
Soft Computing manuscript No.
(will be inserted by the editor)

An Efficient Hybrid Evolutionary Algorithm for Scheduling with Setup
Times and Weighted Tardiness Minimization

Miguel Ángel González · Inés González-Rodrı́guez · Camino R. Vela · Ramiro Varela

Received: date / Accepted: date

Abstract We confront the job shop scheduling problem with
sequence dependent setup times and weighted tardiness min-
imization. To solve this problem, we propose a hybrid meta-
heuristic that combines the intensification capability of tabu
search with the diversification capability of a genetic algo-
rithm which plays the role of long term memory for tabu
search in the combined approach. We define and analyze a
new neighborhood structure for this problem which is em-
bedded in the tabu search algorithm. The efficiency of the
proposed algorithm relies on some elements such as neigh-
bors filtering and a proper balance between intensification
and diversification of the search. We report results from an
experimental study across conventional benchmarks, where
we analyze our approach and demonstrate that it compares
favorably to the state-of-the-art methods.

A preliminary version of this work was presented at the 14th
Conference of the Spanish Association for Artificial Intelligence,
CAEPIA2011, held in La Laguna, Spain, in 2011 (González et al
(2011)).

Miguel Ángel González
Computing Technologies Group. Department of Computing
Artificial Intelligence Center, University of Oviedo, Spain,
Campus of Viesques, 33271 Gijón
E-mail: mig@uniovi.es

Camino R. Vela
Computing Technologies Group. Department of Computing
Artificial Intelligence Center, University of Oviedo, Spain,
Campus of Viesques, 33271 Gijón
E-mail: crvela@uniovi.es

Ramiro Varela
Computing Technologies Group. Department of Computing
Artificial Intelligence Center, University of Oviedo, Spain,
Campus of Viesques, 33271 Gijón
E-mail: ramiro@uniovi.es

Inés González-Rodrı́guez
Dept. of Mathematics, Statistics and Computing,
University of Cantabria, Spain,
E-mail: ines.gonzalez@unican.es

1 Introduction

The Job Shop Scheduling Problem (JSP) has been a research
topic over the last decades due to the fact that it is a simple
model of many real production processes. However, in many
environments the production model has to consider addi-
tional characteristics or complex constraints. For example,
in automobile, printing, semiconductor, chemical or phar-
maceutical industries, setup operations such as cleaning up
or changing tools are required between two consecutive jobs
on the same machine. These setup operations depend both
on the outgoing and incoming jobs, so they cannot be con-
sidered as being part of any of these jobs. This situation is
well modelled with the JSP with Sequence-Dependent Setup
Times (SDST-JSP). This problem received increasing atten-
tion by researchers, mostly with makespan minimization as
objective function. However, this is not always the best mea-
sure for the quality of a schedule since in real-world prob-
lems there are usually due dates for the jobs and not all of
them are equally important. In this case, an objective func-
tion such as Total Weighted Tardiness (TWT) is preferred,
as this objective is typically associated with customer satis-
faction and service level in make-to-order environments.

The JSP with makespan minimization has been intensely
studied, so many formal results have been established and
given rise to powerful exact or approximate solution meth-
ods. Among these, some pioneering approaches such as non-
deterministic schedule builders (Giffler and Thompson (1960)),
branch and bound algorithms (Carlier and Pinson (1989)),
constraint propagation rules (Dorndorf et al (2000)) or local
searchers (Van Laarhoven et al (1992), Dell’ Amico and Tru-
bian (1993)) deserve special mention. Incorporating sequence-
dependent setup times or TWT estimations changes the na-
ture of scheduling problems, so these well-known results
and techniques for the JSP with makespan minimization are
not directly applicable to the SDST-JSP. However, some of

2

these techniques have been extended to deal with the SDST-
JSP and makespan minimization. For example, in Brucker
and Thiele (1996) the authors develop an exact branch and
bound algorithm, and in Vela et al (2010) and González et al
(2008) the authors take local search structures proposed in
Van Laarhoven et al (1992) as a basis for new neighborhood
structures. These methods rely on computing a critical path
in a feasible schedule and then defining a branching schema
or a neighborhood structure which somehow change the pro-
cessing order of operations in a critical path, and it is not
trivial to extend them to TWT. Indeed, functions of the class
of TWT require considering not only one but several critical
paths in a schedule in order to properly define some branch-
ing or neighboring schema and this usually gives rise to ex-
tremely large branching factors or neighborhood structures
which can make the search inefficient.

In this paper, we tackle the SDST-JSP with TWT mini-
mization (SDST-JSP-TWT) and propose a hybrid approach
that combines a Genetic Algorithm (GA) with Tabu Search
(TS). Our intention in doing so is to combine the exploration
capability of a stochastic and population-based algorithm
such as GA with the intensification capability of a powerful
local searcher such as TS. In our approach, TS is issued from
every chromosome generated by the GA, so the GA plays
the role of the long-term memory typically used by TS algo-
rithms. From the point of view of the efficiency of this ap-
proach, the neighborhood structure used in TS plays an es-
sential role. It should generate a small number of neighbors
having some chance for improving. Bearing this in mind, we
have designed a neighborhood structure, termed N , which
is the core of the algorithm. This structure is based on com-
puting as many critical paths as the number of jobs of the
problem instance. Then, a candidate neighbor is obtained by
changing the order of two consecutive operations in one of
these paths. In principle, the number of candidate neighbors
is very large so we establish some conditions about feasi-
bility and non-improvement as well as TWT estimation of
candidates, so many neighbors can be discarded before be-
ing evaluated. As a result, we propose an algorithm termed
GTN which is really efficient in solving the SDST-JSP-
TWT. Moreover, when this algorithm is particularized for
the JSP with TWT minimization, taking null setup times, it
is quite competitive with the state-of-the art approaches for
this problem.

The rest of the paper is organized as follows. In the next
section, we review the literature about job shop schedul-
ing and some solution methods. In Section 3 we formulate
the SDST-JSP-TWT and introduce the notation used across
the paper. Section 4 describes the main components of the
genetic algorithm. In Section 5, we introduce the proposed
neighborhood structure and the main components of the TS
algorithm. Section 6 reports results from the experimental

study. Finally, in Section 7 we summarize the main conclu-
sions and propose some ideas for future work.

2 Literature Review

From the vast literature on JSP and metaheuristics, in this
section we shall focus on contributions related to JSP with
setup times or TWT minimization, as well as recent trends
in hybrid metaheuristics applied to scheduling and related
problems.

2.1 Job Shop Problem and Total Weighted Tardiness

The classical JSP with TWT minimization was first consid-
ered in Singer and Pinedo (1998), Singer and Pinedo (1999)
and Kreipl (2000). The first paper proposes an exact branch
and bound algorithm which fixes arcs in a disjunctive graph.
The second proposes a shifting bottleneck algorithm and
the third one proposes a heuristic, termed large step ran-
dom walk (LSRW), which alternates between short steps,
based on hill-climbing, and large steps that use Metropo-
lis’ algorithm. In DeBontridder (2005) a TS algorithm is
proposed for a job shop with generalized precedence rela-
tions and time lag constraints. In this work, the problem is
formulated as a maximal flow problem and in the experi-
mental study the algorithm is evaluated on JSP instances,
being competitive with the three algorithms above. Another
competitive approach for this problem is the Genetic Local
Search (GLS) given in Essafi et al (2008), combining a GA
and an iterated local search (ILS) which is based on revers-
ing critical arcs from a disjunctive graph model. The results
reported in this paper show that the average solutions ob-
tained by GLS are similar to the solutions obtained by the
methods from Singer and Pinedo (1998), Singer and Pinedo
(1999) and Kreipl (2000), while the best solutions obtained
by GLS in a number of trials are in general better than those
obtained by these other methods.

A local search method for optimizing any regular crite-
rion in JSP can be found in Mati et al (2011). It relies on
swapping all critical arcs, introducing a new efficient pro-
cedure to estimate neighbor values. The algorithm consists
of three alternating phases, namely, improving, intermedi-
ate and mixed phases. The first ones perform steepest de-
scent searches for and around local optima while the latter
introduces diversification to escape from local optima. The
resulting algorithm compares favorably to the approaches
given in Singer and Pinedo (1998), Kreipl (2000) and Van Hen-
tenryck and Michel (2004), where a local search using con-
straint programming is proposed. Recently, a hybrid shift-
ing bottleneck-tabu search heuristic (SB-TS) is proposed in
Bülbül (2011) which replaces the re-optimization step in
the shifting bottleneck algorithm by TS. The authors report

3

results across conventional instances showing that SB-TS
obtains similar results to other methods. However, in the
benchmark proposed in Essafi et al (2008), which includes
large instances, they do not report experiments on the largest
ones, and their results are worse than those obtained by Es-
safi el al’s GLS algorithm in the two subsets of instances
with tight due dates while they are better for the third sub-
set.

Sequence dependent setup times have been considered
for the JSP, but in most of the cases with makespan mini-
mization. The first approach is the branch and bound algo-
rithm proposed in Brucker and Thiele (1996) which gener-
alizes the algorithm proposed in Brucker et al (1994) to han-
dle setups. A different branch and bound algorithm, which
improves the results of the previous one, is proposed in Ar-
tigues et al (2004). In this case, a series of decision problems
are considered and a lower bound estimation which requires
computing exact solutions to traveling salesman problem in-
stances is used to guide the search. In Balas et al (2008), the
authors apply the shifting bottleneck heuristic and obtain
competitive results. In Vela et al (2010), a memetic algo-
rithm is proposed which outperforms all the previous meth-
ods. This memetic algorithm is improved in González et al
(2008), where the authors propose some new neighborhood
structures that make the local search more efficient.

Other objective functions for SDST-JSP such as maxi-
mum lateness (Balas et al (2008), González et al (2012)). In
these approaches, some techniques designed for makespan
minimization are extended to deal with these objective func-
tions.

2.2 Hybrid metaheuristics

Hybrid metaheuristics are classical methods for solving com-
binatorial optimization problems, since they allow algorithm
designers to combine the characteristics of different search
techniques. In particular, they have a long track of success
with scheduling problems. For example, the algorithm pro-
posed in Beck et al (2011) is probably the most efficient ap-
proach to the JSP with makespan minimization. This algo-
rithm combines the solution-guided search method proposed
previously with the i−TSAB algorithm proposed in Nowicki
and Smutnicki (2005). In addition to some of the algorithms
for JSP and its variants reviewed in the previous section,
there are other recent approaches to scheduling problems.
For example, in Behnamian et al (2011), the authors propose
a hybrid metaheuristic to solve the parallel machine schedul-
ing problem with setups, combining an ant colony optimiza-
tion (ACO) algorithm with simulated annealing (SA) and
variable neighborhood search (VNS). Also, in Tavakkoli-
Moghaddam et al (2009) the authors tackle the JSP with
machine availability and non-anticipatory setup times com-
bining SA with an electromagnetic-like mechanism.

Another recent hybrid approach is given in Jat and Yang
(2011), which combines a hybrid GA with TS for solving
the Post Enrolment Course Timetabling Problem (PECTP).
This hybrid algorithm consist of two phases. The first one
combines a guided search GA with some local search.

In the second phase, a TS algorithm is used to improve
the quality of the best solution obtained in the first phase.
Notice that this approach is different from that presented
in this paper, in the sense that we apply TS to every chro-
mosome generated by the GA. TS is also combined with
GRASP algorithms in Angel Bello et al (2011a,b), where
the authors propose a GRASP algorithm for a single ma-
chine scheduling problem with sequence-dependent setup
costs and availability constraints which incorporates a TS
as an improvement method.

3 Description of the problem

In the job shop scheduling problem, a set of N jobs, J =

{J1, . . . ,JN}, are to be processed on a set of M machines or
resources, R = {R1, . . . ,RM} while minimizing some func-
tion of completion times of the jobs, subject to the following
constraints: (i) the sequence of machines for each job is pre-
scribed, and (ii) each machine can process at most one job
at a time. The processing of a job on a machine is called an
operation, and its duration is a given constant. A time may
be needed to adjust a machine between two consecutive op-
erations, which is called a setup time, and which may or may
not be sequence-dependent. Jobs may also have a due date,
that is, a time before which jobs should be completed, and a
weight, which represents the relevance of the job. The objec-
tive here is to obtain a schedule, i.e. a starting time for each
one of the operations, such that the weighted cost of the jobs
exceeding its due-dates, also known as the weighted tardi-
ness, is minimized.

We denote by:

– Ω the set of operations
– α(i) and ω(i) the first and the last operation respectively

of job Ji
– di the due-date of job Ji
– wi the weight of job Ji
– pu the processing time of operation u
– suv the setup time between two consecutive operations

u,v requiring the same machine
– tu the starting time of operation u that needs to be deter-

mined

The SDST-JSP has two binary constraints: precedence and
capacity. Precedence constraints, defined by the sequential
routings of the tasks within a job, translate into linear in-
equalities of the type: tu + pu ≤ tv, where v is the next op-
eration to u in the job sequence. Capacity constraints that
restrict the use of each resource to only one task at a time

4

translate into disjunctive constraints of the form: tu + pu +

suv ≤ tv ∨ tv + pv + svu ≤ tu, where u and v are operations
requiring the same machine.

The objective is to obtain a feasible schedule such that
the weighted tardiness, defined as follows

∑
i=1,...,N

wiTi (1)

where Ti is the tardiness of the job i, given by

Ti = max{Ci −di,0} (2)

where Ci is the completion time of job i.
This problem is denoted by J|si j|∑wiTi according to the

α |β |γ notation proposed in Graham et al (1979).

3.1 The disjunctive graph model representation

The disjunctive graph is a common representation in schedul-
ing, its exact definition depending on the particular problem.
For the J|si j|∑wiTi problem, we propose that it be repre-
sented by a directed graph G=(V,A∪E∪I1∪I2). Each node
in set V represents a task of the problem, with the exception
of the dummy nodes start and endi 1 ≤ i ≤ N, which rep-
resent fictitious operations that do not require any machine.
Arcs in A are called conjunctive arcs and represent prece-
dence constraints while arcs in E are called disjunctive arcs
and represent capacity constraints. Set E is partitioned into
subsets Ei, with E = ∪ j=1,...,ME j, where E j corresponds to
resource R j and includes two directed arcs (v,w) and (w,v)
for each pair v, w of operations requiring that resource. Each
arc (v,w) in A is weighted with the processing time of the
operation at the source node, pv, and each arc (v,w) of E
is weighted with pv + svw. Set I1 includes arcs of the form
(start,v) for each operation v of the problem, weighted with
s0v. Set I2 includes arcs (ω(i),endi), 1 ≤ i ≤ N, weighted
with pω(i).

A feasible schedule S is represented by an acyclic sub-
graph of G: GS = (V,A∪H∪J1∪I2), where H =∪ j=1...MH j,
H j being a minimal subset of arcs of E j defining a process-
ing order for all operations requiring R j and where J1 con-
sists of arcs (start,v j), j = 1 . . .M, v j being the first oper-
ation of H j. Finding a solution can thus be reduced to dis-
covering compatible orderings H j, or partial schedules, that
translate into a solution graph GS without cycles. Figure 1
shows a solution to a problem with 3 jobs and 3 machines;
dotted arcs belong to H and J1, while continuous arcs belong
to A.

The total weighted tardiness of a schedule S is deter-
mined by a set of critical paths in GS. A critical path is de-
fined as a largest cost path from node start to a node endi
1 ≤ i ≤ N. The length of this path is the completion time of
the operation endi and so it determines the contribution of

θ11, R1 θ12, R2 θ13, R3 end1

start θ21, R1 θ22, R3 θ23, R2 end2

θ31, R2 θ32, R1 θ33, R3 end3

4 3

3 4

3 3

2

3

3

1

3 + 2

4 + 1

1

3 + 2

3 + 2

1
4 + 1

3 + 2

Fig. 1: A feasible schedule to a problem with 3 jobs and 3
machines

job Ji to the solution cost. Nodes and arcs in a critical path
are also termed critical. A critical path may be represented
as a sequence of the form start,B1, . . . ,Br, endi, 1 ≤ i ≤ N,
where each Bk, 1 ≤ k ≤ r, is a critical block, a maximal
subsequence of consecutive operations in the critical path
requiring the same machine. The concepts of critical path
and critical block are of major importance for job scheduling
problems due to the fact that most formal properties and so-
lution methods rely on them. Some of these properties have
given rise to a number of neighborhood structures for the
classic JSP, which are based on exchanging the order of op-
erations requiring the same machine (Matsuo et al (1988);
Van Laarhoven et al (1992); Taillard (1994); Nowicki and
Smutnicki (1996); Dell’ Amico and Trubian (1993); Balas
and Vazacopoulos (1998)). We propose in this paper some
new neighborhood structures which also rely on reversing
the processing order of operations in a critical block, with
the objective of reducing the contribution of a job to the
weighted tardiness of the schedule.

In order to simplify expressions, we define the following
notation for a feasible schedule. Given a solution graph GS
for the SDST-JSP, the head of an operation v, denoted rv, is
the cost of the longest path from node start to node v, i.e.,
the starting time of v in the schedule represented by GS. A
tail qi

v, 1 ≤ i ≤ N is the cost of the longest path from node v
to node endi, minus the duration of task in node v. We will
take qi

v =−∞ when no path exist from v to endi. Notice that
here we have defined N tails for each operation, while for
makespan minimization only one is just one. Let PJv and
SJv denote respectively the predecessor and successor of v
in the job sequence, and PMv and SMv the predecessor and
successor of v in its machine sequence. We take node start
to be PJv for the first task of every job and PMv for the first
task to be executed in each machine; also endi is taken as
SJω(i). Note that pstart = 0 and pendi = 0. Thus, the head of
every operation v and every dummy node may be computed
as follows:

rstart = 0

rv = max(rPJv + pPJv ,rPMv + pPMv + sPMvv)

rendi = rω(i)+ pω(i),1 ≤ i ≤ N

5

Similarly, the tail of every operation v and every dummy
node are computed as follows:

qi
endi

= 0

q j
endi

=−∞, j ̸= i

q j
v =

{
max(q j

SJv
+ pSJv ,q

j
SMv

+ pSMv + svSMv) if SMv exists
q j

SJv
+ pSJv otherwise

q j
start = max

v∈SMstart
{q j

v + pv + s0v}

Clearly, heads are computed from node start onwards, and
tails from nodes endi backwards. A node v is critical if and
only if rv + pv +q j

v =C j for some job j.

4 Genetic Algorithm for the SDST-JSP

We use here the same GA that was previously used in Vela
et al (2010) and González et al (2012) for other variants of
the SDST-JSP. In these works, this GA was hybridized with
local searches designed specifically to cope with sequence
dependent setup times and makespan and maximum late-
ness minimization respectively, being these algorithms the
current state-of-the-art for these problems. Therefore, we
have opted to combine here this GA with the TS method
designed for the JSP with weighted tardiness minimization.
The main characteristics of this GA are the following. In the
first step, the initial population is generated and evaluated.
Then the genetic algorithm iterates over a number of steps
or generations. In each iteration, a new generation is built
from the previous one by applying the genetic operators of
selection, recombination and replacement. These operators
can be implemented in a variety of ways and, in principle,
are independent from each other. However, in practice all
of them should be chosen considering their effect on the
remaining ones in order to get a proper selective pressure
and so a successful overall algorithm. The approach taken
is the following. In the selection phase all chromosomes are
grouped into pairs, and then each one of these pairs is mated
to obtain two offspring. Finally, the replacement is carried
out as a tournament selection from each pair of parents and
their two offspring. This algorithm differs slightly from the
classic genetic algorithms in that the selective pressure is in-
troduced in the replacement instead of in the selection phase,
and so its evolution strategy is similar to that of the crowd-
ing algorithm proposed in Mahfoud (1992). The main dif-
ference with this algorithm is that we do not use crowding
distances in the replacement phase. In this way, we are less
vigilant about the diversity of the population, but at the same
time the GA is much less time consuming, especially in the
largest instances.

The coding schema is based on permutations with rep-
etition, as proposed in Bierwirth (1995). In this schema a

chromosome is a permutation of the set of operations, each
one being represented by its job number. In this way a job
number appears within a chromosome as many times as the
number of its operations. For example, chromosome (2 1 1 3
2 3 1 2 3) actually represents the permutation of operations
(θ21 θ11 θ12 θ31 θ22 θ32 θ13 θ23 θ33) and is a valid chromo-
some for any problem with 3 jobs and 3 machines. This per-
mutation should be understood as expressing partial sched-
ules for each set of operations requiring the same machine.
This codification presents a number of interesting character-
istics; for example, it is easy to evaluate with different algo-
rithms and allows efficient genetic operators. In Varela et al
(2005) this encoding is empirically compared with other per-
mutation based coding schemas and demonstrated to be the
best one for the JSP across a set of selected problem in-
stances of common use.

For chromosome mating we have considered the Job Or-
der Crossover (JOX) (Bierwirth (1995)). Given two parents,
JOX selects a random subset of jobs and copies their genes
to the offspring in the same positions as they are in the first
parent, then the remaining genes are taken from the second
parent so as to maintain their relative ordering. A second
offspring is generated inverting the role of the parents.

The operator JOX might swap any two operations re-
quiring the same machine; this is an implicit mutation ef-
fect. For this reason, we have not used any explicit muta-
tion operator. Hence, parameter setting in the experimental
study is considerably simplified, as crossover probability is
set to 1 and mutation probability need not be specified. Of
course, for identical parent sequences, the offspring will be
identical and consequently the evolution would come to a
complete halt if all chromosomes were identical. However,
in practice this is not an issue as the algorithm always stops
before convergence to such situation. With this setting, we
have obtained results quite similar to those obtained with a
lower crossover probability and a low probability of apply-
ing conventional order based mutation operators.

To build schedules we have used a decoding algorithm
which generates active schedules. A schedule is active if no
operation can be started earlier without delaying any other
operation. In the implementation we used the Serial Sched-
ule Generation Schema (SSGS) proposed in Artigues et al
(2005) for the SDST-JSP. SSGS iterates over the operations
in the chromosome sequence and assigns each the earliest
starting time that satisfies all constraints with respect to the
previous scheduled operations. SSGS produces active sched-
ules, provided that the triangular inequality for the setup
times holds for all operations requiring the same machine
(Artigues et al (2005)): suw ≤ suv+svw holds for any u, v and
w requiring the same machine. This property is accepted by
most researchers in the literature and in fact it does hold for
the instances used in our experimental study.

6

When combined with the the GA, TS is applied to ev-
ery schedule produced by SSGS. Then, the chromosome is
rebuilt from the improved schedule obtained by TS, so its
characteristics can be transferred to subsequent offsprings.
This effect of the evaluation function is known as Lamarck-
ian evolution.

5 Tabu Search for the Weighted Tardiness minimization
in the SDST-JSP

Algorithm 1 shows the tabu search algorithm considered
herein. This algorithm is borrowed from González et al (2009),
and it is similar to other tabu search algorithms described in
the literature (Glover and Laguna (1997); Taillard (1994);
Nowicki and Smutnicki (2005)). The first step evaluates the
initial solution (i.e. a chromosome generated by the GA,
after applying an active schedule builder). Then, it iterates
over a number of steps. In each iteration, the neighborhood
of the current solution is built and one of the neighbors is
selected for the next iteration. The tabu search stops after
a number of maxImproveIter iterations without improving
the current best solution. In order to avoid reevaluating so-
lutions, in addition to tabu tenure, the algorithm uses a cycle
checking mechanism.

Algorithm 1 The Tabu Search Algorithm
Require: An initial solution s0 for a problem instance P
Ensure: A (hopefully improved) solution sB for instance P

Set the current solution s = s0 and the best solution sB = s;
Set improveIter = 0, Empty the tabu list;
while improveIter < maxImproveIter do

Set improveIter = improveIter+1;
Generate neighbors of the current solution s using the neighbor-
hood structure;
Let s* be the best neighbor either not tabu and not leading to a
cycle or satisfying the aspiration criterion. Update the tabu list
and the cycle detection structure accordingly and let s = s∗;
if s* is better than sB then

Set sB = s*;
Set improveIter = 0;

end if
end while
return The solution sB;

5.1 The neighborhood structure

A key component for the success of a TS algorithm is the
neighborhood structure used. In this paper, we define and
study a new neighborhood structure which is specifically de-
signed for the problem J|si j|∑wiTi. In order to do this, we
use a a basis some results and methods given in Vela et al
(2010) where a structure for the problem with makespan

minimization (J|si j|Cmax) is proposed. This structure is ter-
med NS

1 and it is based on previous structures given in Mat-
suo et al (1988) and Van Laarhoven et al (1992) for the stan-
dard JSP, which have given rise to some of the most out-
standing algorithms for the JSP, such as those proposed in
Dell’ Amico and Trubian (1993); Nowicki and Smutnicki
(2005); Balas and Vazacopoulos (1998); Zhang et al (2008).
One of these structures, N1, was defined in Nowicki and
Smutnicki (1996) and considers only moves in the borders
of critical blocks, since these are the only arcs that can pro-
duce immediate improvement in a single move. NS

1 is an ex-
tension of N1 which considers single moves inside critical
blocks as these moves may produce improvements in the
problem J|si j|Cmax (Vela et al (2010)).

To define neighborhood structures for J|si j|∑wiTi, there
is the added difficulty that the cost of a solution can be given
by up to N critical paths. For each node endi, a critical path
from start to endi is considered whenever its cost is greater
than the due date of job Ji, di. For each of these paths we
analyze the possibility of reversing the processing order of
some operations to reduce the completion time of the last
operation of job Ji. Notice that this move may delay the com-
pletion time of another job. In this work, we only consider
single moves, i.e. reversing the processing order of two con-
secutive operations. Even so, the number of neighbors may
be exponentially large for many chromosomes, so we use a
filtering mechanism based on the results below, which allow
the algorithm to discard unfeasible and a number of non-
improving neighbors. By doing this we get a neighborhood
of reasonable size while augmenting the chance of obtaining
improving neighbors.

The first result establishes a sufficient condition for non-
improvement when a single arc is reversed in a solution.

Proposition 1 Let S be a schedule and (v,w) a disjunctive
arc which is not in a critical block. Then, if the setup times of
the problem instance fulfill the triangular inequality, revers-
ing the arc (v,w) does not produce any improvement even if
the resulting schedule S′ is feasible.

Proof If the reversed disjunctive arc does not begin nor end
in a critical block, then all critical paths in GS are paths in
GS′ as well. Hence the completion time of every job in S′ is
greater or at least equal than in S.

On the other hand, w can be the first task of a critical
block of a critical path which ends in node endi. Let y be the
successor of w in that critical block. Then, in GS′ there is a
path from node start to node endi which is identical to the
critical path in GS with the exception that task v is between w
and y. In GS the cost from node w to y is pw+swy, and in GS′

the cost from node w to y is pw + swv + pv + svy. Therefore,
provided the setup times fulfill the triangular inequality, that
new path in GS′ cannot be shorter than the path in GS.

7

An analogous reasoning can be applied if v is the last
task of a critical block.

Since we are assuming that the triangular inequality for
setup times holds, we should only reverse critical arcs in
order to obtain improving schedules.

Regarding feasibility, we consider a result from Vela et al
(2010) which is also applicable here since it does not de-
pend on the objective function: if there is not an alternative
path between operations v and w before reversing the arc
(v,w), then the new schedule after reversing (v,w) is feasi-
ble. Checking for such alternative path is time consuming;
instead, we have opted to use a sufficient (but not necessary)
condition as given in the following result.

Proposition 2 Let S be a schedule and (v,w) an arc in a
critical block. A sufficient condition for an alternative path
between v and w not to exist is that

rPJw < rSJv + pSJv +min{skl |(k, l) ∈ E,Jk = Jv} (3)

where Jk and Jv denote the jobs of operation k and v respec-
tively.

In consequence, the feasibility of new neighbors may be
efficiently verified at the cost of discarding some feasible
schedules.

Given these results, we may define the following generic
neighborhood structure. Let S be a schedule and let GS be
the associated solution graph. For each tardy job i (Ti > 0)
let us consider a critical path to node endi, let Π be a subset
of such critical paths and let Γ be the set of critical blocks
in Π . Given the results above, we may define the following
generic neighborhood structure.

Definition 1 (N) The neighborhood of S, N (S), consists
of all schedules derived from S by reversing one arc (v,w) of
a critical block in Γ , provided that the feasibility condition
given in Proposition 2 holds.

The generic structure N defines a family of neighbor-
hood structures, since the set Π can be chosen in differ-
ent ways. For example, we can choose all critical paths of
tardy jobs or just the path with the largest contribution to the
weighted tardiness. In the experimental study, we will an-
alyze some possibilities. Here, it is worth to remark that if
(v,w) is inside two or more critical paths in Π , the condition
from Proposition 2 needs to be evaluated only once. This is
also the case for Proposition 3 below.

5.2 Additional non-improving conditions

In Vela et al (2010) the authors define non-improving condi-
tions for certain reversals of critical arcs. These results can
be extended for weighted tardiness, taking into account that
in this case we need consider several critical paths instead of
just one. In particular, we can establish the following results.

Proposition 3 Let S be a schedule, let B a critical block of
this schedule within a critical path to node endi and let (v,w)
be an arc inside B, i.e., PMv and SMw belong to B. Then,
assuming that the schedule S′ obtained from S by reversing
arc (v,w) is feasible, the completion time of job Ji in S′ is
greater than or at least equal to its completion time in S if
the following condition holds (where x = PMv and y = SMw
in the schedule S)

sxw + swv + svy ≥ sxv + svw + swy. (4)

Proof In GS there is a critical path ending in node endi of the
form (b,x,v,w,y,b′) where b and b′ are sequences of opera-
tions. Then in GS′ there is a path of the form (b,x,w,v,y,b′)
from node start to node endi. If previous condition holds,
clearly this path is larger or at least equal than the previous
critical path in GS, therefore the completion time of job i is
S′ is larger or equal than it is in S.

Analogous results can be established if (v,w) is the first
arc of the first critical block and if it is the last arc of the last
critical block. In the first case, x is taken as start while in
the second y is taken as endi.

These two results may be used to avoid the reversal of
some critical arcs (v,w). Notice however that, since arc (v,w)
can be in two critical paths to nodes endi and end j, the con-
ditions above must be evaluated in both contexts in order
to definitively discard the move. Therefore, these conditions
will be more time consuming than the analogous conditions
used in Vela et al (2010) for makespan minimization. On
the other hand, they could reduce the effective number of
neighbors. In the experimental study, we report some results
which clarify the utility of these conditions in the neighbor-
hood structure.

5.3 Weighted Tardiness estimation

Although computing the weighted tardiness of a neighbor
only requires to recompute heads (tails) of operations which
are after (before) the first (last) operation moved, for the sake
of efficiency the selection rule is based on estimations rather
than on the actual value of the total weighted tardiness of
neighbors. Based on the procedure given for the JSP in Tail-
lard (1994), we propose a new procedure for total weighted
tardiness estimation, termed lpathSWT, which is shown in
Algorithm 2.

Remember that each task t has N tails denoted by q1
t . . .q

N
t .

For each i= 1 . . .N, lpathSWT estimates the cost of the longest
path from node start to node endi through the nodes v and
w after the move.

The procedure l pathSWT is efficient as the cost of the
new path from node start to node endi through nodes v or
w can be estimated with complexity of O(1). Moreover, it
returns a lower bound of the cost of a neighboring solution:

8

Algorithm 2 Procedure lpathSWT

Require: A critical arc (v,w) inside a solution graph GS
Ensure: An estimation of the total weighted tardiness of S′ obtained

from S by reversing (v,w) in GS
TotalEst = 0;
r′w = max(rPJw + pPJw ,rPMw + pPMw + sPMww);
r′v = max(rPJv + pPJv ,r

′
w + pw + swv);

for i = 1 to N do
q′iv = max(qi

SJv
+ pSJv ,q

i
SMv

+ pSMv + svSMv);
q′iw = max(qi

SJw
+ pSJw ,q

′i
v + pv + swv);

PartialEst = max(r′w + pw +q′iw,r
′
v + pv +q′iv);

TotalEst = TotalEst +(max((PartialEst −di),0)∗wi;
end for
return TotalEst;

Proposition 4 The procedure l pathSWT returns a lower bound
of the schedule S′ obtained from S by reversing (v,w).

Proof If follows easily from the fact that r′w, r′v, q′iw, q′iv , 1 ≤
i ≤ N, represent the exact values of the heads and tails of
operations w and v in S′ obtained from S by reversing the
single arc (v,w). So, r′w + pw + q′iw and r′v + pv + q′iv are the
costs of the largest cost paths from node start to node endi
through nodes w and v respectively an then they are lower
bounds of Ci.

As a drawback, l pathSWT is not very accurate. We have
empirically assessed this fact on several instances. We have
generated three million neighbors for each solution, obtain-
ing exact estimates in 51.37% of the cases. Other works such
as Mati et al (2011) or Essafi et al (2008) use a more accurate
and sophisticated estimation procedure, where the complex-
ity to estimate a path from node start to node endi is O(N).
That method returns between 57% and 76% of exact estima-
tions, depending on the particular instance.

As a tradeoff between accuracy and efficiency, we have
opted to use lpathSWT and then calculate the exact total
weighted tardiness when the neighbor’s estimate is less than
the total weighted tardiness value of the original schedule.
Some preliminary results have shown that the improvement
thus achieved compensates for the time taken, as we shall
see in the experimental study. We have therefore opted to use
our estimation procedure only as a filter, in order to discard
many non-improving neighbors in a relatively short runtime.

6 Experimental Study

It is the purpose of this experimental study to analyze GTN
and to establish a comparison of this algorithm with other
methods. The bechmarks and performance metrics used are
described in Sections 6.1) and (6.2) respectively. In Sec-
tion 6.3), we start considering a number of configurations
in order to evaluate the contribution of each one of the main
components to the performance of the whole algorithm. Then,

in the following two sections we compare our algorithm with
other approaches. As, to our knowledge, there are not results
on the SDST-JSP-TWT reported in the literature, in Sec-
tion 6.4.1 we compare GTN with a conventional solver.
So, in order to compare GTN with some state-of-the-art
method, we experimented across job-shop instances with-
out setup times and compare with a number of the best ap-
proaches for this problem. The results of these experiments
are reported in Section 6.4.2). Both the solver and GTN
were run on Windows XP on Intel Core 2 Duo at 2.66GHz
with 2Gb RAM. GTN is implemented in C++.

6.1 Test Problems

We consider two sets for each one of the problems, JSP
and SDST-JSP. The first JSP benchmark is that proposed in
Singer and Pinedo (1998), and it is composed of 22 instances
of size 10×10: ABZ5, ABZ6, LA16 to LA24, MT10, ORB1
to ORB10. Instances LA21 to LA24 that are originally of
size 15× 10 were converted to 10× 10 removing the last 5
jobs. This is the most used benchmark in the literature about
TWT minimization in the JSP. The weights of the jobs are
defined so as the first 20% of the jobs have weight 4 (very
important jobs), the next 60% have weight 2 (moderately
important jobs) and the remaining jobs have weight 1 (not
important jobs). This means that for an instance with 10 jobs
w1 =w2 = 4, w3 = · · ·=w8 = 2 y w9 =w10 = 1. This way of
assigning weights is not completely arbitrary, but it is based
on observations in real production environments. The due
date of job i is taken as:

di = f ∗
M

∑
j=1

pi j, (5)

where M is number of machines that coincides with the num-
ber of tasks per job. f is a parameter that controls the tight-
ness of the due dates, being 1.3, 1.5 and 1.6 the values usu-
ally taken in this and other benchmarks. Therefore, there are
66 instances in all.

The second JSP benchmark was proposed in Essafi et al
(2008). It is based on the instances proposed in Lawrence
(1984) for makespan minimization. The size of these in-
stances varies from 10×5 (the smallest ones) to 30×10 and
15×15 (the largest ones). Essafi et al. adapt these instances
assigning due dates and weights with the same procedure
as the Singer and Pinedo benchmark. The instances LA16
to LA20 are the same as those in Singer and Pinedo bench-
mark, but the instances LA21 to LA24 are not the same, as
in this case they are not reduced to size 10×10.

For the SDST-JSP we consider the BT set with 15 in-
stances proposed in Brucker and Thiele (1996). These in-
stances are commonly used as benchmark for makespan min-
imization. We adapt here these instances for TWT defining

9

due-dates and job weights in the same way as for previous
JSP instances. BT instances are divided in three groups de-
pending on its size: small instances, t2-ps01 to t2-ps05, are
10× 5, medium instances, t2-ps06 to t2-ps10, are 15× 5,
and large instances, t2-ps11 to t2-ps15, are 20× 5. These
instances verify the triangular inequality for setup times.

In order to experiment with bigger and harder instances
than those of the BT set, we also consider the benchmark
proposed in Vela et al (2010). This benchmark is interest-
ing because the instances are derived from the set of 10
instances selected in Applegate and Cook (1991) as hard
to solve in the classical JSP with makespan minimization.
Their sizes are 15×10 for the smallest ones (LA21, LA24 y
LA25), 20× 10 for the LA27 and LA29, 15× 15 for LA38
and LA40, and 20× 15 for the largest ones (ABZ7, ABZ8
and ABZ9). These instances are extended to the SDST-JSP
using the same criteria as BT instances to generate setups,
so they verify the triangular inequality as well. We define
the due dates and weights in the same way as before. Each
instance is identified by the instance name followed by sdst.

6.2 Performance metrics

One of the aims of the experiments is to assess how close
the algorithm comes to producing an optimal schedule, mea-
sured as the gap w.r.t. the best-know solution (BKS). As
source of BKS, we shall use the best values reported so far
in the literature together with the values obtained in our ex-
periments, as these often yields better solutions than those
from the literature. For all methods, we have used the same
BKS to calculate gaps, so we report some values that differ
from those given in Bülbül (2011), where the authors use the
solutions reported in Singer and Pinedo (1998) to calculate
the gaps.

In the same way as is Bülbül (2011), we report total gap
and average gap values. The first ones, labeled ”Total GAP”
in the tables, are computed as the error in percent of the the
sum of the obtained TWT for all instances w.r.t. the corre-
sponding sum of the best known TWT. The average gap,
”Avg. GAP”, is computed as the error in percent averaged
for all instances. As it is done in Bülbül (2011), an instance
with zero optimal value has to be excluded from the compu-
tation of the average gap.

In order to obtain statistically significant results the al-
gorithms were run 30 times for each instance. An exception
was done when comparing our method against other state-
of-the-art methods in the classical JSP without setup times,
where we run the algorithm 10 times as it was done with
some of these methods. In any case, we report the best TWT
and the average TWT obtained in all runs. To assess the sig-
nificance of the results, we provide confidence intervals and
the p-values from Wilconson tests. Also, the rows labeled as

Fig. 2: Evolution of the best solution of GTN for the in-
stance ABZ7sdst (f = 1.5) averaged for 30 runs.

”T(s)” in the tables report the time taken by our algorithm in
one single run for the corresponding instance.

6.3 Analysis of GTN

To analyze GTN we have established a base configura-
tion. We started fixing the population size at 100 chromo-
somes, TS is issued from each new chromosome with max-
ImproveIter=50 and the estimation of TWT is used as fil-
tering. Then, we have done some preliminary experiments
to obtain a number of generations that allows GTN to con-
verge for all instances of the set. Figure 2 shows the conver-
gence pattern for the ABZ7sdst, one of the largest instances.
From these results we have set the number of generations
at 200 in the base configuration of GTN . Notice that the
number of chromosomes in the population and the stopping
criterion of TS will remain fixed in the remaining of this sec-
tion, when comparing different variants of GTN . We shall
use the running time as stopping criterion, so every config-
uration takes the same running time as our base configura-
tion. Thus, we obtain a fair comparison between variants of
the algorithm under equivalent conditions.

As we have mentioned, we use the estimation proce-
dure as a filter so as those neighbors having TWT estima-
tion larger or equal than that of the current schedule are dis-
carded. The remaining ones are actually evaluated and the
best of these is the selected neighbor. If the estimation for
all neighbors is worse than that of the current one, then the
neighbor with the best estimation is selected and evaluated.
However, it is usual that estimation procedures are used as a
selection criterion by themselves, and in that case the neigh-
bor with the best estimation is selected and only this one is
evaluated. Moreover, we could consider a third possibility
that consist in evaluating all neighbors without previous es-
timation. To evaluate these three options, termed filtering,

10

!

"#!

$#!

%"#!

%$#!

&"#!

&$#!

'"#!

'$#!

()*+,-,./01%2$3! ()*4,-,./01%2$3! ()*5,-,./01%2$3!

6789:8.;<=!

>?9?@.;<=!

A;9.?B;=C!

Fig. 3: Average relative errors obtained by GTN on the
ABZ instances with three different selection schemas: filter,
selection and evaluation. The details of these methods are
given in the text.

!

"#!

$%#!

$"#!

&%#!

'()*+,+-./0$1"2! '()3+,+-./0$1"2! '()4+,+-./0$1"2!

567$%%#!

567"%#!

567$%#!

Fig. 4: Average relative errors obtained by applying TS to
all or only a portion of the population of GA for the three
largest instances.

selection and evaluation respectively, we have done some
experiments. The results from the ABZ instances, given in
Figure 3, shows that the filtering option is the best one and
so it is taken in the remaining experiments.

Applying TS to every new chromosome is computation-
ally expensive and at the same time it may have an effect on
the diversity of the population. For this reason, it is common
to apply TS to a portion of the new chromosomes instead.
In order to analyze this possibility, we have done some ex-
periments with a variant of GTN where TS is issued with a
given probability. Figure 4 shows the results of these exper-
iments for the ABZ instances, in which we have considered
three different probabilities: 0.1, 0.5 and 1.0. These results
show that applying TS with probability 1.0 is the best op-
tion.

In order to demonstrate that the hybrid algorithm is more
efficient than any of the two metaheuristics by itself, we have
experimented with GA and TS alone. In this case GA was
run with a population of 1000 chromosomes as it hardly can
converge any more after a few hundred generations with a
population of 100 chromosomes, and TS was iterated along
4,5 millions steps to obtain the same run time. The results for
the ABZ instances are shown in Figure 5 where we can see
that TS is much better than GA. However, it is the synergy

!

"#!

$#!

%"#!

%$#!

&"#!

&$#!

'"#!

'$#!

("#!

)*+,-.-/012%3$4!)*+5-.-/012%3$4!)*+6-.-/012%3$4!

7)!

89!

78:!

7);<9!

Fig. 5: Average relative errors obtained by applying GA
and TS alone, the combination of both, and GA with hill-
climbing, for the three largest instances

gained from their use in combination what allows GTN
for exploiting the complementary strengths of global search
of GA and local optimum avoidance of TS to obtain a re-
ally efficient algorithm. We have also experimented with a
combination of GA and a simple local search based on hill-
climbing instead of TS. The results, reported in Figure 5 as
well (GA+LS), show that this combination is good but it is
not better than the combination of GA with TS.

In Section 5.2 we have defined additional conditions to
discard some non-improving neighbors. We have carried out
some experiments to assess these conditions. Even though
their use allow the algorithm to evaluate about 25% more
solutions taking the same time as when these conditions are
not exploited, the overall results were not better. It seems
that if these conditions are not used, TS gets a better bal-
ance between the number of improving and non-improving
neighbors, thus avoiding getting stuck in local optima and
reaching eventually better solutions. For this reason, we have
not considered these conditions in the remaining of our ex-
perimental study.

We have also analyzed the influence of the number of
critical paths in the set Π used to obtain the neighbors. We
have considered two options: select all critical paths and
only the critical path that contributes the most to the TWT
of the schedule. Each one of these methods was the best for
some instances and the worst for others, and in average there
were not significant differences among them, so we have fi-
nally opted to choose randomly one of these options in each
run of TS. We have observed that this strategy has also been
good for the population diversity.

6.4 Comparison of GTN against other algorithms

The purpose of this section is to compare GTN with other
current approaches. For the reasons given at the beginning
of Section 6, we compare GTN with a number of state-of-
the-art methods across JSP instances without setup times.To
our knowledge, there exist no other approaches in the liter-

11

ature to minimizing total weighted tardiness for the SDST-
JSP. In the absence of algorithms specifically designed for
this problem, we compare GTN with a constraint program-
ming algorithm run on IBM ILOG CPLEX CP Optimizer
tool (CP in the following. This is a commercial solver em-
bedding powerful constraint propagation techniques and a
self-adapting large neighborhood search method dedicated
to scheduling (Philippe Laborie (2009)) and it is often used
to compare with other approaches to scheduling problems.
For example, in Gacias et al (2010) the authors confront a
parallel machine scheduling problem with precedence con-
straints and setup times by means of a branch-and bound
procedure combined with a climbing discrepancy search al-
gorithm. The results of this algorithm are compared with
those from CP Optimizer and in some cases this solver achieves
the best results. This solver is expected to be very efficient
for a variety of scheduling problems as it is pointed in IBM
(2009).

6.4.1 Results from SDST-JSP instances

As before, GTN was parameterized as /100/200/50/. Both
GTN and CP were run 30 times for each instance and CP
was given a run time about 20% larger than the time taken
by GTN in each instance. The option Extended of CP was
set for parameter NoOverlapIn f erenceLevel as the results
in this case were slightly better.

Table 1 summarizes the results from these experiments.
On average, the total and average gaps obtained by GTN
are about 10% lower than those obtained by CP. The dif-
ferences are larger for f = 1.5 and f = 1.6 than they are for
f = 1.3 due to for those values GTN is much better than CP
for two of the largest instances. To better illustrate the com-
parison between these two methods, in Figures 6 (a), (b) and
(c) we show the average gaps together with 95% confidence
intervals for each method, calculated with the typical error.
We can see that the average GAPs are really large if we are
aware of the different scales in the three figures. Notice that
the upper bound of the intervals for GTN are much smaller
than the lower bound of the intervals for CP, with only six
exceptions in all the 75 instances.

To enhance the conclusions of the experimental com-
parison between GTN and CP, we have conducted some
statistical analysis. Following Garcia et al (2009), as it is
a multiple-problem analysis, we have used non-parametric
statistical tests, in fact we have used paired Wilcoxon tests
samples. Notice that we consider the average value obtained
in the 30 runs as the solution given by the corresponding
method for the instance as a way to eliminate the random
effect of the method. We have used as alternative hypothesis
that CP values are greater than GTN values. The p-value
was 3.431e-14 when all 75 instances was taken as sample
and it was 7.381e-06, 5.96e-08 and 2.98e-08 respectively

 5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CP

GTN

(a) f = 1.3

 10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CP

GTN

(b) f = 1.5

 20%

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CP

GTN

(c) f = 1.6

Fig. 6: Average GAP and 95% confidence intervals for
GTN and CP in SDST-JSP instances

when each of the three families of 25 instances was taken
as sample, so the null hypothesis is rejected at a high level
of significance. Then it is clear that GTN outperforms CP
in this benchmark. Detailed results for this benchmark, in-
cluding deviations and best values, can be downloaded from
http://www.di.uniovi.es/tc/spanish/repository.htm.

6.4.2 Results from JSP instances without setup times

We start considering the benchmark proposed by Singer and
Pinedo to compare GTN with the hybrid genetic algorithm
(GLS) proposed in Essafi et al (2008), the general local search

12

Table 1: Summary of results from GTN and CP across SDST-JSP-TWT instances

#Inst Inst.
f = 1.3 f = 1.5 f = 1.6

BKS CP GTN BKS CP GTN BKS CP GTN T(s)

1 t2-ps01 4454 4994 4454 3342 3911 3361 2852 3506 2852 47
2 t2-ps02 3432 4143 3432 2674 2957 2674 2301 2558 2301 48
3 t2-ps03 3999 4609 4001 3120 3560 3120 2677 3143 2677 51
4 t2-ps04 3732 4021 3732 2890 3050 2890 2538 2632 2539 48
5 t2-ps05 3795 4445 3806 2989 3532 2996 2570 3038 2620 45
6 t2-ps06 9799 10533 9941 8186 8997 8238 7359 8148 7436 121
7 t2-ps07 9362 10552 9508 7927 8875 8079 7248 8642 7425 122
8 t2-ps08 9660 10834 9902 8182 9317 8360 7524 8521 7624 120
9 t2-ps09 9956 11569 9998 8116 9697 8215 7317 8813 7317 124
10 t2-ps10 10483 11999 10569 8673 9968 8745 7850 8848 7914 116
11 t2-ps11 22406 26169 23052 20285 24132 20816 19239 22909 19764 229
12 t2-ps12 22526 25331 23158 20487 22309 21119 19399 21039 20106 241
13 t2-ps13 23394 25729 24026 20935 23548 21821 19817 22279 20618 244
14 t2-ps14 24928 27569 25416 22543 25580 23051 21190 24079 21892 250
15 t2-ps15 24703 27144 25427 22368 25450 23028 21290 23919 22049 237

16 ABZ7sdst 22943 26150 24467 19697 22425 21351 18350 20721 19729 751
17 ABZ8sdst 22763 24270 24274 19437 21050 20793 17667 19236 19159 810
18 ABZ9sdst 21747 24550 24257 18778 20764 20925 17256 19633 19235 787
19 LA21sdst 8741 9471 8829 5868 6888 5960 4514 5444 4657 218
20 LA24sdst 8501 9923 8912 5941 6815 6049 4674 5956 4831 224
21 LA25sdst 8648 9971 8726 5435 7495 5471 4105 5930 4129 222
22 LA27sdst 26976 29431 27861 22348 24878 23384 20047 22751 21051 478
23 LA29sdst 25039 29603 26928 20833 24364 22513 19185 22014 21009 483
24 LA38sdst 7317 9846 8167 3344 5693 3985 1856 3920 2272 334
25 LA40sdst 7750 8940 8327 4026 5930 4287 2191 3855 2550 344

Total GAP(%) 12,89 4,07 14,82 4,44 15,52 4,88
Avg. GAP(%) 13,87 3,27 16,85 3,56 22,36 4,51

method (MDL) proposed in Mati et al (2011), and the hybrid
shifting bottleneck-tabu search (SB-TS) proposed in Bülbül
(2011). GLS is implemented in C++ and was run in a PC
with a 2.8 GHz processor and 512 MB RAM and MDL was
run in a Pentium with a 2.6 GHz processor, in both cases
giving maximum runtime of 18 seconds per run. SB-TS was
run in a PC with 2.4 GHz processor and 3.25 Gb RAM; how-
ever a Excel/VB environment was used, so the running times
may not be comparable with those from the other methods.
The target machine used for GTN is similar to that used for
GLS, so we have given GTN 18 seconds per run.

Table 2 shows the results from these experiments to-
gether with the results from the other methods. Remember
that all algorithms were run 10 times for each instance, with
the exception of SB-TS that was run only once. GTN was
the only algorithm reaching the BKS in at least one run for
all 66 instances. Globally, GTN obtains the BKS in 517
of the 660 runs (78.3%), GLS in 443 (67.1%), MDL in 458
(69.4%) and SB-TS in 43 of the 66 runs (65.2%). Regarding
total and average gaps obtained with GTN , they are similar
to the average values of the other methods for f = 1.3, a lit-

tle bit better for f = 1.5 and clearly better for f = 1.6. The
results for the ORB instances are summarized in Figure 7.

Paired Wilcoxon tests comparing GTN versus GLS,
MDL and SB-TS give p-values 0.01159, 0.01174 and 0.4054
respectively. So, there are not difference between GTN and
SB-TS. In this case, the results from tests restricted to each
family (f−value) show that there are difference for f = 1.6
only.

We now consider the benchmark proposed in Essafi et al
(2008). Table 3 shows the results from GTN together with
the results of GLS reported in Essafi et al (2008) and the re-
sults of SB-TS reported in Bülbül (2011). GLS was run for
200 generations disregarding the size of the instances, but
the authors do not give further details about the time taken
in their experiments, so the comparison may not be entirely
accurate. Also, SB-TS was run only once and the authors
report results neither from the largest instances, LA31 to
LA40, nor for the time taken for the remaining instances.

Compared to GLS, GTN obtains better average TWT in
51 instances (42.5%), the same value in 31 instances (25.8%)
and it is worse in 38 instances (31.7%). With respect to SB-

13

Table 2: Summary of results from SB-TS, GLS, and GTN across Singer and Pinedo’s benchmark

f = 1.3 f = 1.5 f = 1.6
Inst. BKS SB-TS GLS MDL GTN BKS SB-TS GLS MDL GTN BKS SB-TS GLS MDL GTN

ABZ5 1403 1462 * 1414 1412 69 * * * * 0 * * * *
ABZ6 436 * * * * 0 * * * * 0 * * * *
LA16 1169 * 1175 * * 166 * * * * 0 * * * *
LA17 899 * * * * 260 * * * * 65 * * * *
LA18 929 * 933 934 * 34 * * * * 0 * * * *
LA19 948 955 949 * 998 21 23 * * * 0 * * * *
LA20 805 * * * 834 0 1 * * 0 0 * * * *
LA21 463 * * * * 0 * * * * 0 * * * *
LA22 1064 1084 1087 1077 1079 196 * * * * 0 * * * *
LA23 835 877 865 865 870 2 * * * * 0 * * * *
LA24 835 * * * * 82 * 86 86 88 0 * * * *
MT10 1363 * 1372 * 1383 394 * * * * 141 155 162 152 145
ORB1 2568 2630 2651 2639 2578 1098 1202 1159 1247 * 566 619 688 653 592
ORB2 1408 * 1444 1426 1426 292 * * * * 44 52 * * *
ORB3 2111 2115 2170 2158 2160 918 928 943 961 939 422 461 514 463 434
ORB4 1623 1652 1643 1690 1632 358 * 394 435 * 66 * 78 68 *
ORB5 1593 * 1659 1775 1615 405 * * 415 428 163 181 181 176 176
ORB6 1790 * * 1793 1854 426 * 440 437 430 28 31 * * *
ORB7 590 616 592 * * 50 * 55 * * 0 * * * *
ORB8 2429 2453 2522 2523 2477 1023 * 1059 1036 1033 621 672 669 643 639
ORB9 1316 * * * * 297 * 311 299 302 66 * 83 80 *
ORB10 1679 1801 1718 1774 1731 346 424 400 436 430 76 78 142 117 82

Total GAP(%) 1,40 1,67 2,25 1,51 3,03 3,87 6,20 2,37 8,33 17,54 10,23 3,42
Avg. GAP(%) 1,31 1,27 1,71 1,41 2,24 3,18 4,09 2,27 7,21 18,89 11,15 2,57
Opt 10 20 20 22 22 18 17 22 15 18 20 22

* The value is that of the optimal solution

TS, GTN is better in 50 instances (55.6%), equal in 28 in-
stances (31.1%) and worse in 12 instances (13.3%). In these
experiments, GTN has the best average gap for the three
values of f .

Figure 8 shows the average gaps (averaged for instances
with the same size) for the three methods. As we can see
GTN is quite competitive with the other methods in all
groups of instances, with the exception of the 30× 10 in-
stances where GLS is the best algorithm.

We have done paired Wilcoxon tests for the instances
solved by the three methods. These tests return p-vales 2.642e-
06 and 2.384e-08 when comparing GTN with GLS and SB-
TS respectively. So, they confirm that GTN performs better
than both GLS and SB-TS in this set.

In conclusion, the results in this second benchmark show
that GTN is competitive with two state-of-the-art meth-
ods such as GLS and SB-TS, even though the comparison
may not be entirely accurate for the reasons commented
above. However, considering all the experiments across JSP
instances, we may consider GTN to be at the same level of
other state-of-the-art algorithms for the JSP.

7 Conclusions

We have considered the job shop scheduling problem with
sequence-dependent setup times, where the objective is to
minimize the total weighted tardiness. We have described
a disjunctive graph representation for this problem which
serves as a basis for defining a generic neighborhood struc-
ture N . This generic structure has then been used in a tabu
search algorithm, which is embedded in a genetic algorithm
framework. We have also defined a method for estimating
the total weighted tardiness of the neighbors and proved that
it is efficient but not very accurate. We have empirically
demonstrated that in our approach it is much more effective
to use this estimation procedure as a filter than as a selec-
tion criterion, in an opposite way to what is usually seen in
the literature. In the experimental study we have also shown
that some non-improving conditions for our neighborhood
structure do not yield overall better results. Also, it is better
to choose randomly in each local search between consider-
ing every critical path or only the most important one than
applying any of the two alternatives. We have also consid-
ered the possibility of applying the tabu search only to a per-
centage of the population, but the best option is to apply it

14

Table 3: Summary of results from SB-TS, GLS, and GTN across Essafi’s benchmark

Inst. Size
f = 1.3 f = 1.5 f = 1.6

T(s)SB-TS GLS GTN SB-TS GLS GTN SB-TS GLS GTN

LA01 10×5 2299 2299 2299 1616 1610 1610 1230 1230 1230 44
LA02 1762 1762 1762 1028 1028 1028 695 695 695 43
LA03 1951 1951 1951 1280 1280 1280 1024 1024 1024 46
LA04 1917 1917 1917 1277 1277 1277 1068 1029 1029 43
LA05 1878 1878 1878 1205 1205 1205 877 877 877 43
LA06 15×5 6008 5827 5964 4821 4658 4685 4180 4130 4122 116
LA07 5961 5801 5808 4624 4548 4470 3843 3988 3843 112
LA08 5560 5482 5533 4423 4094 4079 3584 3400 3421 118
LA09 6116 5648 5608 4618 4421 4424 4040 3835 3815 116
LA10 6734 6621 6618 5304 5148 5162 4728 4533 4513 101
LA11 20×5 12792 12341 12200 10682 10332 10187 9679 9399 9301 247
LA12 11238 10683 10607 9494 9084 9105 8663 8302 8258 245
LA13 12533 11889 11608 10158 9846 9678 9244 8916 8845 237
LA14 13681 13225 13175 12024 11382 11412 11292 10594 10564 223
LA15 12964 12428 12364 10464 10455 10377 9675 9392 9365 237
LA16 10×10 1169 1169 1169 166 166 166 0 0 0 66
LA17 899 899 899 260 260 260 65 65 65 67
LA18 929 929 929 34 34 34 0 0 0 62
LA19 955 948 949 23 21 21 0 0 0 64
LA20 805 805 838 0 0 0 0 0 0 53
LA21 15×10 3841 3771 3857 1740 1692 1760 890 949 915 201
LA22 4453 4471 4317 2099 2273 2264 1364 1450 1404 217
LA23 4103 3955 3957 1731 1683 1510 1010 977 946 192
LA24 3770 3831 3697 1849 1618 1621 693 773 749 195
LA25 3724 3569 3410 1499 1497 1439 929 922 893 197
LA26 20×10 10562 9748 9416 6328 6106 6324 5236 5125 4890 441
LA27 9827 9860 10316 6252 6142 6303 4441 4590 4396 489
LA28 10198 9757 9578 6096 6254 6096 4403 4594 4545 464
LA29 9792 9397 9354 6265 6392 6027 5049 4706 4569 468
LA30 9297 8968 9060 5273 5496 5539 3821 4131 4211 429
LA31 30×10 - 28999 30936 - 23417 24720 - 21141 21827 1899
LA32 - 32004 34228 - 25766 27364 - 22918 24038 1931
LA33 - 27216 28249 - 21767 22067 - 18801 19417 1870
LA34 - 29131 31139 - 23341 23974 - 20548 21589 1905
LA35 - 30979 31750 - 24654 25841 - 21991 22988 1887
LA36 15×15 - 3187 3132 - 866 589 - 192 151 278
LA37 - 2880 2580 - 589 415 - 0 0 239
LA38 - 2287 2276 - 438 416 - 0 0 263
LA39 - 1861 1820 - 9 7 - 0 0 228
LA40 - 2305 2207 - 79 84 - 0 0 258

Total GAP(%) 6,90 2,86 4,92 6,25 4,18 5,86 6,42 4,97 6,65
Avg GAP(%) 5,01 3,84 3,80 5,35 7,04 4,99 4,57 5,51 4,23

to each and every chromosome. Finally, we have shown the
synergy between both metaheuristics, since the hybrid algo-
rithm achieves better results than any of the metaheuristics
on its own.

Additionally, we have compared our approach against
state-of-the-art algorithms, both for classical JSP and SDST-
JSP benchmarks. In the SDST-JSP we have used the 15 in-
stances of the BT-set proposed in Brucker and Thiele (1996)
and the set of instances proposed in Vela et al (2010). We
have defined due dates and job weights for them and have

compared our approach to an implementation on the IBM
ILOG CPLEX CP Optimizer tool, showing that GTN ob-
tains clearly better results in most cases. In particular, the
best known solutions have been established by GTN for all
instances, while CP has reached these solutions for none of
them.

For the JSP we have considered the set of instances pro-
posed in Singer and Pinedo (1998), comparing GTN to
three methods: the hybrid genetic algorithm from Essafi et al
(2008), the local search method from Mati et al (2011) and

15

0%

2%

4%

6%

8%

10%

12%

ORB1 ORB2 ORB3 ORB4 ORB5 ORB6 ORB7 ORB8 ORB9 ORB10

SB TS

GLS

MDL

GTN

(a) f = 1.3

0%

5%

10%

15%

20%

25%

30%

ORB1 ORB2 ORB3 ORB4 ORB5 ORB6 ORB7 ORB8 ORB9 ORB10

SB TS

GLS

MDL

GTN

(b) f = 1.5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ORB1 ORB2 ORB3 ORB4 ORB5 ORB6 ORB7 ORB8 ORB9 ORB10

SB TS

GLS

MDL

GTN

(c) f = 1.6

Fig. 7: Average GAP for SB-TS, GLS, MDL and GTN
from the ORB instances of Singer & Pinedo’s set for the
JSP

the shifting bottleneck-tabu search hybrid from Bülbül (2011).
We have also used for the comparison a set of instances pro-
posed in Essafi et al (2008). In general GTN compares fa-
vorably to the other methods, so we can conclude that the
proposed approach is competitive with these state-of-the-art
methods.

As future work we plan to consider other scheduling
problems which are closer to real-life problems. For exam-
ple we plan to add uncertainty or robustness considerations
to this problem. We shall also consider other metaheuristics
like scatter search with path relinking to solve the same and
other similar scheduling problems.

0%

2%

4%

6%

8%

10%

12%

14%

La01 05 La06 10 LA11 15 LA16 20 LA21 25 LA26 30 LA31 35 LA36 40

SB TS

GLS

GTN

(a) f = 1.3

0%

5%

10%

15%

20%

25%

30%

35%

La01 05 La06 10 La11 15 La16 20 La21 25 La26 30 La31 35 La36 40

SB TS

GLS

GTN

(b) f = 1.5

0%

2%

4%

6%

8%

10%

12%

14%

La01 05 La06 10 La11 15 La16 20 La21 25 La26 30 La31 35 La36 40

SB TS

GLS

GTN

(c) f = 1.6

Fig. 8: Average GAP for SB-TS, GLS and GTN from Es-
safi et al.’s instances for the JSP

Acknowledgments

This research has been supported by the Spanish Govern-
ment under research grants FEDER TIN2010-20976-C02-
02 and MTM2010-16051.

References

Angel Bello F, Alvarez A, Pacheco J, Martinez I (2011a) A heuris-
tic approach for a scheduling problem with periodic maintenance
and sequence-dependent setup times. Computers and Mathematics
with Applications 61(4):797–808

Angel Bello F, Alvarez A, Pacheco J, Martinez I (2011b) A sin-
gle machine scheduling problem with availability constraints and
sequence-dependent setup costs. Applied Mathematical Modelling
35(4):2041–2050

16

Applegate D, Cook W (1991) A computational study of the job-shop
scheduling problem. ORSA Journal of Computing 3:149–156

Artigues C, Belmokhtar S, Feillet D (2004) A new exact solution al-
gorithm for the job shop problem with sequence-dependent setup
times. In: Proceedings of CPAIOR 2004, Springer, LNCS, vol
3011, pp 37–49

Artigues C, Lopez P, Ayache P (2005) Schedule generation schemes
for the job shop problem with sequence-dependent setup times:
Dominance properties and computational analysis. Annals of Op-
erations Research 138:21–52

Balas E, Vazacopoulos A (1998) Guided local search with shifting bot-
tleneck fo job shop scheduling. Management Science 44(2):262–
275

Balas E, Simonetti N, Vazacopoulos A (2008) Job shop scheduling
with setup times, deadlines and precedence constraints. Journal of
Scheduling 11:253–262

Beck JC, Feng T, Watson JP (2011) Combining constraint program-
ming and local search for job-shop scheduling. Informs Journal on
Computing 23:1–14, DOI 10.1287/ijoc.1100.0388

Behnamian J, Zandieh M, Fatemi Ghomi S (2011) Bi-objective paral-
lel machines scheduling with sequence-dependent setup times us-
ing hybrid metaheuristics and weighted min-max technique. Soft
Computing 15:1313–1331

Bierwirth C (1995) A generalized permutation approach to jobshop
scheduling with genetic algorithms. OR Spectrum 17:87–92

Brucker P, Thiele O (1996) A branch and bound method for the
general-job shop problem with sequence-dependent setup times.
Operations Research Spektrum 18:145–161

Brucker P, Jurisch B, Sievers B (1994) A branch and bound algorithm
for the job-shop scheduling problem. Discrete Applied Mathemat-
ics 49:107–127

Bülbül K (2011) A hybrid shifting bottleneck-tabu serach heuristic for
the job shop total weighted tardiness problem. Computers & Op-
erations Research 38:967–783

Carlier J, Pinson E (1989) An algorithm for solving the job-shop prob-
lem. Management Science 35(2):164–176

DeBontridder K (2005) Minimizing total weighted tardiness in a gen-
eralized job shop. Journal of Scheduling 8:479–496

Dell’ Amico M, Trubian M (1993) Applying tabu search to the
job-shop scheduling problem. Annals of Operational Research
41:231–252

Dorndorf U, Pesch E, Phan-Huy T (2000) Constraint propagation tech-
niques for the disjunctive scheduling problem. Artificial Intelli-
gence 122:189–240

Essafi I, Mati Y, Dauzère-Pérès S (2008) A genetic local search
algorithm for minimizing total weighted tardiness in the job-
shop scheduling problem. Computers and Operations Research
35:2599–2616

Gacias B, Artigues C, Lopez P (2010) Parallel machine scheduling
with precedence constraints and setup times. Computers and Op-
erations Research 37:2141–2151

Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use
of non-parametric tests for analyzing the evolutionary algorithms’
Behaviour: a case study on the CEC’2005 special session on real
parameter optimization. Journal of Heuristics 15:617–644

Giffler B, Thompson GL (1960) Algorithms for solving production
scheduling problems. Operations Research 8:487–503

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers
González MA, Vela CR, Varela R (2008) A new hybrid genetic algo-

rithm for the job shop scheduling problem with setup times. In:
Proceedings of ICAPS-2008, AAAI Press, Sidney, pp 116–123

González MA, Vela CR, Varela R (2009) Genetic algorithm combined
with tabu search for the job shop scheduling problem with setup
times. In: Proceedings of IWINAC 2009, LNCS-5601, Springer,
pp 265–274

González MA, Vela CR, Varela R (2011) Weighted tardiness minimiza-
tion in job shops with setup times by hybrid genetic algorithm.
In: Proceedings of CAEPIA 2011, Springer, La Laguna (Spain),
LNCS, pp 363–372

González MA, Vela C, González-Rodrı́guez I, Varela R (2012) Late-
ness minimization with tabu search for job shop scheduling prob-
lem with sequence dependent setup times. Journal of Intelligent
Manufacturing pp 1 – 14

Graham R, Lawler E, Lenstra J, Rinnooy Kan A (1979) Optimization
and approximation in deterministic sequencing and scheduling: a
survey. Annals of Discrete Mathematics 4:287–326

IBM (2009) Modeling with IBM ILOG CP Optimizer - practical
scheduling examples

Jat SN, Yang S (2011) A hybrid genetic algorithm and tabu search ap-
proach for post enrolment course timetabling. Journal of Schedul-
ing 14:617–637, DOI DOI 10.1007/s10951-010-0202-0

Kreipl S (2000) A large step random walk for minimizing total
weighted tardiness in a job shop. Journal of Scheduling 3:125–138

Lawrence S (1984) Resource constrained project scheduling: an exper-
imental investigation of heuristic scheduling techniques (supple-
ment). Tech. rep., Graduate School of Industrial Administration,
Carnegie Mellon University

Mahfoud SW (1992) Crowding and preselection revisited. In: Parallel
Problem Solving From Nature, Elsevier, pp 27–36

Mati Y, Dauzere-Peres S, Lahlou C (2011) A general approach for op-
timizing regular criteria in the job-shop scheduling problem. Eu-
ropean Journal of Operational Research 212:33–42

Matsuo H, Suh C, Sullivan R (1988) A controlled search simulated
annealing method for the general jobshop scheduling problem.
Working paper 03-44-88, Graduate School of Business, University
of Texas

Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the
job shop scheduling problem. Management Science 42:797–813

Nowicki E, Smutnicki C (2005) An advanced tabu search algorithm for
the job shop problem. Journal of Scheduling 8:145–159

Philippe Laborie P (2009) Ibm ilog cp optimizer for detailed schedul-
ing illustrated on three problems. In: Proceedings of CPAIOR09,
pp 148–162

Singer M, Pinedo M (1998) A computational study of branch and
bound techniques for minimizing the total weighted tardiness in
job shops. IIE Transactions 30:109–118

Singer M, Pinedo M (1999) A shifting bottleneck heuristic for mini-
mizing the total weighted tardiness in a job shop. Naval Research
Logistics 46(1):1–17

Taillard ED (1994) Parallel taboo search techniques for the job shop
scheduling problem. ORSA Journal on Computing 6(2):108–117

Tavakkoli-Moghaddam R, Khalili M, Naderi B (2009) A hybridiza-
tion of simulated annealing and electromagnetic-like mechanism
for job shop problems with machine availability and sequence-
dependent setup times to minimize total weighted tardiness. Soft
Computing 13:995–1006

Van Hentenryck P, Michel L (2004) Scheduling abstractions for local
search. Lecture Notes in Computer Science 3011:319–334

Van Laarhoven P, Aarts E, Lenstra K (1992) Job shop scheduling by
simulated annealing. Operations Research 40:113–125

Varela R, Serrano D, Sierra M (2005) New codification schemas for
scheduling with genetic algorithms. Proceedings of IWINAC 2005
Lecture Notes in Computer Science 3562:11–20

Vela CR, Varela R, González MA (2010) Local search and genetic al-
gorithm for the job shop scheduling problem with sequence de-
pendent setup times. Journal of Heuristics 16:139–165

Zhang CY, Li P, Rao Y, Guan Z (2008) A very fast TS/SA algorithm
for the job shop scheduling problem. Computers and Operations
Research 35:282–294

