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Abstract

In this paper we tackle a variant of the flexible job shop scheduling problem
with uncertain task durations modelled as fuzzy numbers. To minimise the
schedule’s makespan, we consider different ranking methods for fuzzy numbers.
We then propose a cooperative co-evolutionary algorithm with two different
populations evolving the two components of a solution: machine assignment
and task relative order. Additionally, we incorporate a specific local search
method for each population. The resulting hybrid algorithm is then evaluated
on existing benchmark instances, comparing favourably with the state-of-the-
art methods. The experimental results also serve to analyse the influence in the
robustness of the resulting schedules of the chosen ranking method.

Keywords: flexible job shop scheduling, robustness, local search,
co-evolutionary algorithm, ranking of fuzzy numbers, fuzzy processing times

1. Introduction

The importance of scheduling as a research topic is undeniable, both as
a source of interesting complex combinatorial optimisation problems and as
a field with multiple real applications in industry, finance, welfare, etc. In
particular, shop problems in their multiple variants— for instance, incorporating
flexibility or operators— can model many situations which naturally arise in
manufacturing environments [1].

Fuzzy sets have contributed to enhancing the applicability of scheduling,
helping to bridge the gap between classical techniques and real-world user
needs. They have been used both for handling flexible constraints and uncertain
data [2],[3],[4],[5]. They are also emerging as an interesting tool for improving
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solution robustness, a much-desired property in real-life applications [6],[7],[8].
Incorporating fuzzy sets to scheduling is, however, far from trivial, and they
usually require a reformulation of the problem under consideration and the de-
velopment of new solving techniques. In that sense, one important issue (shared
with many other applications of fuzzy sets) is how to rank different solutions
when their quality is given as a fuzzy quantity.

In deterministic scheduling, the complexity of problems such as job shop
means that practical approaches to solving them usually involve metaheuristic
strategies [9]. Some attempts have been made to extend such methods, mostly
evolutionary algorithms, to the case where uncertain durations are modelled via
fuzzy intervals. In particular, the fuzzy flexible job shop problem is receiving an
increasing attention, with proposals including a genetic algorithm [10], a hybrid
artificial been colony algorithm [11], an estimation distribution algorithm [12],
a swarm-based neighbourhood search algorithm [13] and a co-evolutionary al-
gorithm [14].

Indeed, co-evolutionary algorithms [15] [16] are a special case of evolution-
ary algorithms which are proving to be very successful in solving complex prob-
lems [17],[18],[19]. They have been also applied for solving different scheduling
problems: for example in [20] are used to solve the integrated problem of process
planing and scheduling in job shop problems, in [21] for the stochastic job shop
problem or in [14] for the fuzzy flexible job shop.

In the following we tackle the fuzzy flexible job shop problem, where un-
certainty in task durations is modelled using fuzzy numbers. After introducing
the problem, we consider different ranking methods to minimise the resulting
fuzzy makespan and give a definition of schedule robustness based on average
behaviour across all possible cases. We shall see how the problem naturally
lends itself to coooperative co-evolution and we shall also propose neighbour-
hood structures for each population, so local search can be embedded in the
co-evolutionary algorithm. The experimental results will illustrate the synergy
between the co-evolution and the local search, as well as the competitiveness of
our approach when compared to the state-of-the-art. The results will also allow
for an empirical assessment of different ranking methods in terms of solution
robustness.

2. The fuzzy flexible job shop scheduling problem

The flexible job shop scheduling problem, fJSP in short, consists in scheduling
a set of jobs J = {J1, . . . , Jn} on a set of physical machines M = {M1, . . . ,Mm},
subject to a set of constraints. There are precedence constraints, so each job
Ji, i = 1, . . . , n consists of a sequence of ni tasks Θi = {θi1, . . . , θini

} that must
be sequentially scheduled. There are also capacity constraints, whereby each
task θij requires the uninterrupted and exclusive use of one machine from a
subset Rij ⊂ M , so the task’s processing time pijk depends on the machine
Mk ∈ Rij .

A feasible schedule or solution consists of an assignment to machines of
all N =

∑n
i=1 ni tasks in the set Θ = ∪1≤i≤nΘi together with an allocation
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of starting times for each task such that all constraints hold. Alternatively,
a solution can be represented as a feasible assignment of each task θij ∈ Θ
to a machine Mk ∈ Rij and a task processing order for each machine in M .
Indeed, given these two pieces of information, the starting time of θij , denoted
Sij , is easily computed as the maximum between the completion times of the
predecessor of θij in its job and the predecessor of θij in the machine Mk where
it has been allocated, and the completion time is given by Cij = Sij + pijk.
The objective is to find an optimal solution according to some criterion, in our
case, minimise the makespan, which is the completion time of the last task to
be executed, denoted Cmax = maxθij∈Θ Cij .

2.1. Uncertain processing times

In real-life applications, it is often the case that the exact processing time
of tasks is not known in advance. However, based on previous experience, an
expert may be able to estimate, for instance, an interval for the possible pro-
cessing time or its most typical value. When there is little knowledge available,
the crudest representation for uncertain processing times would be a human-
originated confidence interval. If some values appear to be more plausible than
others, a natural extension is a fuzzy interval or fuzzy number. The simplest
model is a triangular fuzzy number or TFN, using an interval [a1, a3] of possi-
ble values and a modal value a2, and with the membership function taking a
triangular shape as follows:

µA(x) =


x−a1
a2−a1 : a1 ≤ x ≤ a2

x−a3
a2−a3 : a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

We shall denote such TFN as A = (a1, a2, a3). For α ∈ (0, 1], its α-cut Aα =
{x : µA(x) ≥ α} is a closed interval [aα, aα]; we shall abuse notation slightly
and denote its support as A0. TFNs are to date the most widely used model
for uncertain durations in the fuzzy scheduling literature.

In the flexible job shop, we essentially need two operations on fuzzy numbers,
the sum and the maximum. These are obtained by extending the corresponding
operations on real numbers using the Extension Principle. In the case of the
addition, it turns out that for any pair of TFNs A and B:

A+B = (a1 + b1, a2 + b2, a3 + b3) (2)

Unfortunately, computing the maximum is not that straightforward and, most
importantly, the set of TFNs is not closed under this operation. For the sake
of simplicity and tractability of numerical calculations, a common approach is
to approximate the maximum by the TFN that results from evaluating this
operation on the three defining points of each TFN, that is, for every A, B
TFNs:

max(A,B) ≈ maxI(A,B) = (max(a1, b1),max(a2, b2),max(a3, b3)) (3)
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This approximation has been widely used in the scheduling literature, among
others, in [22, 23, 24, 25, 26] or [27].

Some arguments can be given to support this approximation. First, for any
two fuzzy numbers A and B, if f is a bivariate continuous isotonic function,
then F = f(A,B) is another fuzzy number such that

Fα = [f(aα, bα), f(aα, bα)]. (4)

Computing f(M,N) is then equivalent to computing f on every α-cut. In par-
ticular, the maximum is a continuous isotonic function, so it can be calculated
by evaluating two maxima of real numbers for every value α ∈ [0, 1]. If seems
then natural to approximate the maximum by the TFN that results from using
linear interpolation, evaluating equation (4) only for certain values of α (this
is proposed for 6-point fuzzy numbers in [23]). Given that the defining values
(a1, a2, a3) of a TFN A are such that A0 = [a1, a3] and A1 = [a2, a2], the ap-
proximated maximum as in (3) corresponds to such an interpolation for α = 0
and α = 1. Secondly, if F = max(A,B) denotes the maximum of two TFNs
A and B and G = maxI(A,B) the approximated value by interpolation, then
F = G if A and B do not overlap and, in any case, it holds that

∀α ∈ [0, 1], f
α
≤ g

α
, fα ≤ gα. (5)

The approximated maximum G is thus a TFN which artificially increases the
value of the actual maximum F , while maintaining the support and modal value,
that is, F0 = G0 and F1 = G1. This approximation can be trivially extended
to the case of more than two TFNs.

2.2. Ranking fuzzy makespan values

For a given schedule, the makespan Cmax, the completion time of the last
task to be executed, is obtained by performing addition and maximum opera-
tions on fuzzy durations and, hence, is a TFN. If several schedules are available,
the “best” one would be the one with minimal makespan, which requires com-
paring fuzzy numbers.

In general, fuzzy scheduling problems involve ordering or ranking fuzzy num-
bers representing solution performance. However, no natural total order exists
in the set of of fuzzy numbers and several ranking methods have been and keep
being proposed in the literature (cf. [28, 29, 30]). Furthermore, quoting Brunelli
and Mezei [29],

It is impossible to give a final answer to the question on what ranking
method is the best. Most of the time, choosing a method rather than
another is a matter of preference or is context dependent.

We intend to consider some ranking methods for fuzzy numbers and their influ-
ence in the robustness of solutions of fuzzy flexible job shop scheduling problems.

Let F denote the set of fuzzy numbers. Ranking methods in F can be
roughly divided in two types: those based on “defuzzification” and those based

4



on fuzzy binary relations. In the first case, a mapping M : F → R is defined
which associates each fuzzy number X with a real number and then the natural
ordering on the real line is used, most commonly, X ≤M Y iff M(X) ≤M(Y ).
In the second case, a relation M : F ×F → [0, 1] is defined such that M(X,Y )
is the degree to which X is greater than Y and, consequently, if M(X,Y ) ≥
M(Y,X), then X ≥M Y .

In [31] it is proposed to summarise a fuzzy set X by the value:

Eβ(X) =

∫ 1

0

(βxα + (1− β)xα)dα (6)

where β ∈ [0, 1] is a “pessimism” value. This proposal can also be found in [32].
Obviously, this value can be used in a ranking method of the first type.

For the special case of β = 1
2 , E 1

2
has been proposed by many authors,

among others, as the the neutral scalar substitute of a fuzzy interval in [33],
as the expected value of a fuzzy number in [34], using the area compensation
method in [35], as the generative expected value induced by the evidence X [36],
as the credibilistic expectation of a fuzzy variable [37] or as the middle point
of a fuzzy number defined for ranking by distance minimisation [38]. It is also
the centre of the mean value of a fuzzy number as defined in [39] and the
expected value of the so-called pignistic probability distribution, which is found
as the centroid of the set of probabilities dominated by the possibility measure
associated with X, P(ΠX) (cf. [40]).

When TFNs are considered, the special case β = 0 coincides with the index
Aα suggested by [41], which simply evaluates the fuzzy number based on the
rightmost point of the α-cut for a given α, in this case, α = 0.5. According
to [29], this approach is the only one which satisfies all the reasonable properties
proposed in [42, 43] for ordering fuzzy quantities.

2.2.1. Relationship with classical interval comparison and interpretation

In [44], the authors study the relationship between some well-known crite-
ria for classical interval comparison and fuzzy ranking methods in the light of
imprecise probabilities, extending some preliminary ideas which can already be
found in [45]. In particular, they consider four interval comparisons:

• Weak ordering: [x, x] ≤ [y, y] iff x ≤ y;

• Maximin: [x, x] ≤ [y, y] iff x ≤ y;

• Maximax: [x, x] ≤ [y, y] iff x ≤ y;

• Hurwicz: [x, x] ≤H(γ) [y, y] iff γx+ (1− γ)x ≤ γy + (1− γ)y.

Obviously, the Hurwicz comparison subsumes both the maximim (γ = 1) and
the maximax (γ = 0). Interestingly, Eβ comes down to using Hurwicz criterion
on the expectation values with pessimism value β:

Eβ(X) = βE(X) + (1− β)E(X) (7)
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where E and E denote the upper and lower expectations derived from X [44, 45].
This provides us with a nice interpretation for comparing TFNs based on

Eβ :

• if β = 0, comparing TFNs based on E0 would correspond to a pessimistic
decision maker;

• if β = 1, comparing TFNs based on E1 would correspond to an optimistic
decision maker;

• if β = 1
2 , comparing TFNs based on E 1

2
would correspond to an in-between

decision maker, with an equilibrium between pessimism and optimism;

2.2.2. Relationship with other fuzzy ranking methods

A recent numerical study in [29] suggests that several ranking methods rep-
resent very similar (referred to by the authors as compatible) points of view. In
practice, this means that the ordering they induce in a sample of fuzzy numbers
is strongly correlated. In particular, for TFNs, since the ranking based on E 1

2
,

is identical to Yager’s ranking based on the neutral scalar substitute from [33]
and the credibilistic mean from [37] and the ranking based on these two indices
is grouped as compatible with seven more ranking methods (see [29] for further
detail):

• N0.5, the parametric method defined in [46] based on a fuzzy binary rela-
tion;

• CoM , the method based on the centre of maxima or mean of maxima [28];

• Ep, the method based on the possibilistic mean value [47];

• CH1, the method based on a ranking index using the concepts of fuzzy
maximising and minimising sets from [48];

• CoG, the method based on the centre of gravity of a fuzzy set [28];

• Med, the method based on the median of a fuzzy number [49];

• PD, the method based on the PD relation introduced in [50].

Interestingly, the latter method extends the weak ordering of intervals, with
PD(X,Y ) corresponding to the upper probability of the event X ≥ Y under
the monotonic dependence assumption [44].

As for β = 0, we have already noted that E0 coincides with Adamo’s index
A0.5. According to [29], the ranking based on this index is not strongly corre-
lated to the one based on E 1

2
and is therefore to produce significantly different

orderings in the set of TFNs.
In conclusion, if we consider three ranking possibilities, based on Eβ with β =

0, 1
2 , 1, we are in fact modelling three different behaviours of the decision maker

according to her level of pessimism. But it is also the case that, by considering
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these three possibilities, we are taking into account many other ranking methods
from the literature, either because they are based on a defuzzification index
which coincides with some Eβ for TFNs or because, according to [29], they
yield very similar orderings to E 1

2
or E0 (in the case of A0.5).

2.3. Fuzzy Flexible Job Shop

When task durations in a flexible job shop problem are given as TFNs, the
resulting problem is a fuzzy flexible job shop problem, FfJSP in short. The
objective is to minimise the makespan Cmax according to one of the ranking
methods above.

Notice that a solution to the FfJSP is fuzzy in the sense that starting, pro-
cessing and completion times of each task are fuzzy numbers, seen as possibility
distributions on the actual values they may take. However, there is no uncer-
tainty regarding the machine assignment nor the order in which tasks must be
processed.

3. Robust schedules

A fuzzy schedule does not provide exact starting times for each task. Instead,
it gives a fuzzy interval of possible values for each starting time, provided that
tasks are executed in the machine and in the order determined by the schedule.
In fact, it is impossible to predict what the exact time-schedule will be, because
it depends on the realisation of the task’s durations, which is not known yet.
This idea is the basis for a semantics for fuzzy schedules from [25] by which
solutions to the fuzzy job shop should be understood as a-priori solutions, also
called baseline or predictive schedules in the literature [51]. These solutions are
found when the duration of tasks is not exactly known and a set of possible
scenarios must be taken into account. When tasks are executed according to
machine assignment and the ordering provided by the fuzzy schedule we shall
know their real duration and, hence, obtain a real (executed) schedule, the
a-posteriori solution with deterministic times.

Clearly, a fuzzy solution should yield reasonably good executed schedules in
the moment of its practical use. Also, the estimates for starting and completion
times and, in particular, for the makespan, should be reasonably accurate for
each possible scenario of task durations. This leads us to the concept of solution
robustness. As [52] puts it, “Intuitively, a solution can be considered as robust
if it behaves “well” or “not too bad” in all the scenarios.”. This is the idea
underlying a definition of ε-robustness given in [53] for stochastic scheduling
which can be adapted to the fuzzy flexible job shop as follows.

A predictive schedule is considered to be robust if the quality of the even-
tually executed schedule is close to the quality of the predictive schedule. In
particular, a predictive schedule with objective value fpred (a TFN) is ε-robust
for a given ε if the objective value fexec of the eventually executed schedule (a
real value) is such that:

(1− ε) ≤ fexec

Eβ(fpred)
≤ (1 + ε) (8)

7



or, equivalently,
|fexec − Eβ(fpred)|

Eβ(fpred)
≤ ε. (9)

That is, the relative error of the estimation made by the predictive schedule is
bounded by ε. Obviously, the smaller ε is, the better.

According to this interpretation, the robustness of a solution can only be
measured once we have a real execution of the problem. However, it is very
common in the literature to use synthetic problems instead of real ones, so no
real execution is available. For those cases we propose to run a Monte-Carlo
simulation to provide a surrogate of the ε-robustness measure. Given a fuzzy
instance, we may generate a sample of K possible realisations of that instance
by assigning an exact duration to each task, that is K deterministic instances in
which we can evaluate the robustness of the solution. Now for each realisation
k = 1, . . . ,K, let Cmax,k denote the makespan obtained by executing tasks
according to the ordering and machine assignment provided by the predictive
schedule. Then, the average ε-robustness of the predictive schedule, denoted ε,
is calculated as:

ε =
1

K

K∑
k=1

|Cmax,k − Eβ(Cmax,pred)|
Eβ(Cmax,pred)

(10)

where Cmax,pred is the makespan estimated by the predictive schedule.
Notice that a crucial factor in this method is the way in which we simulate

real durations for the tasks. This is actually done by generating real durations
for tasks following a probability distribution that is consistent with the possibil-
ity distribution defined by each fuzzy duration. Originally, in [25] the authors
use the renormalisation technique (dividing the membership function µM by its
surface). However, this technique can be objected to; according to [40], it is
arbitrary and the obtained probability may fail to belong to P(µM ), the set
of probability measures dominated by µM . Here we will consider instead the
probability distribution obtained from each fuzzy duration after applying the
pignistic transformation obtained by considering cuts as uniformly distributed
probabilities [54]. This is the probability one would obtain from the membership
function of a fuzzy duration applying a generalised version of the Insufficient
Reason Principle by Laplace.

Our approach to robustness is different from the better-known approach from
combinatorial optimisation, based on min-max or min-max regret criteria, which
aims at constructing solutions having the best possible performance in the worst
case [55]. The study of such criteria is motivated by practical applications where
an anticipation of the worst case is crucial and has already been translated to
the fuzzy framework [6], [7]. However, the min-max approach may be deemed
as too conservative in some cases where the worst case is not that critical and
an overall acceptable performance is preferred. It is in these situations where
an approach such as ε-robustness might be more adequate.
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4. Cooperative co-evolutionary algorithm for the FfJSP

Co-evolutionary algorithms are advanced evolutionary techniques specially
suited to solve complex problems which are decomposable. They handle two or
more populations, each with its own coding schemes and recombination opera-
tors, that interact through evaluation. When all populations cooperate to build
the problem solution, we talk about cooperative algorithms [15].

The nature of solutions to the FfJSP, with two separate components, suggests
that cooperative co-evolution may be specially suited for this problem. The first
subproblem we face when searching for a solution to the FfJSP is to assign the
processing of each task θij to a machine Mk ∈ Rij . Once this has been done,
we obtain a classical job shop problem where we need to establish the order
in which tasks are to be processed in each machine. We propose to separately
evolve those two components in a co-evolutionary framework, with a “machine
assignment population” PM in charge of evolving the machine assignment and
a “task ordering population” PT in charge of finding the processing order for
tasks.

Algorithm 1 summarises the main steps of our co-evolutionary algorithm.
It first builds a pool of initial solutions, which are then split to form the ini-
tial populations PT0 and PM0 . A variable Best will record the best full initial
solution and will then be updated throughout the evolution so it always keeps
record of the best solution found so far, thus incorporating elistism. After the
initialisation phase, the algorithm iterates until a stopping criterion is met. At
each iteration, the individuals of each population are paired and crossover and
mutation operators are applied to each pair with probability probc and probm
respectively; each individual is then evaluated using some partners from the
other population in order to have a complete solution and, finally, a replace-
ment strategy is applied.

In the following, we describe in more detail the algorithm’s components.

4.1. Genotype coding and decoding

Every individual from population PM encodes a machine assignment as a
vector α = {α1, . . . , αN}; task θij is associated to the element in position p =

j +
∑i−1
l=1 nl, so αp ∈ Rij represents the machine assigned to θij . On the other

hand, an individual in PT encodes a topological order of tasks as a permutation
with repetition π = {π1, . . . , πN} such that ∀l, 1 ≤ πl ≤ n and |{πl : πl = i}| =
ni,∀i = 1, . . . , n. This is a permutation of the set of tasks as proposed in [56]
for the JSP, where each task is represented by its job number. For example, the
topological order θ21, θ11, θ22, θ31, θ32, θ12 is encoded as (2 1 2 3 3 1).

Notice that the encoding of each population is completely independent of
the other population, unlike the co-evolutionary approach from [14] for the
same problem. This independence allows both populations to evolve separately,
interacting only at the evaluation phase. Indeed, to calculate a schedule we
require a full solution, combining an individual α from PM and an individual π
from PT . Then, a pair (α, π) ∈ PM × PT will be decoded using the following
insertion strategy. The task sequence is traversed in the order given by π and
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Input A FfJSP instance
Output A solution

Generate a pool P of initial solutions.
Best← arg minS∈P {Cmax(S)};
Split P into populations PT0 and PM0 ;
i← 1;
while stop condition not satisfied do

//Evolve one iteration for population PTi−1

PTi ← Paired individuals from PTi−1;
for each pair of individuals do

Apply crossover and mutation with probabilities probc and probm;
Evaluate PTi using partners from PMi−1;//Best is updated if necessary
PTi ← Apply 4:2 parent-children tournament between PTi and PTi−1;
//Evolve one iteration for population PMi−1

PMi ← Paired individuals from PMi−1;
for each pair of individuals do

Apply crossover and mutation with probabilities probc and probm;
Evaluate PMi using partners from PMi−1;//Best is updated if necessary
PMi ← Apply 4:2 parent-children tournament between PMi and PMi−1;
//Apply elitism
Replace worst individual in PTi and in PMi with respective partial solutions from
Best;

return Best

Algorithm 1: Main steps of the Co-Evolutionary algorithm

each task θij is then scheduled in the machien Mk to which it is assigned by
chromosome α. To assign a starting time to the task, it is necessary to compute
a feasible insertion interval, that is a time interval [tk,S , tk,E ] in which machine
Mk is idle and such that tk,S + pijk ≤ tk,E and tk,S ≥ Ci(j−1) (if j = 0, Ci(j−1)

is taken to be 0); thus θij can be processed within that time interval without
violating precedence constraints. When tk,S , tk,E and pijk are TFNs, we require
that these inequalities hold in each of their three components (in accordance
to the definition of maximum and addition). Then, the earliest starting time
for operation θij in machine Mk, denoted ESTijk, is the smallest tk,S that
can be found. We schedule operation θij in machine Mk with starting time
Sij = ESTijk.

4.2. Initial populations

The simplest way to generate both initial populations is to do it randomly.
Alternatively, we propose a heuristic seeding method based on the insertion
decoding algorithm. The idea is to use this algorithm as a production rule to
generate a full schedule for the FfJSP and then encode its task ordering as an
individual for PT and its machine assignment as an individual for PM .

The heuristic method is detailed in Algorithm 2. LetA denote the set of tasks
that can be scheduled at a certain stage, initially the first task from each job. We
iteratively select a random task θij ∈ A and compute C? = min{ESTijk +pijk :
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Input A FfJSP instance
Output An individual for each population
A← {oi1, 1 ≤ i ≤ n};
while A 6= ∅ do
oij ← a task selected at random from A;
for each k ∈Mij do

Compute ESTijk;
C∗ ← min{ESTijk + pijk, k ∈Mij};
K ← {k ∈Mij , ESTijk + pijk = C∗};
k∗ ← a machine selected at random from K;
Schedule the task θij in machine k∗ with Sij = ESTijk∗ ;
A← A− {oij}
if j < ni then
A← A ∪ {θij+1};

Split and encode the schedule.

Algorithm 2: The FfInsertion

Mk ∈ Rij}, the earliest possible completion time for θij in all machines where
it can be processed. A machine Mk∗ is then randomly selected from the set
K = {Mk : ESTijk + pijk = C?} of machines where this earliest completion
time can be achieved, so θij is scheduled in Mk∗ with starting time ESTijk∗. θij
is removed from A and its successor in the job is added to A, provided it exists.
The process finishes when A becomes empty, i.e., all tasks have been scheduled.

4.3. Recombination Operators

For the machine assignment population PM , we use the one-point crossover:
given two genotypes αA = {αA1 , . . . , αAN} and αB = {αB1 , . . . , αBN} the operator
chooses a random point p ∈ (1, N) and builds two offsprings αC , αD such that
αCi = αAi and αDi = αBi for i ≤ p and αCi = αBi and αDi = αAi for i > p.
A mutation strategy is also introduced, which takes a random gene αq in the
genotype associated to task θij and changes its value to a random machine in
Rij .

In the case of PT , individuals are combined using the JOX operator [57].
Given two genotypes πA, πB , JOX selects a random subset of jobs, copies their
genes to one offspring in the same positions as in the first parent πA, and fills the
remaining genes from the second parent πB so that they maintain their relative
ordering. The second offspring is formed exchanging the role of the parents.
The well-known insertion operator is used for mutation. A random gene πp in
the genotype is chosen and changes its position to a random one, while keeping
the relative order of the other tasks.

In both populations, all individuals are grouped in pairs for mating. Accep-
tance is carried out using tournament in each group of parents and offsprings,
selecting the best two individuals from this group of four to pass to the next
generation. Additionally, we introduce elitism, so the Best solution is split and
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the worst solutions from PT and PM are replaced by the task sequence and
machine assignment of Best respectively.

4.4. Cooperative partners for evaluation

It is at the time of evaluation that populations need to cooperate: any in-
dividual only encodes part of a solution and needs to be complemented by an
individual from the other population, the so-called cooperative partner, to con-
form a full solution which can be evaluated, using the decoding method above.
Based on [58], we use three cooperative partners to evaluate each individual. As-
suming all individuals in both populations are arbitrarily ordered, an individual
in position p from one population, has as cooperative partners from the other
population the best individual in the previous generation, a random individual
and the individual in the same position p. As we shall see in Section 5, the three
full schedules built in this evaluation process may then improved using a local
search strategy. Finally, the individual’s fitness value is the best makespan of
the three obtained schedules.

5. Local Search

Evolutionary algorithms are often hybridised with local search to benefit
from the synergy between both methods, i.e., between the exploitation of the
local search and the exploration of the evolutionary approach. Here, we propose
to apply local search to each individual after its evaluation. This means applying
local search three times for each individual, one for each of its cooperative
partners. In order for the computational effort to not increase excessively, we
implement the local search following a simple hill climbing strategy, which is one
of the fastest ones. The best solution found after the three local search processes
per individual is selected and the chromosome is updated accordingly, thus
introducing lamarckism. Algorithm 3 illustrates the evaluation of chromosomes
incorporating the selection of cooperative partners and the local search.

It is common in the literature to represent solutions to shop problems using
acyclic graphs and define neighbourhood structures based on critical paths in
these graphs. In this work we shall define different neighbourhood structures to
be used on each population, taking into account their specific characteristics.
We adapt the solution graph model from [59] to incorporate machine flexibil-
ity. A solution can be represented by an acyclic directed graph G with a node
for each task of the problem, labelled with the machine to which it has been
assigned, plus two nodes representing fictitious tasks start and end with null
processing times. There are conjunctive arcs representing job precedence con-
straints (including arcs from node start to the first task of each job and arcs
from the last task of each job to node end) and disjunctive arcs representing
machine processing orders. Each arc is weighted with the processing time of the
task at the source node (a TFN in our case) in the machine where it is to be
processed.

The starting and completion times of each task can be found by propagating
constraints in the graph, and the makespan will be the completion time of task
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Input A FfJSP instance, PT , PM , Best
Output Fitness values for PT ’s individuals and Best updated

for each individual ITp ∈ PT do
//Decoding with Cooperative partners
S1 ← Decode(ITp , Best solution from PM );
S2 ← Decode(ITp , Random solution from PM );
S3 ← Decode(ITp , IMp ∈ PM );
//Intensification phase
Apply Local search to S1, S2 and S3;
S ← arg minj=1,2,3{Cmax(Sj)};
fitness(ITp )← Cmax(S);
Update ITp chromosome with S;
if Cmax(S) < Cmax(Best) then
Best← S;

return fitness(PT ),Best

Algorithm 3: Evaluation Algorithm for PT Population using cooperative partners of PM

end (which may not coincide with the completion time of any job). In the crisp
case, the makespan corresponds to the cost of a critical path, which is defined
as the longest path in a solution graph from node start to node end. It is not
trivial to extend concepts and algorithms related to criticality to the problem
with uncertain durations (cf [23], [3]). Here we adopt the definition from [59],
where it is proposed that a solution graph G be decomposed into three parallel
solution graphs Gi, i = 1, 2, 3, with identical structure to G but where the cost
of any arc is the i-th component of the TFN labelling that arc in G. The union
of all critical paths in Gi i = 1, 2, 3 will be the set of critical paths in G and
critical nodes and arcs will be those within a critical path. Finally, a critical
block is a maximal subsequence of tasks of a critical path assigned to the same
machine. The makespan of the schedule is not necessarily the cost of a critical
path in G, but it holds that each component Cimax is the cost of a critical path
in the corresponding solution parallel graph Gi.

For population PM , representing machine assignments, based on the work
of [60] and [61] for other variants of fJSP, we build a neighbour by taking a
critical task θij and assigning it to a new random machine Mk ∈ Rij . The
resulting neighbours are always feasible, so no repair strategy is needed. The
evaluation of neighbours and, hence, the cost of the local search procedure, is
optimised by using makespan estimates in the line of [61], adapted to the fuzzy
context.

Regarding population PT , aimed at finding good task orderings, the local
search assumes a fixed machine assignment (provided by the cooperative part-
ner). This allows to use the structure for fuzzy job shop from [62], where a
neighbour is built by reversing a critical arc at the extreme of a critical block;
the motivation for this definition is that reversing critical arcs preserves feasibil-
ity and, additionally, reversing arcs inside critical blocks does not improve the
makespan. Again, the evaluation of neighbours and consequent cost of the local

13



search procedure is optimised using makespan estimates, as proposed in [62].

6. Experimental study

The goal of this experimental study is twofold. The first objective is to eval-
uate the hybrid co-evolutionary algorithm proposed, analysing the contribution
of each of its components and comparing its behaviour with the state-of-the-art
methods. The second objective is to study the influence of the ranking method
in the robustness of the solutions.

Experiments are made on the instances that are available in the literature
for the FfJSP which are, to our knowledge, the four instances proposed in [10]
(denoted 01–04), and the two instances proposed in [14] (denoted 05, 06). All
instances have m = 10 machines. Instances 01–04 have 10 jobs each, with a
total of 40 tasks for the first two instances 01, 02 and 50 tasks for instances 03
and 04, while instances 05 and 06 have 15 jobs and 80 tasks each. Despite the
relatively low number of tasks, the difficulty of the benchmark is considerable.
The reason is that all instances have full flexibility, meaning that every task can
be performed in any machine with varying processing time, which significantly
increases the size of the search space.

Our hybrid algorithm (denoted CELS hereafter) has been implemented in
C++ on a PC with a Xeon E5520 processor and 24 Gb RAM. After some
preliminary testing, the parameters have been set as follows: 50 individuals
per population and 100 generations as stopping criterion, crossover probability
equal to 0.90 and mutation probability equal to 0.05 for both populations.

6.1. Analysis of CELS’s performance

In the experiments devoted to evaluate the proposed algorithm, to keep the
experimentation within reasonable bounds and to be in line with the existing
works for FfJSP in the literature, we will restrict ourselves to the ranking method
based on E 1

2
. Even though the ranking methods considered in this work have

been used as such by other authors for solving the FfJSP, the state-of-the-
art methods for this problem do use a ranking method based on E 1

2
, which is

combined with other defuzzification indices to break ties, as originally proposed
by [24]. In the remaining of this section, we might refer to E 1

2
(Cmax) as expected

makespan and, since no confusion is possible, for the sake of a simpler notation
we will drop the subindex and simply write E(Cmax). As a reference for the
quality of a solution of a given instance of FfJSP, we will use a lower bound
of the expected makespan given by LB = E(maxj{

∑n
i=1 p

∗
ij}) where p∗ij =

min{pijk, k ∈ Rij}.
A first set of experiments is devoted to analysing the different components

of our algorithm. To evaluate the heuristic seeding we generate the initial pool
of solutions using two different methods, the first one applying the heuristic
introduced in Section 4.2 and the second one generating the solutions at random.
We then evaluate the quality of the resulting chromosomes in terms of expected
makespan. A summary of the results can be seen in Table 1. The first column
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Inst LB pBKS RP HP CCEA LS CELS

01 28.50 30.00 62.48 32.30 30.25 28.75 28.50
(83.53) (37.18) (31.15) (29.51) (28.53)

02 45.00 45.25 81.98 47.80 45.75 45.25 45.25
(107.39) (54.53) (46.60) (45.38) (45.25)

03 43.50 47.50 90.88 50.23 47.00 45.25 43.50
(114.11) (56.95) (47.63) (45.86) (44.18)

04 33.50 37.75 76.25 39.25 37.25 36.00 34.25
(95.22) (44.85) (38.28) (36.51) (35.08)

05 37.50 62.00 110.18 63.33 58.50 57.75 53.25
(133.92) (69.58) (60.43) (58.73) (55.07)

06 40.25 63.75 103.89 61.63 57.00 55.75 52.75
(125.26) (68.04) (58.50) (57.41) (53.93)

MRE Best 131.64 29.03 20.78 17.57 12.64
(Avg) (191.10) (45.17) (23.84) (19.67) (14.63)

Table 1: Analysis of algorithm’s components with best (average) expected makespan values
obtained in each case.

corresponds to the instance id and for reference the second column reports the
lower bound LB. The best-known solution so far (pBKS) is included in the third
column, while the fourth and fifth columns report the best (average) expected
makespan for both pools of initial solutions. We can observe a considerable gain
in quality for the heuristic solutions: the average makespan mean relative error
(MRE ) w.r.t. LB is reduced in average 76% across all instances when HP is
considered instead of RP .

We now evaluate the contribution of the cooperative co-evolutionary algo-
rithm (CCEA) and the local search procedure (LS). To this end, CCEA is run
with no local search for the same time taken by CELS. Additionally, since CELS
uses two populations of size 50 and evolve for 100 generations, we evaluate LS
by generating two populations of 500 individuals and applying LS to the result-
ing populations (three searches per chromosome, one per cooperative partner).
The last three columns in Table 1 report the best (average) expected makespan
values obtained with the three methods CCEA, LS and CELS. We can see that
CCEA improves the best expected makespan 18% w.r.t. the heuristic initial
population, which means that the heuristic seeding provides a good starting
point for the CCEA in terms of quality but also in terms of diversity, allowing
for a proper evolution of the populations. In fact, the results of CCEA are
already quite competitive w.r.t. the previously best-known solutions, especially
as the problem size increases. LS obtains even better results than CCEA, with
a MRE equal to 17.57% in the best case and equal to 19.67% in average. More
importantly, CELS, combining both CCEA and LS, improves the best and av-
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erage expected makespan in every instance, with the exception of 02, where the
best makespan is equal for CELS and LS. As an added value for CELS, the run-
time of LS is in average 134% greater than the runtime of CELS. We conclude
that there is a synergy effect between the two metaheuristics.

We now proceed to evaluate CELS compared with the state-of-the-art in the
FfJSP. From the literature we gather that the most competitive approaches to
FfJSP are the co-evolutionary genetic algorithm (CGA) from [14], the swarm-
based neighbourhood search algorithm (SNSA) from [13], and the hybrid artifi-
cial bee bolony algorithm (hABC) from [11].

CGA is implemented in Microsoft Visual C++ 6.0 and run on a 512 RAM
1.7G CPU PC. The population size of CGA is 150 and the maximum generation
is 1000. With this configuration the CPU times ranges from 8 and 11 seconds
for every one of the 20 executions. SNSA is coded in Microsoft Visual C++
6.0 and run on a 2.G RAM 2.2G CPU PC. The size of swarm is 100 and the
number of iterations is limited to 500. With this configuration they report
run times between 9 and 14 seconds, in average, in every one of the 20 runs.
Finally, hABC is implemented in C++ and run on 2.83-GHz PC with 3.21-GB
RAM. Parameters are set as follows: population size 2× n×m, steps for local
search n × m and the number of trials after which a food source cannot be
further improved (Limit) 20. For each instance, the algorithm is run 20 times
and in average, every run takes between 11 and 15 seconds, but the two largest
instances are not included in these results.

Table 2 shows the results of 30 runs of CELS on each instance compared to
the methods above. For each method it includes the makespan of the best solu-
tion (with its expected value between brackets), the average expected makespan
across all solutions found in several runs, the corresponding MRE values and
the average runtime of a single run in seconds. The missing rows for instances
05 and 06 correspond to the cases when the original works do not report results
on these instances. In bold we highlight the best solution from all methods,
marked with “a” when it improves the previous best-known solution and with
b when the solution is optimal, given that the lower bound is reached. We see
that CELS improves the best and average values in all cases except for instance
02, where it obtains the same best expected value as SNSA. For instances 01–04
(for which all algorithms provide results), CELS reduces the MRE more than
77% in average. For instance 05, the reduction w.r.t. CGA and SNSA exceeds
38%, and on instance 06 it obtains a 46% reduction w.r.t. SNSA. Notice that
solutions for instances 01 and 03 are indeed optimal, as they coincide with the
lower bound.

Overall, CELS establishes new best solutions for all instances except for
02, where it obtains the same expected makespan as SNSA. Regarding the
average expected makespan, not only is CELS significantly better than the
other methods, but it also improves the previously known best values.

6.2. Influence of Fuzziness and Ranking Methods in Robustness

In this subsection we propose to evaluate in terms of ε-robustness the be-
haviour of the predictive schedules obtained using different ranking methods
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Instance Algor. Best(Cmax) AvgE MRE Time

(LB) (E(Best(Cmax)) ) Best Avg (s.)

01 CGA 21,29,41 (30.00) 33.18 5.26 16.40 8.3
(28.50) SNSA 21,29,42 (30.25) 31.68 6.14 11.14 8.7

hABC 19,30,43 (30.50) 32.15 7.02 12.81 9.9
CELS 21,28,37 (28.50)a,b 28.53 0.00 0.09 1.9

02 CGA 32,47,57 (45.75) 47.45 1.67 5.44 8.3
(45.00) SNSA 35,43,60 (45.25) 47.05 0.56 4.56 8.9

hABC 33,46,58 (45.75) 47.70 1.67 6.00 10.9
CELS 32,46,57 (45.25) 45.25 0.56 0.56 2.3

03 CGA 34,47,63 (47.75) 51.00 9.77 17.24 10.7
(43.50) SNSA 36,46,62 (47.50) 51.25 9.20 17.82 11.4

hABC 33,47,64 (47.75) 50.70 9.77 16.55 14.8
CELS 31,43,57 (43.50)a,b 44.18 0.00 1.55 3.0

04 CGA 26,37,51 (37.75) 40.80 12.69 21.79 10.8
(33.50) SNSA 26,39,53 (39.25) 41.45 17.16 23.73 11.5

hABC 23,38,53 (38.00) 40.45 13.43 20.75 13.9
CELS 24,33,47 (34.25)a 35.08 2.24 4.73 2.7

05 CGA 42,62,82 (62.00) 65.95 65.33 75.87 23.9
(37.50) SNSA 40,65,93 (65.75) 68.53 75.33 82.73 14.2

CELS 35,53,72 (53.25)a 55.07 42.00 46.84 6.7

06 SNSA 46,63,83 (63.75) 65.65 58.39 63.11 14.4
(40.25) CELS 35,52,72 (52.75)a 53.93 31.06 34.00 6.7

Table 2: Summary of results in FfJSP instances with best-known solutions in bold. a improves
previous best known solution, b optimal solution is reached.

for fuzzy numbers. In our case, for each instance we obtain three predictive
schedules, namely the schedules obtained after solving the fuzzy problem with
CELS using each of the three fuzzy ranking methods from Section 2.2. The
surrogate robustness of each predictive schedule is computed as explained in
Section 3. The ε value for each ranking method will be denoted ε0, ε 1

2
and ε1,

corresponding respectively to β = 0, modelling the pessimistic decision maker,
β = 1

2 , the compromising decision maker, and β = 1, the optimistic decision
maker.

We run CELS 30 times on each instance for each ranking method, thus
obtaining 30 predictive schedules. Each predictive schedule is then evaluated
via a Monte-Carlo simulation with K = 1000, yielding a total of 30 εβ values
for each ranking method (β = 0, 1

2 , 1). Figure 1 depicts for each instance, the
average εβ value of each ranking method across the 30 predictive schedules, while
the box plot in Figure 2 illustrates in more detail the distribution of ε-values
obtained across the 30 predictive schedules for instance 06.
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The predictive schedules obtained from the fuzzy problem using a compro-
mising approach to rank fuzzy numbers appears to be the best option in terms
of robustness (with smaller prediction error ε), being the pessimistic approach
also quite good and clearly much better than the schedule obtained from the
optimistic one. This behaviour has a natural explanation: in scheduling, ev-
ery single delay in a critical task increases in the same quantity the makespan,
whereas a shorter processing time of a critical task is likely to derive in this
task being critical no more, thus having a small or non existing impact in the
makespan which might be determined by a new critical path.
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Figure 1: Mean εβ values for the different ranking methods
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Figure 2: εβ values for the different ranking methods on instance 06

To enhance the conclusions of the experimental comparison based on ε-
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robustness among solutions obtained with different raking methods, we have
conducted some statistical analysis on instance 06, which seems to be the hard-
est one. We take for each value of β, the ε-robustness values εβ given by 30 runs
of CELS. In a preliminary analysis, the Kolmogorov-Smirnov test rejected the
hypotheses of normality so we have used non-parametric statistical techniques.
Specifically, we have performed a Friedman test to rank the three different sets
of data (corresponding to εβ for β = 0, 1

2 , 1) and deduce whether there are sig-
nificant differences among the robustness of solutions for varying β. With a
p-value ≈ 0, the mean rank values are 1.873 for β = 0, 1.127 for β = 1

2 and
3.000 for β = 1, which show that the ranking method used for TFNs has a
significant influence on the robustness of the solutions. Additionally, to have
a pairwise comparison, we have made a Mann-Whitney-U test over every pair
of samples: β = 0 vs. β = 1

2 , β = 0 vs. β = 1, and β = 1
2 vs. β = 1 with

p-value ≈ 0 in all cases. It is clear that ranking TFNs with expected value
(β = 1

2 , corresponding to a decision maker who compromises between optimism
and pessimism) gives the most robust solutions, whereas using a ranking with an
optimistic interpretation seems to be the worst choice in scheduling problems.

A final set of experiments is conducted to assess the benefit in terms of ro-
bustness of using fuzzy sets. Indeed, although modelling uncertainty seems to
be a natural approach to exploit all the available information, it may happen
that from a practical point of view this makes no great difference with respect
to solving the deterministic problem obtained by taking only the most likely
duration of each task, that is the modal values. If this were the case, then
it would not be worth in practice to increase the complexity of the problem
by considering fuzzy numbers. To check if this is the case, we have run some
additional experiments in the same line as we did above, now comparing the
predictive fuzzy schedule obtained with E 1

2
and the predictive deterministic

schedule obtained solving the defuzzified problem, again with 30 runs of CELS.
The predictive schedules obtained from the defuzzified problem have a slightly
better makespan value, compared to the expected makespan of the fuzzy sched-
ules. However, the deterministic solutions are much worse than the the fuzzy
ones in terms of robustness, as illustrated in Figure 3. Indeed, the ε values
obtained after solving the deterministic instances are in average 73.62% worse
than the ε1/2 values obtained with the fuzzy schedules as shown above. We con-
clude that, even though considering the defuzzified problem in principle seems
to yield to better solutions, in fact these solutions are not robust enough and
the outcome of a real execution is much more unpredictable than when fuzzy
information about durations is taken into account.

7. Conclusions

We have tackled the flexible job shop scheduling problem with fuzzy dura-
tions and have proposed a new cooperative co-evolutionary algorithm hybridised
with local search, named CELS, to solve it. The experimental results have
assessed the quality of the initial heuristic seeding and the synergy between
coevolution and local search. They have also shown that CELS outperforms
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the state-of-the-art methods, establishing new best known solutions and, in two
cases, even finding the optimal solution. In addition, we have assesed the be-
haviour of several ranking methods for TFNs in these problems by means of a
robustness measure. This measure accounts for the average behaviour of predic-
tive schedules in real situations. We have seen that the use of different ranking
methods actually affects the robustness of the algorithm’s outcome. Due to
the nature of scheduling problems, this outcome is more robust when ranking
is based on the expected value of the TFNs, modelling a decision maker who
compromises between pessimism and optimism, followed by the approach mod-
elling a pessimistic decision maker, with the optimistic method being definitely
worse. These results strongly support the use of the expected value as a ranking
method for fuzzy scheduling problems.
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[25] I. González Rodŕıguez, J. Puente, C. R. Vela, R. Varela, Semantics of
schedules for the fuzzy job shop problem, IEEE Transactions on Systems,
Man and Cybernetics, Part A 38 (3) (2008) 655–666.

[26] D. Lei, Pareto archive particle swarm optimization for multi-objective fuzzy
job shop scheduling problems, International Journal of Advanced Manufac-
turing Technology 37 (2008) 157–165.

[27] Q. Niu, B. Jiao, X. Gu, Particle swarm optimization combined with genetic
operators for job shop scheduling problem with fuzzy processing time, Ap-
plied Mathematics and Computation 205 (2008) 148–158.

[28] W. Van Leekwijck, E. E. Kerre, Defuzzification: criteria and classification,
Fuzzy Sets and Systems 108 (1999) 159–178.

[29] M. Brunelli, J. Mezei, How different are ranking methods for fuzzy num-
bers? a numerical study, International Journal of Approximate Reasoning
54 (2013) 627–639. doi:10.1016/j.ijar.2013.01.009.

22



[30] W. Wang, Z. Wang, Total orderings defined on the set of all fuzzy numbers,
Fuzzy Sets and Systems 243 (2014) 131–141.
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