.099 3.104
3 3.256 3.258 3.257 3.258

Average 2.787 2.795 2.798 2.803

scenario 1 where the vehicles arrive more uniformly along the day and the due
dates are not so tight.

Regarding the parameter g, it is clear that it has not a strong influence on the
tardiness obtained. However, there is a significant difference in favor of value
0.25. Table 4 shows the average ranking computed by the Friedman test for all the
instances. This test yielded p-value of 8.97E-11.

Table 4: Average rankings of the EVS algorithm with four values of parameter g
(Friedman).

Value of parameter g Ranking

0.25 1.28
0.50 2.19
0.75 2.76
1.00 3.76

It is also worth analyzing the number of adjustments required to reach a so-
lution to a PII instance, as it may have an important impact on the time required
by EVS to reach a solution. Figure 4 shows the mean number of adjustments that
EVS, with g = 0.25, requires to solve the instances in each subset. As we can
observe, this number decreases as long as ∆ and N augment, strongly in the first
case and moderately in the second. So, these results confirm the hypothesis that
larger values of these parameters make the instances easier to solve. In any case,
the average number of adjustments is really low and so it can be expected not to
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Figure 4: Number of adjustments required by EVS to reach feasible solutions
to the instances of the PII problem along the time horizon. x-axis represents the
number of adjustments and y-axis represents the subsets Ti N ∆×100, i denotes
the type (1,2). The results are averaged for the 30 instances in each subset.

have a great influence on the time taken by the scheduler. We will come on this
issue in the next section.

10.3. Comparison of EVS with LST
All the instances were also solved with the algorithm LST. For none of the

instances this rule reached a solution better than that obtained by EVS. Figure 5
shows the comparison of the results obtained with EVS (g = 0.25) with those
from the LST rule, for each one of the 72 subsets. As we can observe, for all of
them the tardiness obtained with LST is larger than that obtained with EVS, the
average value from LST being about 33, 4% larger than from EVS.

In Figure 5, we can also appreciate the differences in the tardiness of the in-
stances in each one of the 72 subsets. In general, instances of type 2 show more
tardiness than instances of type 1, the tardiness growing up quickly from scenario
1 to scenario 2, and moderately from scenario 2 to scenario 3, as it was also shown
in Table 3. This is reasonable as in scenario 1 the arrivals are more uniformly
distributed along the day, while in scenarios 2 and 3 almost all the vehicles arrive
around the same time. Also in scenario 3 the due dates are more tight than they are
in scenario 2. At the same time, the tardiness decreases as long as parameters N
and ∆ increase for all subsets. However, for instances of type 2, the parameter ∆
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Figure 5: Results from LST and EVS (g = 0.25) averaged for the six subsets
defined by [scenario,type], scenario=1,2,3; type=1,2. The x-axis represent total
tardiness in seconds, with different scales for each type, and the y-axis represent
combinations of N ∆×100. Grey bars show LST values and black bars EVS
values.
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Figure 6: Time taken by EVS and LST to reach feasible solutions to the instances
of the PII problem along the time horizon. x-axis represents the time taken in
seconds and y-axis represents the subsets N ∆×100. The results are averaged for
the 60 instances in each subset (30 of type 1 and 30 of type 2).

has stronger influence on the tardiness than it has for type 1. This is quite natural
due to the fact that instances of type 2 have a non uniform distribution of vehi-
cles on the three lines and so a large value of ∆ allows a large imbalance among
the lines and then more vehicles can be charging at the same time in the most
loaded lines. Special mention deserves the high similarity of graphics on Figures
5(d) and 5(f). Remember that they represent results from instances generated with
the same parameters, with the exception of those that control the due dates. So
the charging times and the arrival times of the vehicles are similar, but there are
differences of about 90 minutes in the average due dates. So, in principle it is
reasonable to expect that the average tardiness for the instances [scenario,type] =
[3,2] is at most 90 × 60 × 180 = 9.72E+05 seconds larger than they are for in-
stances [2,2]. This difference being negligible for tardiness of around 1.00E+07
seconds that produce the hardest instances of type 2. So, this fact together with the
reasonable differences in the charging and arriving times makes the results almost
indistinguishably.

Regarding the time taken for the algorithms to reach feasible schedules, it is
important to remark that it must be much lower than the period of time between
two rescheduling points (120s). Figure 6 shows the time taken by LST and EVS
across all the instances of types 1 and 2. The results are averaged for each subset
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defined by the same values of N and ∆. As we can see, in all cases the average
time is lower than 1s. For EVS the time is practically independent of the subset of
instances and it is always lower than 0.1s. However, for LST the time is strongly
dependent on the value of N , it is about 0.9s for N = 20, 0.6s for N = 40 and
0.3s for N = 60. These differences are due to the fact that the algorithm LST has
to find the first time at which one operation can be scheduled, i.e., it satisfies all
the constraints, and this operation requires a search along intervals of candidate
scheduling points. Being the length of these intervals in inverse ratio with the
number of vehicles that can be charging in parallel established by N , as these
vehicles are more spread along time.

10.4. Discussion of the results
The results of this study shown that the proposed EVS algorithm is effective

and more efficient than a dispatching rule such as LST. In our opinion, the per-
formance of EVS relies on how it deals with the imbalance constraints. Instead
of keeping this constraint after each operation is scheduled, as it is done by the
algorithm derived from the LST rule, we define profiles of maximum load in the
three lines and then adapt the schedules to these profiles. Even though these pro-
files may require a number of adjustments, the time taken by the algorithm is quite
reasonable as it is negligible w.r.t. the time between two consecutive executions
of the scheduler.

As it was pointed in Section 2, we have considered here a simplified model
of the charge scheduling problem. However, the proposed modeling and solving
methods can be adapted to dealing with a number of characteristics of the real
situations that have been skipped here for the sake of simplicity of presentation.
For example, the users may pick up the vehicle before the declared due date dij ,
or the battery may get fully charged before the expected charging time pij . In both
cases an imbalance may be produced in the system. To deal with these situations,
some new asynchronous events have to be added to the model. Also, the charging
time of the vehicles may be reduced in situations of saturation in order to reduce
the tardiness of the vehicles. Furthermore, if the tardiness for some vehicle is too
large in situations of very high demand, the vehicle may be discarded from the
schedule and so not served. The proposed model can also be adapted to variable
power, what would allow the operator to adjust the amount of contracted power to
the consumption valleys of the grid, for example. Furthermore, the algorithm may
be adapted to situations where the vehicles can be charged at non constant rate.
As it is pointed in (Sedano et al., 2013), this is technically possible under certain
restrictions and offers much more flexibility to organize the charging of vehicles
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over time. However, this adaptation is not trivial and will require reformulating
some aspects the PII problem and adapting the scheduling algorithms accordingly.

11. Conclusions

We have seen that scheduling the charging of electric vehicles may be formu-
lated as a Dynamic Constraint Satisfaction Problem (DCSP) with Optimization.
In this paper, we have given a formal definition for one problem of this family.
This problem was motivated by a real environment in which a number of vehicles
require charge from an electric system installed in a garage where each vehicle
has a preassigned space. This problem is hard to solve due to the imbalance con-
straints among the three lines of the three-phase electric feeder. We have proposed
an effective algorithm that reduces the calculation of a solution for the dynamic
scheduling problem to solving a number of instances of the one machine sequenc-
ing problem with variable capacity, denoted (1, Cap(t)||

∑
Ti), which is unedited

in the literature and was here solved by a dispatching rule, so it is still open for
further research. A formal analysis of the (1, Cap(t)||

∑
Ti) problem may lead to

the development of new solution methods, which may contribute to improve the
performance of the whole scheduling algorithm. As future work, we will analyze
the use of some exact, greedy and evolutionary approaches as it was recently done
in (Kodaganallur et al., 2013), for a version of the one machine sequencing prob-
lem with setup times and quadratic penalty completion times, or in (Ji et al., 2013)
for a more complex version with common due-window, deteriorating rate of the
machine and job durations that depend on the amount of resource allocated.
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