
Feature Subset Selection for Learning Preferences: A Case Study

Antonio Bahamonde antonio@aic.uniovi.es
Gustavo F. Bayón gbayon@aic.uniovi.es
Jorge Dı́ez jdiez@aic.uniovi.es
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Abstract

In this paper we tackle a real world problem,
the search of a function to evaluate the merits
of beef cattle as meat producers. The inde-
pendent variables represent a set of live ani-
mals’ measurements; while the outputs can-
not be captured with a single number, since
the available experts tend to assess each an-
imal in a relative way, comparing animals
with the other partners in the same batch.
Therefore, this problem can not be solved by
means of regression methods; our approach is
to learn the preferences of the experts when
they order small groups of animals. Thus, the
problem can be reduced to a binary classifi-
cation, and can be dealt with a Support Vec-
tor Machine (SVM) improved with the use of
a feature subset selection (FSS) method. We
develop a method based on Recursive Feature
Elimination (RFE) that employs an adapta-
tion of a metric based method devised for
model selection (ADJ). Finally, we discuss
the extension of the resulting method to more
general settings, and provide a comparison
with other possible alternatives.

1. Introduction

Learning preferences is a useful task in application
fields like information retrieval, adaptive interfaces or
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quality assessment. The starting data set is a collec-
tion of preference judgments: pairs of vectors (v, u)
where an agent expresses that it prefers v to u. In
other words, training sets are samples of binary rela-
tions between objects described by the components of
real number vectors.

This learning task can be accomplished following two
approaches. We may look for classifiers to decide
whether a pair (v, u) belongs or not to the relation, like
in (Utgoff & Saxena, 1987; Branting & Broos, 1997).
In general, the relation so induced is not transitive.
However, Cohen et al. (1999) describe an algorithm
that heuristically finds a good approximation to the
ordering that best agrees with the learned binary re-
lation.

The second approach tries to find an assessment or
ranking function able to assign a real number to
each vector in such a way that preferable objects ob-
tain higher values. This point of view is followed in
(Tesauro, 1988; Utgoff & Clouse, 1991; Herbrich et al.,
1999; Fiechter & Rogers, 2000; Joachims, 2002; Dı́ez
et al., 2002); using different tools they propose algo-
rithms to find a suitable assessment function, usually
a linear function.

The main difficulty of the functional approach for
learning preferences is that we do not have any class
attached to training examples. So we can not use any
regression method; instead, we can reduce the learning
problem to separate two sets of vectors: positive vec-
tors of the form (v−u), and negative −(v−u), for each
preference judgment (v, u). Therefore, we can induce
assessment functions using Support Vector Machines,
SVM (Vapnik, 1998).



In this paper we present a real world assessment prob-
lem that motivates the development of tools for feature
subset selection (FSS). The next section spells out the
specific difficulties of finding an assessment for live beef
cattle according to their merits as meet producers.

To face our FSS problem, we built tools that work in
two stages. First, they produce an ordering or rank-
ing of the features according to their usefulness. Here
we discuss the use of RFE (Recursive Feature Elimi-
nation) (Guyon et al., 2002) comparing its achieve-
ments with those obtained by Relieve, a Kohavi and
John (1997) modification of Relief (Kira & Rendell,
1992). The second stage is accomplished by a model
selection method; it has to decide which subset of the
k most useful features will produce higher accuracies.
For this purpose, we consider a simple cross-validation
(CV) estimation, and we introduce an adaptation of a
metric based method (Schuurmans, 1997; Schuurmans
& Southey, 2002) called ADJusted distance estimate
(ADJ).

We will find that RFE outperforms Relieve in all tested
circumstances. Additionally, in the beef cattle assess-
ment problem, we obtained the best results when we
use CV after RFE. However, our adaptation of ADJ,
called Q ADJ in Section 4.2, reaches only slightly
worse scores. Moreover, Q ADJ with RFE is the best
method in a family of artificial data sets designed to
test the utility of these methods in more general prob-
lems of learning preferences. Another important ad-
vantage of the method presented in this paper is that it
is much faster than CV. This is a very important issue
when a high number of features describe the objects
that appear in the data sets of preference judgments.

2. The beef cattle assessment problem

The problem was to induce an assessment function for
live beef cattle according to animals’ carcass value. In
fact, in animal breeding, conformation assessment is
used as an indirect indicator of the animal’s perfor-
mance (Goyache et al., 2001b). So, the morphology
of beef cattle is expected to be useful in evaluating the
animals as meat producers.

Carcass conformation largely depends on live anatomy.
However, this relationship is not direct because of the
influence on shapes and volumes of the skin, subcuta-
neous fat and internal organs. Two major problems
should be solved to find reliable rules relating animal
dimensions and its ability to produce beef: accurate
measurements of animals’ bodies must be obtained,
and animals must be assessed according to the esti-
mation of their carcass values (Goyache et al., 2001a;

Dı́ez et al., 2003).

However, carrying out zoometry on an animal is a hard
and risky task. The presence of humans disturbs ani-
mals increasing the error in the measurements. There-
fore, to obtain accurate body measurements in a repre-
sentative sample of animals we must perform an indi-
rect zoometry by using digital images (Goyache et al.,
2001b), see Figure 2. On the other hand, we must
have a trained group of experts able to assess live an-
imals’ conformation following criteria used in bovine
carcass markets. In this part we had the help of the
experts of the Association of Breeders of Asturiana de
los Valles (ASEAVA) . For a long time, our experts
had been valuing animals of this beef cattle breed in a
subjective manner. So, the strength and inertia of the
traditional methods had to be overcome.

Our experts tend to grade their preferences in a rela-
tive way, comparing animals with the other partners in
the same batch. So, there is a kind of batch effect that
often biases their assessments. Thus, an animal sur-
rounded by poor conformed cattle will probably obtain
a higher score than if it were presented together with
better bovines. From a computational point of view,
this means that regression is not an acceptable method
to induce an assessment function. Nevertheless, the
knowledge of our experts can be reliably represented
by means of orderings of small groups of animals ac-
cording to experts’ estimation of carcass values.

Using this methodology, we collected a set of 529 pref-
erence judgments of 128 different cows, and 395 pref-
erence judgments of 91 different bulls. Sexual dimor-
phism leads to different assessment criteria; so, data
from bulls and cows have been considered as different
training sets.

3. Learning linear preference
assessments

Let us assume that

vi > ui : i = 1, . . . , n

is a sample of an ordering relation in Rd called prefer-
ence relation. Our aim is to find an ordering preserving
(monotone) function f : Rd → R that will be called
assessment or ranking function. In other terms, we
look for an assessment f for d-dimension vectors such
that maximize the probability of having f(v) > f(u)
whenever v > u.

Following (Herbrich et al., 1999; Fiechter & Rogers,
2000; Joachims, 2002; Dı́ez et al., 2002), we define the
assessment of a vector as its distance to an assessment
hyperplane 〈w, x〉 = 0. From a geometrical point of
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Figure 1. We are looking for a vector w such that the hy-
perplane 〈w, x〉 = 0 is farther from preferable vectors. In
the picture v is better than u, in symbols v > u

view, the function fw(x) = 〈w, x〉 represents the dis-
tance to the hyperplane (of vectors perpendicular to
w) multiplied by the norm of w, see Figure 1. The
search of w is a NP-hard problem; however, it is pos-
sible to approximate the solution like in classification
Support Vector Machines (Vapnik, 1998).

The core idea is that we can specify fw taking into
account that

fw(v − u) > 0 ⇔ fw(v) >w f(u).

More formally, we have an optimization problem for
margin maximization. We must minimize:

V (w, ξ) =
1
2
‖w‖2 + C

n∑
i=1

ξi

subject to:
∀i = 1, . . . , n, 〈w, vi〉 ≥ 〈w, ui〉+ 1− ξi

∀i = 1, . . . , n, ξi ≥ 0

where C is a parameter that allows trading-off margin
size against training error.

Additionally, as recommended in (Herbrich & Grae-
pel, 2002), we will use SVM on normalized training
examples. Therefore, the problem of finding a linear
assessment function can be viewed as a problem of
finding an hyperplane to separate the normalized dif-
ferences: v−u

‖v−u‖ with class +1, and − v−u
‖v−u‖ with class

−1, for each preference judgment v > u.

4. A FSS for learning preferences

In the preceding section, we showed that it is possible
to induce an assessment or ranking function by means
of an SVM that returns a hyperplane that separates
two classes of vectors. Thus, we can use RFE (Guyon

Algorithm 4.1 Pseudo code of SVM-RFE
Function SVM-RFE (T , fs) : A list of feature subsets
BEGIN
/* T : Set of training examples; each example is de-

scribed by a vector of feature values (x) and its
class (y)
fs: Set of features describing each example in T ;
L: Ordered list of feature subsets; each subset
contains the remaining features at every itera-
tion; */

Fd = fs;
L = [Fd]; // Initially, one subset with all the features
for j = d downto 2 do

α = SVM (T ); // Train SVM
w =

P
k αkykxk; // w: the hyperplane coefficients

r = arg min
i∈{1,...,|Fj |}

((wi)
2); // The smallest ranking criterion

Fj−1 = Fj \ fr; // Remove r-th feature from Fj

L = L + Fj−1; // Add the subset of remaining features
// Remove r-th feature from examples in T
T = {x′i : x′i is xi ∈ T with fr removed};

end for
// Return the ordered list L of feature subsets
return (L);
END

et al., 2002), a state-of-the-art algorithm, specially de-
vised for SVM, that orders the set of features used to
describe the training examples according to their use-
fulness to make an accurate classification rule. Then,
we will use a model selection method to split the fea-
tures list in order to obtain the most promising subset
of features. For this purpose, we will introduce an
adaptation of ADJ (Schuurmans & Southey, 2002), a
metric-based method that has a natural implementa-
tion in our setting of learning preferences.

4.1. RFE in brief

RFE, which stands for Recursive Feature Elimina-
tion, is an example of a backward feature elimination
process. So, it starts with all possible features and
removes one feature per iteration, the one with the
smallest feature ranking criterion, as shown in Algo-
rithm 4.1. When the learner is a linear kernel SVM,
RFE’s criterion is the value of (wi)2, where wi is the
coefficient of the i-th feature in the separating hyper-
plane equation induced by SVM. A theoretical justifi-
cation for using this criterion can be found in (Guyon
et al., 2002).

This algorithm let us obtain a ranked list L =
(Fd, Fd−1, . . . , F1) with d different feature subsets,
where each Fi is a subset with exactly i features. Due
to the recursive elimination, features in a subset Fi

are optimal in some sense when considered together,
although individually they could be less relevant than



other features eliminated in a previous step. This is an
interesting property of RFE since it takes into account
possible relations between features, empowering the
possibility of discovering useful groups of interrelated
features that would be labeled as irrelevant if consid-
ered one by one. However, it should be noted that,
given the greedy nature of RFE, Fi will not necessar-
ily contain the i most useful features of the original
feature set in order to achieve a higher accuracy.

4.2. The adaptation of ADJ

Once obtained the ranked list of feature subsets, the
next step shall be to select one of them. In general,
we will be interested in a subset which lets the learner
yield the best performance, in terms of accuracy; so
we need to estimate the performance for every feature
subset.

This task can be accomplished by many differ-
ent model selection techniques, for example, cross-
validation (CV), a commonly used method that has
been proved very reliable in many circumstances (Ko-
havi, 1995). However, CV is computationally costly.
Moreover, it is also known that CV has high variance,
which in some cases downgrades its performance as
accuracy estimator. This disadvantage worsens as the
number of training examples is reduced, what is fre-
quent when we are learning preferences.

An alternative to CV and other accuracy estimators is
a metric-based method called ADJ (Schuurmans, 1997;
Schuurmans & Southey, 2002) devised to choose the
appropriate level of complexity required to fit to data.
In our case, given the nested sequence of feature sets
provided by RFE, F1 ⊂ F2 ⊂ . . . ⊂ Fd, ADJ would
provide a procedure to select one of the hyperplanes
gi induced by SVM from the corresponding Fi.

The key idea is the definition of a metric on the space
of hypothesis. Thus, for two hypothesis f and g, their
distance is calculated as the expected disagreement in
their predictions

d(f, g) def= ϕ

(∫
err(f(x), g(x))dPX

)
where err(f(x), g(x)) is the measure of disagreement
on a generic point x in the space of example descrip-
tions X. Given that these distances can only be ap-
proximated, ADJ establishes a method to compute
d̂(g, t), an adjusted distance estimate between any hy-
pothesis g and the true target classification function t.
Therefore, the selected hypothesis is

gk = arg min
gl

d̂(gl, t).

The estimation of distance, d̂, is computed by means
of the expected disagreement in the predictions in a
couple of sets: the training set T , and a set U of un-
labeled examples, that is, a set of cases sampled from
PX but for which the pretended correct output is not
given. The ADJ estimation is given by

ADJ(gl, t)
def= dT (gl, t) ·max

k<l

dU (gk, gl)
dT (gk, gl)

where, for a given subset of examples S, dS(f, g) is the
expected disagreement of hypothesis f and g in S. No-
tice that we must avoid the impossibility of using the
previous equation when there are zero disagreements
in T for two hypotheses. Our proposal here is to use
the Laplace correction to the probability estimation,
in symbols

dS(f, g) def=
1

|S|+ 2

(
1 +

∑
i∈S

1f(xi) 6=g(xi)

)
.

In general, it is not straightforward to obtain a set of
unlabeled examples, so Bengio and Chapados (2003)
proposed a sampling method over the available train-
ing set. However, for learning preferences, we can eas-
ily build the set of unlabeled examples from a set of
preference judgments formed by pairs of real objects
randomly selected from the original preference judg-
ment pairs. We fix the size of U to be 10 times the
size of T .

Our last modification of ADJ can only be used when
we have more training examples than features; our
data sets about beef cattle have this property, see Sec-
tion 5.1 for more details. The idea of this proposal is
borrowed from (Quinlan, 1992), and consists in adjust-
ing the training errors, dT (gl, t), taking into account
the sizes of the linear problem, given that we are using
linear surfaces to separate two classes. Thus, we intro-
duce a ratio Q = |T |+l

|T |−l . Our intention is to penalize
the scores achieved when the number of training ex-
amples, |T |, is near the number l of parameters in the
model gl. Finally,

d̂(gl, t) = Q ·ADJ(gl, t) =
|T |+ l

|T | − l
ADJ(gl, t)

5. Experimental results

We conducted a set of experiments to show the ben-
efits of our approach both in real world and artificial
data sets. So, we established a comparison of the per-
formance of two ranking methods endowed with two
different procedures for selecting a feature subset. For



Figure 2. An example of indirect zoometry process using digital images. The leftmost two images, lateral and rear views,
show 7 different lengths, plus the round profile (RP); from these features, a set of areas and volumes describe live animals’
conformation. The right image is a zenithal view, one of the two stereo images that we are testing to use instead of the
other views

the sake of completion we used a SVM to give a base-
line measure of the accuracy that could be reached in
each dataset.

In addition to RFE, we have implemented Relieve as a
filter able to order the set of features that describe the
examples of the dataset. To select the subset of the
most useful features, we used ADJ and Q ADJ as was
explained in the previous section; as an alternative
option we employed a classical cross validation per-
formed in the training set. For implementing ADJ and
Q ADJ we used a set of unlabeled cases of size equal
to 10 times the size of the training set. In all cases
Q ADJ outperformed ADJ in number of attributes;
the scores in accuracy are similar in real word data
sets, but Q ADJ is significantly better in artificial data
sets. We report the scores of ADJ and Q ADJ in all
cases; but, to ease the discussions that follow, we will
only allude to Q ADJ achievements.

In all cases we have used the SVMlight implementation
of Joachims (1999) with the default parameters and a
linear kernel, but asking the system to find a separat-
ing hyperplane 〈w, x〉+b = 0 with b = 0. Additionally,
the feature values in all training sets were normalized
dividing their values by the typical deviation, notice
that in our case the average of all features is zero.

Throughout all the experiments, all the inducers were
run on identical training and test sets. On the other
hand, we want to point out that the feature selection
algorithms always used separated sets for training and
testing, as was recalled in (Reunanen, 2003).

5.1. Real world data sets

The first package of experiments is taken from a real
world application, presented in Section 2.

From each animal, we obtained 7 lengths from differ-
ent parts of its body, plus the curvature of their round
profile (RP), see Figure 2. To this set of 8 features,
we added the sum of L5 and L4, since the whole mea-
sure of the top part could result useful independently
of their component. In order to facilitate the acquisi-
tion of measurements, the length L3 was assumed to
be the hypotenuse of a right-angled triangle formed
by L4+L5 and L2. On the other hand, to try to de-
scribe faithfully the carcass merits, it is acknowledged
that some volumes and areas can be very informative.
Hence, adding all possible 2 and 3 dimensional data,
each animal was described by 165 features. Addition-
ally, we included all ratios in between the 8 lengths
measured of each animal, resulting in other data sets
with 193 features. We included these new 28 features
since it is usually assumed that somehow harmonious
proportions of body measurements are related to ani-
mals’ performance. Nevertheless, our experimental re-
sults (see Tables 1 and 2) do not support significantly
this idea.

Taking into account the complexity of obtaining the
measurements from the lateral and rear views, we have
considered the alternative of using only one stereo pho-
tograph from a zenithal point of view (see Figure 2),
with the addition of the curvature of the RP. In this
case, we do not have neither L6 nor L2; however, we
observed that there is a high correlation between L3
and L4+L5, and then we can estimate L3 directly
from L4+L5, and then we compute L2 using the right-
angled triangle of these 3 lengths. Therefore, using this
view we describe the animal by means of 7 lengths, and
the curvature of the RP; finally, when we include the
volumes and areas we have 120 features, and with the
addition of ratios we have 141 features.

In all cases the methods that select the features to in-



Table 1. Classification accuracies estimated by a 10-fold cross-validation. We report here the scores achieved with Q ADJ,
and CV selections performed over a feature ordering obtained with Relieve. The column labeled with SVM represents the
accuracies reached without any feature selection. Included in the names of data sets are the kind of animal (bull or cow),
the view used to obtain the basic lengths (l for lateral or z for zenithal), and the numbers of features used to describe
live conformation of the animals

Relieve + CV Relieve + ADJ Relieve + Q ADJ SVM
Dataset %Acc. #Feat. %Acc. #Feat. %Acc. #Feat. %Acc.

bulls-z-120 95.43±2.76 9.30±5.37 94.42±3.20 10.50±10.62 94.42±3.20 5.90±3.99 94.17±2.79
bulls-z-141 95.44±2.97 12.40±5.94 94.42±1.94 13.20±9.83 94.67±2.15 8.20±5.51 94.68±2.89
bulls-l-165 95.69±1.98 20.80±6.71 95.44±1.90 18.30±11.87 95.44±1.90 14.60±4.63 94.42±2.24
bulls-l-193 96.45±2.04 25.40±11.24 95.69±2.57 25.20±9.89 95.69±2.57 22.10±8.22 94.68±2.41
cows-z-120 93.00±3.70 15.20±2.36 92.43±4.39 18.30±6.26 92.43±4.39 15.20±3.63 93.19±3.42
cows-z-141 93.19±3.43 16.30±8.74 92.80±4.60 20.70±17.58 92.80±4.60 12.20±6.66 92.81±3.60
cows-l-165 93.19±3.72 42.60±27.63 93.56±3.63 51.10±54.12 93.37±3.53 18.20±3.63 93.00±3.30
cows-l-193 93.37±3.22 23.30±11.32 93.56±3.10 21.00±20.77 92.81±2.81 9.40±1.91 93.00±3.30
Av. 94.47 20.66 94.04 22.29 93.95 13.23 93.74

duce an assessment function outperform the accuracy
found by SVM, see Tables 1 and 2. Both in accuracy
and number of features, the average differences be-
tween RFE+CV and all the other methods are statis-
tically significant with p < 0.05 in 1-tail t tests. In the
second position, RFE +Q ADJ is significantly better
than the rest with p < 0.05, except in the comparison
with the accuracy of Relieve+CV where we only can
assume that p < 0.07. Therefore, if we consider the
differences between Relieve and RFE, they are clearly
in favour of RFE, both in accuracy and in number
of features selected. The comparison of Q ADJ ver-
sus CV (with RFE) yields a slightly, although signifi-
cant, higher accuracy in CV, while the difference in the
number of features selected is more apparent than real
given that in both cases the number of measurements
required by the assessment functions is about 5.2, since
the other features are areas, volumes or ratios.

The important question in practice about the feasibil-
ity of using one stereo zenithal view deserves a posi-
tive answer. The differences in accuracy and number
of features are perfectly assumable.

5.2. Artificial data sets

We have made an in-depth study about the behaviour
of RFE with CV and Q ADJ in the presence of dif-
ferent levels of noise and number of relevant features.
For this purpose we have designed a group of artificial
data sets of 500 preference judgments where each ob-
ject is described by 200 features with random values
in the interval [−1,+1]. The name of each data set in-
dicates the number of relevant features as well as the

percentage of noise included. So, A-R-N refers to a
problem with only R relevant attributes (varying from
10 to 40), and with a N% of noisy examples (from 0%
to 20%). The assessment function used to order the
preferences was f(x) =

∑R
i=1 aixi; where ai was ran-

domly chosen as +1 or −1; in this way we ensure that
only the first R features in each data set are equally
relevant.

The scores of Q ADJ (see Table 3) outperform those
achieved by CV. The average differences in accuracy
are statistically significant with p < 0.04 in a 1-tail t-
test, in number of features the significance level is p <
0.01. Both methods improve significantly the results
of SVM.

The experiments were repeated using data sets with
different number of preference judgements, from 300
to 600, obtaining very similar results (omitted for lack
of space) to those shown in Table 3.

6. Conclusions

In this paper we have dealt with preference judgments
about objects whose descriptions need an important
number of features. Our motivating case was to look
for a function able to assess live beef cattle according
to their carcass values. The conformation of each ani-
mal, the input of that function, can be considered as a
vector whose components are profiles, lengths, areas,
and volumes of different parts of their bodies. Due to
the kind of knowledge available from the experts, this
problem could not be solved by regression. Therefore,
to discover an explicit formulation of this assessment



Table 2. Classification accuracies estimated by a 10-fold cross-validation. See caption of Table 1 for details

RFE + CV RFE + ADJ RFE + Q ADJ SVM
Dataset %Acc. #Feat. %Acc. #Feat. %Acc. #Feat. %Acc.

bulls-z-120 96.46±3.03 6.40±3.47 95.96±3.22 14.50±9.29 96.21±3.63 9.10±3.45 94.17±2.79
bulls-z-141 96.69±2.82 3.90±1.45 96.96±2.49 6.80±5.56 96.70±2.29 6.40±5.68 94.68±2.89
bulls-l-165 96.20±3.45 4.50±1.28 95.70±2.99 24.10±25.51 95.44±3.56 6.60±2.97 94.42±2.24
bulls-l-193 96.70±2.30 5.70±1.19 95.95±2.33 10.00±8.59 95.95±2.33 6.20±2.96 94.68±2.41
cows-z-120 94.14±2.60 4.90±1.45 93.57±3.50 4.20±1.17 93.57±3.50 4.20±1.17 93.19±3.42
cows-z-141 93.95±2.65 4.20±1.25 93.19±2.95 18.70±19.97 93.57±2.57 5.40±4.03 92.81±3.60
cows-l-165 94.33±2.40 4.90±1.58 94.14±2.46 7.60±6.09 94.20±1.89 5.86±2.46 93.00±3.30
cows-l-193 93.56±3.34 6.50±3.32 93.18±3.84 10.20±10.33 93.18±3.84 6.30±9.31 93.00±3.30
Av. 95.25 5.13 94.83 12.01 94.85 6.26 93.74

function, we learned a ranking map coherent with the
preferences of the experts.

Thus, we collected 529 comparisons of cows, and 395 of
bulls. Then, following (Herbrich et al., 1999; Fiechter
& Rogers, 2000; Joachims, 2002; Dı́ez et al., 2002),
we reduced this problem to a binary classification that
can be solved by means of a linear SVM. However, in
order to improve both the accuracy and the descrip-
tive power of the assessment, we designed some feature
subset selection methods.

The best performance was achieved by those methods
based on RFE (Guyon et al., 2002), that returns a se-
quence of models dealing with an increasing number of
features. To decide the appropriate level of complex-
ity required to fit to data, we have discussed the use
of CV, and a new and much faster procedure called
Q ADJ, an adaptation of ADJ (Schuurmans, 1997;
Schuurmans & Southey, 2002). Although in beef cat-
tle, CV yields better results than Q ADJ, the absolute
differences are quite small. Additionally, we showed
that this is not a general behavior; in fact, we provided
a wide collection of data sets for learning preferences,
where Q ADJ obtains significantly higher accuracy and
less number of features. Therefore, we conclude that
Q ADJ is a reasonably alternative to CV.
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del Coz, J., Quevedo, J., Ranilla, J., Luaces, O.,
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