
An Efficient Memetic Algorithm for the
Flexible Job Shop with Setup Times

Miguel A. González and Camino R. Vela and Ramiro Varela
Artificial Intelligence Center, University of Oviedo, Spain,

Campus of Viesques, 33271 Gijón
email {mig,crvela,ramiro}@uniovi.es

Abstract

This paper addresses the flexible job shop scheduling
problem with sequence-dependent setup times (SDST-
FJSP). This is an extension of the classical job shop
scheduling problem with many applications in real pro-
duction environments. We propose an effective neigh-
borhood structure for the problem, including feasibil-
ity and non improving conditions, as well as procedures
for fast neighbor estimation. This neighborhood is em-
bedded into a genetic algorithm hybridized with tabu
search. We conducted an experimental study to com-
pare the proposed algorithm with the state-of-the-art in
the SDST-FJSP and also in the standard FJSP. In this
study, our algorithm has obtained better results than
those from other methods. Moreover, it has established
new upper bounds for a number of instances.

1 Introduction

The Job Shop Scheduling Problem (JSP) is a simple model
of many real production processes. However, in many en-
vironments the production model has to consider additional
characteristics or complex constraints. For example, in auto-
mobile, printing, semiconductor, chemical or pharmaceuti-
cal industries, setup operations such as cleaning up or chang-
ing tools are required between two consecutive jobs on the
same machine. These setup operations depend on both the
outgoing and incoming jobs, so they cannot be considered
as being part of any of these jobs. Also, the possibility of
selecting alternative routes among the machines is useful in
production environments where multiple machines are able
to perform the same operation (possibly with different pro-
cessing times), as it allows the system to absorb changes in
the demand of work or in the performance of the machines.
When these two factors are considered simultaneously, the
problem is known as the flexible job shop scheduling prob-
lem with sequence-dependent setup times (SDST-FJSP).

The classical JSP with makespan minimization has been
intensely studied, and many results have been established
that have given rise to very efficient algorithms, as for ex-
ample the tabu search proposed in (Nowicki and Smutnicki
2005).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Incorporating sequence-dependent setup times or a flexi-
ble shop environment changes the nature of scheduling prob-
lems, so these well-known results and techniques for the JSP
are not directly applicable. There are several papers dealing
with each of the two factors (setups and flexibility). For
example, the job shop with setups is studied in (Brucker
and Thiele 1996), where the authors developed a branch and
bound algorithm, and in (Vela, Varela, and González 2010)
and (González, Vela, and Varela 2012) where the authors
took some ideas proposed in (Van Laarhoven, Aarts, and
Lenstra 1992) as a basis for new neighborhood structures.

The flexible job shop has been widely studied. Based on
the observation that FJSP turns into the classical job shop
scheduling problem when a machine assignment is chosen
for all the tasks, early literature proposed hierarchical strate-
gies for this complex scheduling problem, where machine
assignment and sequencing are studied separately, see for
example (Brandimarte 1993). However, more recent inte-
grated approaches such as the tabu search algorithm pro-
posed in (Mastrolilli and Gambardella 2000), the hybrid ge-
netic algorithm proposed in (Gao, Sun, and Gen 2008) or
the discrepancy search approach proposed in (Hmida et al.
2010), usually obtain better results.

However, very few papers have considered both flexibil-
ity and setup times at the same time. Among these, (Saidi-
Mehrabad and Fattahi 2007), where the authors solve the
problem with a tabu search algorithm or (Oddi et al. 2011),
where the problem is solved by means of iterative flattening
search, deserve special mention.

In this paper, we propose a new neighborhood structure
for the SDST-FJSP. We also define feasibility and non im-
proving conditions, as well as algorithms for fast estimation
of neighbors’ quality. This neighborhood is then exploited in
a tabu search algorithm, which is embedded in a genetic al-
gorithm. We conducted an experimental study in which we
first analyzed the synergy between the two metaheuristics,
and then we compared our algorithm with the state-of-the-
art in both the SDST-FJSP and the standard FJSP.

The remainder of the paper is organized as follows. In
Section 2 we formulate the problem and describe the so-
lution graph model. In Section 3 we define the proposed
neighborhood. Section 4 details the metaheuristics used. In
Section 5 we report the results of the experimental study,
and finally Section 6 summarizes the main conclusions of

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

91

this paper and give some ideas for future work.

2 Problem formulation

In the job shop scheduling problem (JSP), we are given a set
of n jobs, J = {J1, . . . , Jn}, which have to be processed
on a set of m machines or resources, M = {M1, . . . ,Mm}.
Each job Jj consists of a sequence of nj operations (θj1,
θj2, . . . , θjnj), where θij must be processed without inter-
ruption on machine mij ∈ M during pij ∈ N time units.
The operations of a job must be processed one after another
in the given order (the job sequence) and each machine can
process at most one operation at a time.

We also consider the addition of sequence-dependent
setup times. Therefore, if we have two operations u and v
(we use this notation to simplify expressions), a setup time
suv is needed to adjust the machine when v is processed
right after u. These setup times depend on both the out-
going and incoming operations. We also define an initial
setup time of the machine required by v, denoted s0v , re-
quired when this is the first operation on that machine. We
consider that the setup times verify the triangle inequality,
i.e., suv + svw ≥ suw holds for any operations u, v and
w requiring the same machine, as it usually happens in real
scenarios.

Furthermore, to add flexibility to the problem, an op-
eration θij can be executed by one machine out of a set
Mij ⊆ M of given machines. The processing time for op-
eration θij on machine k ∈ Mij is pijk ∈ N. Notice that
the processing time of an operation may be different in each
machine and that a machine may process several operations
of the same job. To simplify notation, in the remaining of
the paper pv denote the processing time of an operation v in
its current machine assignment.

Let Ω denote the set of operations. A solution may be
viewed as a feasible assignment of machines to operations
and a processing order of the operations on the machines
(i.e., a machine sequence). So, given a machine assignment,
a solution may be represented by a total ordering of the op-
erations, σ, compatible with the jobs and the machines se-
quences. For an operation v ∈ Ω let PJv and SJv denote
the operations just before and after v in the job sequence
and PMv and SMv the operations right before and after
v in the machine sequence in a solution σ. The starting
and completion times of v, denoted tv and cv respectively,
can be calculated as tv = max(cPJv

, cPMv
+ sPMvv) and

cv = tv + pv . The objective is to find a solution σ that min-
imizes the makespan, i.e., the completion time of the last
operation, denoted as Cmax(σ) = maxv∈Ω cv .

2.1 Solution graph

We define a solution graph model which is adapted from
(Vela, Varela, and González 2010) to deal with machine flex-
ibility. In accordance with this model, a feasible operation
processing order σ can be represented by an acyclic directed
graph Gσ where each node represents either an operation
of the problem or one of the dummy nodes start and end,
which are fictitious operations with processing time 0. In
Gσ , there are conjunctive arcs representing job processing

4�11M2

endstart

�12M1

�21M1 �24M2�22M3 �23M2
1 3 4

�31M1 �32M23 4 �33M1

2

0

3+2

4+2

4+1
2+1

2 2

4

3+2

4+2

Figure 1: A feasible schedule to a problem with 3 jobs and
3 machines represented by a solution graph. Bold-face arcs
show a critical path whose length, i.e., the makespan, is 25.

orders and disjunctive arcs representing machine processing
orders. Each disjunctive arc (v, w) is weighted with pv+svw
and each conjunctive arc (u,w) is weighted with pu. If w is
the first operation in the machine processing order, there is
an arc (start, w) in Gσ with weight s0w and if w is the last
operation, in both the job and machine sequences, there is
an arc (w, end) with weight pw. Figure 1 shows a solution
graph.

The makespan of the schedule is the cost of a critical
path in Gσ , i.e., a directed path from node start to node
end having maximum cost. Bold-face arcs in Figure 1 rep-
resent a critical path. Nodes and arcs in a critical path
are also termed critical. We define a critical block as a
maximal subsequence of consecutive operations in a crit-
ical path requiring the same machine such that two con-
secutive operations of the block do not belong to the same
job. As we will see in Section 3, this point is important
as the order of two operations in the same job cannot be
reversed. Most neighborhood structures proposed for job
shop problems rely on exchanging the processing order of
operations in critical blocks (Dell’ Amico and Trubian 1993;
Van Laarhoven, Aarts, and Lenstra 1992).

To formalize the description of the neighborhood struc-
tures, we introduce the concepts of head and tail of an oper-
ation v, denoted rv and qv respectively. Heads and tails are
calculated as follows:

rstart = qend = 0

rv = max(rPJv
+ pPJv

, rPMv
+ pPMv

+ sPMvv)

rend = max
v∈PJend∩PMend

{rv + pv}

qv = max(qSJv
+ pSJv

, qSMv
+ pSMv

+ svSMv
)

qstart = max
v∈SMstart

{qv + pv + s0v}

Here, we abuse notation slightly, so SMstart (resp.
PMend) denotes the set formed by the first (resp. last) op-
eration processed in each of the m machines and PJend
denotes the set formed by the last operation processed in
each of the n jobs. A node v is critical if and only if
Cmax = rv + pv + qv .

92

3 Neighborhood structure

We propose here a neighborhood structure for the SDST-
FJSP termed NSF

1 . This structure considers two types of
moves. Firstly, reversals of single critical arcs, which are
analogous to the moves of the structure NS

1 defined in (Vela,
Varela, and González 2010) for the FJSP. Furthermore, we
consider moves which have to do with machine assignment
to operations. Abusing notation, we use the notation NSF

1 =
NS

1 ∪ NF
1 to indicate that the new structure is the union of

these two subsets of moves.

3.1 NS
1 structure

For the sequencing subproblem, we consider single moves,
i.e., reversing the processing order of two consecutive oper-
ations. We use a filtering mechanism based on the results
below, which allow the algorithm to discard unfeasible and
a number of non-improving neighbors. By doing this, we
get a neighborhood of reasonable size while augmenting the
chance of obtaining improving neighbors.

The next result establishes a sufficient condition for non-
improvement when a single arc is reversed in a solution.

Proposition 1 Let σ be a schedule and (v, w) a disjunctive
arc which is not in a critical block. Then, if the setup times
fulfill the triangular inequality, reversing the arc (v, w) does
not produce any improvement even if the resulting schedule
σ′ is feasible.

Then, as we consider that the setup times fulfill the tri-
angular inequality, we will only consider reversing critical
arcs in order to obtain improving schedules. However, re-
versing some of the critical arcs cannot produce improving
schedules as it is established in the following result.

Proposition 2 Let σ be a schedule and (v, w) an arc inside
a critical block B, i.e., PMv and SMw belong to B. Even if
the schedule σ′ obtained from σ by reversing the arc (v, w)
is feasible, σ′ does not improve σ if the following condition
holds

Sxw + Swv + Svy ≥ Sxv + Svw + Swy. (1)

where x = PMv and y = SMw in schedule σ.

Regarding feasibility, the following result guarantees that
the resulting schedule after reversing the arc (v, w) is feasi-
ble.

Proposition 3 Let σ be a schedule and (v, w) an arc in a
critical block. A sufficient condition for an alternative path
between v and w not to exist is that

rPJw < rSJv + pSJv + C (2)

whre C = szPJw
if SMz = PJw, and C =

min{pSJz
, szSMz

+ pSMz
} otherwise, being z = SJv .

Therefore, in NS
1 , we only consider reversing arcs (v, w)

in a critical block which fulfill the condition (2), provided
that condition (1) does not hold.

Notice that, when one of the neighbors is finally selected,
we need to reconstruct the total ordering σ of the opera-
tions. If the neighbor was created by NS

1 reversing an arc

4�11M2

endstart

�12M3

�21M1 �24M2�22M3 �23M2
1 3 4

�31M1 �32M23 4 �33M1

2

0

3+2

4+2

4+1
2+1

2 2

4

3+2

4

4+2

Figure 2: A neighbor of the schedule of Figure 1 created
with NF

1 . The makespan is reduced from 25 to 19.

(v, w) then we have to reconstruct σ starting from the po-
sition of operation v and finishing in the position of w (a
similar reconstruction is detailed in (Mattfeld 1995) for the
classic JSP).

3.2 NF
1 structure

Changing the machine of one operation may give rise to an
improved schedule. This possibility was already exploited in
(Mastrolilli and Gambardella 2000) where the authors con-
sider a set of moves, called k-insertions, in which an opera-
tion v is assigned to a new machine k ∈ Mv and then they
look for the optimal position for v in the machine sequence
of k. However, that procedure is time consuming, so we
propose here a simpler approach which works as follows.

Let σ be a total ordering of the operations in a schedule
and let v be an operation in a critical path of Gσ, an element
of NF

1 is obtained by assigning a new machine k ∈ Mv to
the operation v and then selecting a position for v in the ma-
chine sequence of k so that the topological order given by
σ remains identical after the move. Clearly, this neighbor is
feasible and the method is very efficient and not time con-
suming. The number of neighbors depends of the number of
machines suitable for each operation on the critical path.

As an example, notice that M3 in Figure 1 only processes
the operation θ22. If M3 can process θ12, NF

1 switches the
machine assignation of the critical task θ12 from M1 to M3

to create a new neighbor. As θ12 is after θ22 in the topo-
logical order, then NF

1 inserts θ12 after θ22 in the new ma-
chine sequence of M3. The result is the schedule of Figure 2,
whose makespan is better than that of the original schedule.

3.3 Makespan estimate

Computing the actual makespan of a neighbor is computa-
tionally expensive, since it requires recalculating the head of
all operations after v and the tail of all operations before w,
when the arc (v, w) is reversed. On the other hand, it re-
quires recalculating the head of all operations after v and the
tail of all operations before v when v is assigned to a differ-
ent machine. So, as it is usual, we propose using estimation
procedures instead.

For NS
1 , we borrow the estimation used in (Vela, Varela,

and González 2010), which is based on the lpath procedure
for the classical JSP from (Taillard 1993). To calculate this
estimate, after reversing the arc (v, w) in a schedule σ to

93

obtain σ′, if x = PMv and y = SMw before the move, the
heads and tails for operations v and w in σ′ are estimated as
follows:

r′w = max {rPJw
+ pPJw

, rx + px + sxw}
r′v = max {rPJv

+ pPJv
, r′w + pw + swv}

q′v = max {qSJv + pSJv , qy + py + svy}
q′w = max {qSJw

+ pSJw
, q′v + pv + swv}

Given this, the makespan of σ′ can be estimated as the max-
imum length of the longest paths from node start to node
end through nodes v and w, namely Est(Cmax(σ

′)) =
max {r′w + pw + q′w, r

′
v + pv + q′v}. This procedure re-

turns a lower bound of the makespan of σ′.
Regarding NF

1 , if we change the machine assignation of
an operation v, a fast estimation can be obtained calculating
the longest path through v in the new schedule σ′. To this
end, we estimate the head and tail of v in σ′ as follows:

r′v = max {rPJv + pPJv , rPMv + pPMv + sPMvv}
q′v = max {qSJv

+ pSJv
, qSMv

+ pSMv
+ svSMv

}
The makespan of σ′ can be estimated as Est(Cmax(σ

′)) =
r′v + pv + q′v (notice that pv may change from σ to σ′). This
is also a lower bound of the makespan of σ′.

In order to evaluate the accuracy of the estimates, we esti-
mated and evaluated the actual makespan of about 100 mil-
lion neighbors for instances with different sizes. With regard
to NS

1 , we observed that the estimate coincided with the ex-
act value of the makespan in 88.9% of the neighbors. In the
remaining 11.1% of the neighbors, the estimate was in av-
erage 2.30% lower than the actual makespan. For NF

1 , the
estimate coincided in 94.0% of the neighbors, and in the re-
maining 6.0% the estimate was in average 3.16% lower than
the actual makespan. Therefore, these estimates are really
efficient and appropriate.

4 Memetic algorithm

In this section, we describe the main characteristics of the
memetic algorithm used. Firstly, the genetic algorithm and
then the tabu search which is applied to every chromosome
generated by the genetic algorithm.

4.1 Genetic Algorithm

We use a conventional genetic algorithm where the initial
population is generated at random. Then, the algorithm iter-
ates over a number of steps or generations. In each iteration,
a new generation is built from the previous one by applying
selection, recombination and replacement operators.

In the selection phase all chromosomes are grouped into
pairs, and then each one of these pairs is mated to obtain
two offspring. Tabu search is applied to both offspring, and
finally the replacement is carried out as a tournament selec-
tion from each pair of parents and their two offspring. Af-
ter tabu search, a chromosome is rebuilt from the improved
schedule obtained, so its characteristics can be transferred to
subsequent offsprings. This effect of the evaluation function
is known as Lamarckian evolution.

The coding schema is based on the two-vector representa-
tion, which is widely used in the flexible job-shop problem
(see for example (Gao, Sun, and Gen 2008)). In this rep-
resentation, each chromosome has one vector with the task
sequence and another one with the machine assignment.

The task sequence vector is based on permutations with
repetition, as proposed in (Bierwirth 1995) for the JSP.
It is a permutation of the set of operations, each be-
ing represented by its job number. For example, if we
have a problem with 3 jobs: J1 = {θ11, θ12}, J2 =
{θ21, θ22, θ23, θ24}, J3 = {θ31, θ32, θ33}, then the sequence
(2 1 2 3 2 3 3 2 1) is a valid vector that represents the
topological order {θ21, θ11, θ22, θ31, θ23, θ32, θ33, θ24, θ12}.
With this encoding, every permutation produces a feasible
processing order.

The machine assignment vector has the machine number
that uses the task located in the same position in the task
sequence vector. For example, if we consider the sequence
vector above, then the machine vector (1 2 3 1 2 2 1 2 1),
indicates that the tasks θ21, θ31, θ33 and θ12 use the machine
1, the tasks θ11, θ23, θ32 and θ24 use the machine 2, and only
the task θ22 uses the machine 3.

For chromosome mating the genetic algorithm uses an ex-
tension of the Job Order Crossover (JOX) described in (Bier-
wirth 1995) for the classical JSP. Given two parents, JOX
selects a random subset of jobs and copies their genes to one
offspring in the same positions as in the first parent, then the
remaining genes are taken from the second parent so that
they maintain their relative ordering. For creating another
offspring the parents change their roles. In extending this
operator to the flexible case, we need to consider also the
machine assignment vector. We propose choosing for every
task the assignation it has in the parent it comes from. We
clarify how this extended JOX operator works by means of
an example. Let us consider the following two parents

Parent 1 Sequence: (2 1 2 3 2 3 3 2 1)
Parent 1 Assignment: (1 2 3 1 2 2 1 2 1)
Parent 2 Sequence: (1 3 2 2 1 3 2 2 3)
Parent 2 Assignment: (3 2 3 1 3 2 1 3 3)
If the selected subset of jobs just includes the job 2, then
Offspring 1 Sequence: (2 1 2 3 2 1 3 2 3)
Offspring 1 Assignment: (1 3 3 2 2 3 2 2 3)
Offspring 2 Sequence: (1 3 2 2 3 3 2 2 1)
Offspring 2 Assignment: (2 1 3 1 2 1 1 3 1)
The operator JOX might swap any two operations requir-

ing the same machine; this is an implicit mutation effect. For
this reason, we have not used any explicit mutation opera-
tor. Therefore, parameter setting in the experimental study
is considerably simplified, as crossover probability is set to
1 and mutation probability need not be specified. With this
setting, we have obtained results similar to those obtained
with a lower crossover probability and a low probability of
applying mutation operators. Some authors, for example in
(Essafi, Mati, and Dauzère-Pérès 2008) or (González et al.
2012) have already noticed that a mutation operator does not
play a relevant role in a memetic algorithm.

To build schedules we have used a simple decoding algo-
rithm: the operations are scheduled in exactly the same or-
der as they appear in the chromosome sequence σ. In other

94

Table 1: Summary of results in the SDST-FJSP: SDST-HUdata benchmark
Instance Size Flex. LB IFS GA TS GA+TS T(s.)

la01 10× 5 1.15 609 726 801 (817) 721(*) (724) 721(*) (724) 6
la02 10× 5 1.15 655 749 847 (870) 737(*) (738) 737(*) (737) 7
la03 10× 5 1.15 550 652 760 (789) 652 (652) 652 (652) 7
la04 10× 5 1.15 568 673 770 (790) 673 (678) 673 (675) 9
la05 10× 5 1.15 503 603 679 (685) 602(*) (602) 602(*) (602) 8
la06 15× 5 1.15 833 950 1147 (1165) 956 (961) 953 (957) 12
la07 15× 5 1.15 762 916 1123 (1150) 912(*) (917) 905(*) (911) 18
la08 15× 5 1.15 845 948 1167 (1186) 940(*) (951) 940(*) (941) 15
la09 15× 5 1.15 878 1002 1183 (1210) 1002 (1007) 989(*) (995) 22
la10 15× 5 1.15 866 977 1127 (1156) 956(*) (960) 956(*) (956) 29
la11 20× 5 1.15 1087 1256 1577 (1600) 1265 (1273) 1244(*) (1254) 33
la12 20× 5 1.15 960 1082 1365 (1406) 1105 (1119) 1098 (1107) 26
la13 20× 5 1.15 1053 1215 1473 (1513) 1210(*) (1223) 1205(*) (1212) 24
la14 20× 5 1.15 1123 1285 1549 (1561) 1267(*) (1277) 1257(*) (1263) 27
la15 20× 5 1.15 1111 1291 1649 (1718) 1284(*) (1297) 1275(*) (1282) 29
la16 10× 10 1.15 892 1007 1256 (1269) 1007 (1007) 1007 (1007) 12
la17 10× 10 1.15 707 858 1007 (1059) 851(*) (851) 851(*) (851) 12
la18 10× 10 1.15 842 985 1146 (1184) 985 (988) 985 (992) 10
la19 10× 10 1.15 796 956 1166 (1197) 951(*) (955) 951(*) (951) 16
la20 10× 10 1.15 857 997 1194 (1228) 997 (997) 997 (997) 12
MRE 16.29 38.81 (42.27) 15.93 (16.49) 15.55 (15.92)
#best 7 0 12 18

Values in bold are best known solutions, (*) improves previous best known solution.

words, we produce a semiactive schedule, which means that
no operation can start earlier without altering the operation
sequence for a given machine assignment.

4.2 Tabu Search

Tabu search (TS) is an advanced local search technique, pro-
posed in (Glover 1989a) and (Glover 1989b), which can es-
cape from local optima by selecting non-improving neigh-
bors. To avoid revisiting recently visited solutions and ex-
plore new promising regions of the search space, it maintains
a tabu list with a set of moves which are not allowed when
generating the new neighborhood. TS has a solid record of
good empirical performance in problem solving. For exam-
ple, the i− TSAB algorithm from (Nowicki and Smutnicki
2005) is one of the best approaches for the JSP. TS is often
used in combination with other metaheuristics.

The general TS scheme used in this paper is similar to
that proposed in (Dell’ Amico and Trubian 1993). In the
first step the initial solution (provided by the genetic algo-
rithm, as we have seen) is evaluated. It then iterates over
a number of steps. At each iteration, a new solution is se-
lected from the neighborhood of the current solution using
the estimated makespan as selection criterion. A neighbor
is tabu if it is generated by reversing a tabu arc, unless its
estimated makespan is better than that of the current best so-
lution. Additionally, we use the dynamic length schema for
the tabu list and the cycle checking mechanism as it is pro-
posed in (Dell’ Amico and Trubian 1993). TS finishes after
a number of iterations without improvement, returning the
best solution reached so far.

5 Experimental study

We have conducted an experimental study across bench-
marks of common use for both problems, the SDST-
FJSP and the FJSP. In both cases our memetic algorithm
(GA+TS), was given a population of 100 chromosomes and
stopped after 20 generations without improving the best so-
lution of the population. Also, the stopping criterion for tabu
search is set to 400 iterations without improvement. We have
implemented our method in C++ on a PC with Intel Core 2
Duo at 2.66 GHz and 2 Gb RAM.

We also show the results produced by the genetic algo-
rithm (GA) and the TS approaches separately, to compare
each of them with the hybridized approach. GA was given
a population of 100 chromosomes and the stopping crite-
rion is the run time used by GA+TS (i.e., it is not the maxi-
mum number of generations). For running TS alone we have
opted to set the same stopping criterion as in GA+TS (400
iterations without improvement), and to launch TS starting
from random schedules as many times as possible in the run
time used by GA+TS. We have tried several different config-
urations for running GA and TS alone, with similar or worse
results than those described here.

5.1 Comparison with the state-of-the-art in the
SDST-FJSP

As we have pointed, there are few papers that tackle the
SDST-FJSP. To our knowledge, the most representative ap-
proach to this problem is the iterative flattening search (IFS)
proposed in (Oddi et al. 2011). So we choose this method
to compare with our proposal. We consider the same bench-

95

Table 2: Summary of results in the FJSP: DP Benchmark
Instance Size Flex. LB TS hGA CDDS GA+TS T(s.)

01a 10× 5 1.13 2505 2518 (2528) 2518 (2518) 2518 (2525) 2505(*) (2511) 74
02a 10× 5 1.69 2228 2231 (2234) 2231 (2231) 2231 (2235) 2232 (2234) 120
03a 10× 5 2.56 2228 2229 (2230) 2229 (2229) 2229 (2232) 2229 (2230) 143
04a 10× 5 1.13 2503 2503 (2516) 2515 (2518) 2503 (2510) 2503 (2504) 72
05a 10× 5 1.69 2189 2216 (2220) 2217 (2218) 2216 (2218) 2219 (2221) 123
06a 10× 5 2.56 2162 2203 (2206) 2196 (2198) 2196 (2203) 2200 (2204) 157
07a 15× 8 1.24 2187 2283 (2298) 2307 (2310) 2283 (2296) 2266(*) (2286) 201
08a 15× 8 2.42 2061 2069 (2071) 2073 (2076) 2069 (2069) 2072 (2075) 197
09a 15× 8 4.03 2061 2066 (2067) 2066 (2067) 2066 (2067) 2066 (2067) 291
10a 15× 8 1.24 2178 2291 (2306) 2315 (2315) 2291 (2303) 2267(*) (2273) 240
11a 15× 8 2.42 2017 2063 (2066) 2071 (2072) 2063 (2072) 2068 (2071) 222
12a 15× 8 4.03 1969 2034 (2038) 2030 (2031) 2031 (2034) 2037 (2041) 266
13a 20× 10 1.34 2161 2260 (2266) 2257 (2260) 2257 (2260) 2271 (2276) 241
14a 20× 10 2.99 2161 2167 (2168) 2167 (2168) 2167 (2179) 2169 (2171) 340
15a 20× 10 5.02 2161 2167 (2167) 2165 (2165) 2165 (2170) 2166 (2166) 470
16a 20× 10 1.34 2148 2255 (2259) 2256 (2258) 2256 (2258) 2266 (2271) 253
17a 20× 10 2.99 2088 2141 (2144) 2140 (2142) 2140 (2146) 2147 (2150) 333
18a 20× 10 5.02 2057 2137 (2140) 2127 (2131) 2127 (2132) 2138 (2141) 488

MRE 2.01 (2.24) 2.12 (2.19) 1.94 (2.19) 1.99 (2.17)
#best 9 10 13 6

Values in bold are best known solutions, (*) improves previous best known solution.

mark used in that paper, which is denoted SDST-HUdata. It
consists of 20 instances derived from the first 20 instances of
the data subset of the FJSP benchmark proposed in (Hurink,
Jurisch, and Thole 1994). Each instance was created by
adding to the original instance one setup time matrix str for
each machine r. The same setup time matrix was added for
each machine in all benchmark instances. Each matrix has
size n×n, and the value strij indicates the setup time needed
to reconfigure the machine r when switches from job i to job
j. These setup times are sequence dependent and they fulfill
the triangle inequality.

IFS is implemented in Java and run on a AMD Phenom II
X4 Quad 3.5 Ghz under Linux Ubuntu 10.4.1, with a max-
imum CPU time limit set to 800 seconds for all runs. We
are considering here the best makespan reported in (Oddi et
al. 2011) for each instance, regardless of the configuration
used.

Table 1 shows the results of the experiments in the SDST-
HUdata benchmark. In particular we indicate for each in-
stance the name, the size (n × m), the flexibility (i.e. the
average number of available machines per operation) and
a lower bound LB. The lower bounds are those reported
in (Mastrolilli and Gambardella 2000) for the original in-
stances without setups, therefore they are probably far from
the optimal solutions. For IFS we indicate the best results
reported in (Oddi et al. 2011), and for GA, TS and GA+TS
we indicate the best and average makespan in 10 runs for
each instance. We also show the runtime in seconds of a sin-
gle run of our algorithms. Additionally, we report the MRE
(Mean Relative Error) for each method, calculated as fol-
lows: MRE = (Cmax − LB)/LB × 100. Finally, in the
bottom line we indicate the number of instances for which
a method obtains the best known solution (#best). We mark

in bold the best known solutions, and we mark with a “(*)”
when a method improves the previous best known solution.

We notice that GA alone obtains very poor results, with a
MRE of 38.81% for the best solutions. TS alone performs
much better than GA, with a MRE of 15.93% for the best
solutions, and was able to reach the best known solution in
12 of the 20 instances. However, the hybridized approach
obtains even better results. In fact, GA+TS obtains a better
average makespan than TS in 13 instances, the same in 6
instances and a worse average in only 1 instance. This shows
the good synergy between the two metaheuristics.

Overall, compared to IFS, GA+TS establishes new best
solutions for 13 instances, reaches the same best known so-
lution for 5 instances and for the instances la06 and la12 the
solution reached is worse than the current best known solu-
tion. Regarding the average makespan, it is better than the
best solution obtained by IFS in 13 instances, it is the equal
in 3 instances and it is worse in 4 instances. IFS achieved a
MRE of 16.29%, while GA+TS achieved a MRE of 15.55%
for the best solutions and 15.92% for the average values.
Additionally, the CPU time of GA+TS (between 6 and 33
seconds per run depending on the instance) is lower than
that of IFS (800 seconds per run). However CPU times are
not directly comparable due to the differences in program-
ming languages, operating systems and target machines. In
conclusion, GA+TS is better than GA and TS alone, and it
is quite competitive with IFS.

5.2 Comparison with the state-of-the-art in the
FJSP

In the FJSP it is easier to compare with the state-of-the-
art, because of the number of existing works. We con-

96

Table 3: Summary of results in the FJSP: BC Benchmark
Instance Size Flex. LB TS hGA CDDS GA+TS T(s.)
mt10c1 10× 11 1.10 655 928 (928) 927 (927) 928 (929) 927 (927) 14
mt10cc 10× 12 1.20 655 910 (910) 910 (910) 910 (911) 908(*) (909) 14
mt10x 10× 11 1.10 655 918 (918) 918 (918) 918 (918) 918 (922) 18

mt10xx 10× 12 1.20 655 918 (918) 918 (918) 918 (918) 918 (918) 16
mt10xxx 10× 13 1.30 655 918 (918) 918 (918) 918 (918) 918 (918) 19
mt10xy 10× 12 1.20 655 906 (906) 905 (905) 906 (906) 905 (905) 16
mt10xyz 10× 13 1.30 655 847 (850) 849 (849) 849 (851) 849 (850) 21
setb4c9 15× 11 1.10 857 919 (919) 914 (914) 919 (919) 914 (914) 22
setb4cc 15× 12 1.20 857 909 (912) 914 (914) 909 (911) 907(*) (907) 22
setb4x 15× 11 1.10 846 925 (925) 925 (931) 925 (925) 925 (925) 18

setb4xx 15× 12 1.20 846 925 (926) 925 (925) 925 (925) 925 (925) 19
setb4xxx 15× 13 1.30 846 925 (925) 925 (925) 925 (925) 925 (925) 20
setb4xy 15× 12 1.20 845 916 (916) 916 (916) 916 (916) 910(*) (910) 25
setb4xyz 15× 13 1.30 838 905 (908) 905 (905) 905 (907) 905 (905) 19
seti5c12 15× 16 1.07 1027 1174 (1174) 1175 (1175) 1174 (1175) 1171(*) (1173) 41
seti5cc 15× 17 1.13 955 1136 (1136) 1138 (1138) 1136 (1137) 1136 (1137) 40
seti5x 15× 16 1.07 955 1201 (1204) 1204 (1204) 1201 (1202) 1199(*) (1200) 43

seti5xx 15× 17 1.13 955 1199 (1201) 1202 (1203) 1199 (1199) 1197(*) (1198) 38
seti5xxx 15× 18 1.20 955 1197 (1198) 1204 (1204) 1197 (1198) 1197 (1197) 40
seti5xy 15× 17 1.13 955 1136 (1136) 1136 (1137) 1136 (1138) 1136 (1137) 39
seti5xyz 15× 18 1.20 955 1125 (1127) 1126 (1126) 1125 (1125) 1127 (1128) 41

MRE 22.53 (22.63) 22.61 (22.66) 22.54 (22.60) 22.42 (22.49)
#best 12 11 11 19

Values in bold are best known solutions, (*) improves previous best known solution.

sider several sets of problem instances: the DP benchmark
proposed in (Dauzère-Pérès and Paulli 1997) with 18 in-
stances, the BC benchmark proposed in (Barnes and Cham-
bers 1996) with 21 instances, and the BR benchmark pro-
posed in (Brandimarte 1993) with 10 instances.

We are comparing GA+TS with the tabu search (TS) of
(Mastrolilli and Gambardella 2000), the hybrid genetic algo-
rithm (hGA) of (Gao, Sun, and Gen 2008) and the climbing
depth-bounded discrepancy search (CDDS) of (Hmida et al.
2010). These three methods are, as far as we know, the best
existing approaches.

TS was coded in C++ on a 266 MHz Pentium. They exe-
cute 5 runs per instance and they limit the maximum number
of iterations between 100000 and 500000 depending on the
instance. With this configuration they report run times be-
tween 28 and 150 seconds in the DP benchmark, between 1
and 24 seconds in the BC benchmark, and between 0.01 and
8 seconds in the BR benchmark.

hGA was implemented in Delphi on a 3.0 GHz Pentium.
Depending on the complexity of the problems, the popula-
tion size of hGA ranges from 300 to 3000, and the number of
generations is limited to 200. They also execute 5 runs per
instance, and with the described configuration they report
run times between 96 and 670 seconds in the DP bench-
mark, between 10 and 72 seconds in the BC benchmark, and
between 1 and 20 seconds in the BR benchmark.

CDDS was coded in C on an Intel Core 2 Duo 2.9 GHz
PC with 2GB of RAM. It is a deterministic algorithm, how-
ever in the paper are reported the results of 4 runs per in-
stance, one for each of the neighborhood structures they pro-

pose, therefore we report the best and average solutions for
the method. The authors set the maximum CPU time to 15
seconds for all test instances except for DP benchmark, in
which the maximum CPU time is set to 200 seconds.

GA+TS was run 10 times for each instance. The run time
of the algorithm is in direct ratio with the size and flexibil-
ity of the instance. The CPU times range from 72 to 488
seconds in the DP benchmark, from 14 to 43 seconds in the
BC benchmark, and from 6 to 112 seconds in the BR bench-
mark. Therefore, the run times are similar to that of the other
methods, although they are not directly comparable due to
the differences in languages and target machines. However,
we have seen that in easy instances the best solution is found
in the very first generations, therefore, for many of these in-
stances GA+TS requires a much smaller CPU time to reach
the same solution.

Tables 2, 3 and 4 show the results of the experiments in the
DP benchmark, BC benchmark and BR benchmark, respec-
tively. As we did for Table 1, we indicate for each instance
the name, size, flexibility, and the lower bound reported in
(Mastrolilli and Gambardella 2000). Then, for each method
we report the best and average makespan. We also indicate
the runtime of a single run of GA+TS. And finally, the MRE
for each method and the number of instances for which a
method reaches the best known solution.

In the DP benchmark GA+TS improves the previous best
known solution in 3 of the 18 instances (01a 07a 10a). It is
remarkable that we prove the optimality of the solution 2505
for instance 01a, as this is also its lower bound. Moreover,
the MRE of the average makespan of GA+TS is the best of

97

Table 4: Summary of results in the FJSP: BR Benchmark
Instance Size Flex. LB TS hGA CDDS GA+TS T(s.)
Mk01 10× 6 2.09 36 40 (40) 40 (40) 40 (40) 40 (40) 6
Mk02 10× 6 4.10 24 26 (26) 26 (26) 26 (26) 26 (26) 13
Mk03 15× 8 3.01 204 204 (204) 204 (204) 204 (204) 204 (204) 9
Mk04 15× 8 1.91 48 60 (60) 60 (60) 60 (60) 60 (60) 20
Mk05 15× 4 1.71 168 173 (173) 172 (172) 173 (174) 172 (172) 17
Mk06 10× 15 3.27 33 58 (58) 58 (58) 58 (59) 58 (58) 54
Mk07 20× 5 2.83 133 144 (147) 139 (139) 139 (139) 139 (139) 40
Mk08 20× 10 1.43 523 523 (523) 523 (523) 523 (523) 523 (523) 14
Mk09 20× 10 2.53 299 307 (307) 307 (307) 307 (307) 307 (307) 26
Mk10 20× 15 2.98 165 198 (199) 197 (197) 197 (198) 199 (200) 112
MRE 15.41 (15.83) 14.92 (14.92) 14.98 (15.36) 15.04 (15.13)
#best 7 10 9 9

Values in bold are best known solutions.

the four algorithms considered (2.17% versus 2.19%, 2.19%
and 2.24%). The MRE of the best makespan is the second
best of the four algorithms, although in this case we have to
be aware that our algorithm has some advantage since we
launched it more times for each instance.

In the BC benchmark we are able to improve the previ-
ous best known solution in 6 of the 21 instances (mt10cc,
setb4cc, setb4xy, seti5c12, seti5x and seti5xx). Addition-
ally, the MRE of both the best and average makespan of
GA+TS is the best of the four algorithms considered. In par-
ticular, considering the best makespan our MRE is 22.42%
(versus 22.53%, 22.54% and 22.61%), and considering the
average makespan our MRE is 22.49% (versus 22.60%,
22.63% and 22.66%). Moreover, the number of instances
for which we obtain the best known solution is the best of
the four methods: 19 of the 21 instances.

In the BR benchmark we obtain the best known solution
in 9 of the 10 instances; only hGA is able to improve that
number. Regarding the MRE, GA+TS is second best con-
sidering the average makespan and third best considering the
best makespan. We can conclude that BR benchmark is gen-
erally easy, as for most instances all four methods reached
the best known solution in every run. In many of these in-
stances GA+TS reached the best known solution in the first
generation of each run.

Overall, GA+TS shows a lower efficiency in the largest
and most flexible instances, compared to the other algo-
rithms. In our opinion this is due to the fact that GA+TS
needs more run time to improve the obtained solution in
these instances. Additionally, regarding run times in the
FJSP benchmarks we have to notice that our algorithm is
at disadvantage, because it does all the necessary setup cal-
culations even when the setup times are zero, as it occurs in
these instances.

In summary, we can conclude that GA+TS is competitive
with the state-of-the-art and was able to obtain new upper
bounds for 9 of the 49 instances considered.

6 Conclusions

We have considered the flexible job shop scheduling prob-
lem with sequence-dependent setup times, where the ob-

jective is to minimize the makespan. We have proposed
a neighborhood structure termed NSF

1 which is the union
of two structures: NS

1 , designed to modify the sequenc-
ing of the tasks, and NF

1 , designed to modify the machine
assignations. This structure has then been used in a tabu
search algorithm, which is embedded in a genetic algorithm
framework. We have defined methods for estimating the
makespan of both neighborhoods and empirically shown
that they are very accurate. In the experimental study we
have shown that the hybridized approach (GA+TS) is better
than each method alone. We have also compared our ap-
proach against state-of-the-art algorithms, both in FJSP and
SDST-FJSP benchmarks. In the SDST-FJSP we have com-
pared GA+TS with the algorithm proposed in (Oddi et al.
2011) across the 20 instances described in that paper. For the
FJSP we have considered three sets of instances, comparing
GA+TS with the methods proposed in (Gao, Sun, and Gen
2008), (Mastrolilli and Gambardella 2000) and (Hmida et al.
2010). Our proposal compares favorably to state-of-the-art
methods in both problems considered, and we are able to im-
prove the best known solution in 9 of the 49 FJSP instances
and in 13 of the 20 SDST-FJSP instances.

As future work we plan to experiment across the FJSP
benchmark proposed in (Hurink, Jurisch, and Thole 1994),
and also across the SDST-FJSP benchmark proposed in
(Saidi-Mehrabad and Fattahi 2007). We also plan to de-
fine a new SDST-FJSP benchmark with bigger instances and
with more flexibility than the ones proposed in (Oddi et al.
2011). We shall also consider different crossover operators
and other metaheuristics like scatter search with path relink-
ing. Finally, we plan to extend our approach to other variants
of scheduling problems which are even closer to real envi-
ronments, for instance, problems with uncertain durations,
or problems considering alternative objective functions such
as weighted tardiness.

Acknowledgements

We would like to thank Angelo Oddi and Riccardo Rasconi
for providing us with the SDST-FJSP instances. All authors
are supported by Grant MEC-FEDER TIN2010-20976-C02-
02.

98

References

Barnes, J., and Chambers, J. 1996. Flexible job shop
scheduling by tabu search. Technical Report Series: ORP96-
09, Graduate program in operations research and industrial
engineering. The University of Texas at Austin.
Bierwirth, C. 1995. A generalized permutation approach to
jobshop scheduling with genetic algorithms. OR Spectrum
17:87–92.
Brandimarte, P. 1993. Routing and scheduling in a flexible
job shop by tabu search. Annals of Operations Research
41:157–183.
Brucker, P., and Thiele, O. 1996. A branch and bound
method for the general-job shop problem with sequence-
dependent setup times. Operations Research Spektrum
18:145–161.
Dauzère-Pérès, S., and Paulli, J. 1997. An integrated ap-
proach for modeling and solving the general multiprocessor
job-shop scheduling problem using tabu search. Annals of
Operations Research 70(3):281–306.
Dell’ Amico, M., and Trubian, M. 1993. Applying tabu
search to the job-shop scheduling problem. Annals of Oper-
ational Research 41:231–252.
Essafi, I.; Mati, Y.; and Dauzère-Pérès, S. 2008. A genetic
local search algorithm for minimizing total weighted tardi-
ness in the job-shop scheduling problem. Computers and
Operations Research 35:2599–2616.
Gao, J.; Sun, L.; and Gen, M. 2008. A hybrid genetic
and variable neighborhood descent algorithm for flexible job
shop scheduling problems. Computers and Operations Re-
search 35:2892–2907.
Glover, F. 1989a. Tabu search–part I. ORSA Journal on
Computing 1(3):190–206.
Glover, F. 1989b. Tabu search–part II. ORSA Journal on
Computing 2(1):4–32.
González, M. A.; González-Rodrı́guez, I.; Vela, C.; and
Varela, R. 2012. An efficient hybrid evolutionary algorithm
for scheduling with setup times and weighted tardiness min-
imization. Soft Computing 16(12):2097–2113.
González, M. A.; Vela, C.; and Varela, R. 2012. A com-
petent memetic algorithm for complex scheduling. Natural
Computing 11:151–160.
Hmida, A.; Haouari, M.; Huguet, M.; and Lopez, P. 2010.
Discrepancy search for the flexible job shop scheduling
problem. Computers and Operations Research 37:2192–
2201.
Hurink, E.; Jurisch, B.; and Thole, M. 1994. Tabu search
for the job shop scheduling problem with multi-purpose ma-
chine. Operations Research Spektrum 15:205–215.
Mastrolilli, M., and Gambardella, L. 2000. Effective neigh-
borhood functions for the flexible job shop problem. Journal
of Scheduling 3(1):3–20.
Mattfeld, D. 1995. Evolutionary Search and the Job
Shop: Investigations on Genetic Algorithms for Production
Scheduling. Springer-Verlag.

Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of
Scheduling 8:145–159.
Oddi, A.; Rasconi, R.; Cesta, A.; and Smith, S. 2011. Ap-
plying iterative flattening search to the job shop scheduling
problem with alternative resources and sequence dependent
setup times. In COPLAS 2011 Proceedings of the Work-
shop on Constraint Satisfaction Techniques for Planning
and Scheduling Problems.
Saidi-Mehrabad, M., and Fattahi, P. 2007. Flexible job shop
scheduling with tabu search algorithms. Int J Adv Manuf
Technol 32:563–570.
Taillard, E. 1993. Parallel taboo search techniques for the
job shop scheduling problem. ORSA Journal on Computing
6:108–117.
Van Laarhoven, P.; Aarts, E.; and Lenstra, K. 1992. Job shop
scheduling by simulated annealing. Operations Research
40:113–125.
Vela, C. R.; Varela, R.; and González, M. A. 2010. Lo-
cal search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics 16:139–165.

99

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

