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Abstract

The selection of a subset of input variables is often based on the previous construc-
tion of a ranking to order the variables according to a given criterion of relevancy.
The objective is then to linearize the search, estimating the quality of subsets con-
taining the topmost ranked variables. An algorithm devised to rank input variables
according to their usefulness in the context of a learning task is presented. This
algorithm is the result of a combination of simple and classical techniques, like cor-
relation and orthogonalization, which allow the construction of a fast algorithm that
also deals explicitly with redundancy. Additionally, the proposed ranker is endowed
with a simple polynomial expansion of the input variables to cope with nonlinear
problems. The comparison with some state-of-the-art rankers showed that these
combination of simple components is able to yield high-quality rankings of input
variables. The experimental validation is made on a wide range of artificial data sets
and the quality of the rankings is assessed using a ROC-inspired setting, to avoid
biased estimations due to any particular learning algorithm.

1 Introduction

It is acknowledged that variable selection plays a very important role in most
(if not all) learning tasks to improve the accuracy and readability of learned
models. Moreover, in practical applications, the reduction of dimensionality
is directly related to ease the acquisition of data, what may mean important
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economical savings. Other times, variable selection benefits may be more in-
tangible, for instance, associated with obtaining measurements, this selection
can even avoid physical risks ran by people or animals, as in the case described
in (Bahamonde et al., 2004).

A relaxed version of selection is variable ranking with respect to their rele-
vance as prediction tools. In some applications, selection is probably too rigid,
and what we really need is just a ranking of variables. Other times, ranking
variables is used as a first step towards selection, as in (Guyon and Elisseeff,
2003; del Coz et al., 2005; Dı́ez et al., 2004; Luaces et al., 2004).

Most of the algorithms devised to rank input variables fall in one of these cat-
egories: wrappers or filters. Wrappers rely on a learning algorithm to estimate
the quality of the selected subset of variables. The success of kernel methods
like SVM (Boser et al., 1992) in the field of machine learning gave rise to the
construction of SVM-based variable ranking methods, both for linear (Guyon
et al., 2002) and nonlinear models (Rakotomamonjy, 2003; Degroeve et al.,
2002). These methods employ an iterative procedure where each step rules
out one input variable; after one SVM training, the least useful variable is
determined by a mechanism that is, in the nonlinear case, at least, quadratic
in the number of support vectors. Therefore, unfortunately, their complexity
becomes too high to be utilized with medium-size data sets.

On the other hand, filters are independent of the learning algorithm to be used
after the ranking/selection. Ranking filters are commonly based on computing
a score for each input variable relating it with the target class, like the correla-
tion coefficient, information theoretic measures, discrimination abilities, etc.;
then, variables are sorted according to such score. Although it is assumed that
rankings obtained via filters can be suboptimal with respect to a given learning
algorithm, they may be preferable to wrappers for computational reasons.

In this paper we present a new algorithm called SPE-ranker. It is a two-stage
filter that first constructs a correlation-based ranking using a simplified poly-
nomial expansion of the original input variables; the expansion is a heuristic
approach used to extend the low complexity and good performance of linear
rankers to general nonlinear problems. The second stage is an iterative pro-
cess based on Gram-Schmidt orthogonalization whose aim is to detect and
remove redundant variables. In fact, this procedure can be considered a kind
of stepwise regression, and has been used to rank variables in (Chen et al.,
1989; Stoppiglia et al., 2003; Guyon et al., 2003).

The consideration of redundant entries is important since in real world ap-
plications the number of these inputs may be high; in addition to economical
reasons, it is known that redundant entries can affect the speed and accuracy
of learning algorithms (Yu and Liu, 2004).
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We have conducted an exhaustive experimentation on artificial data sets to
test how good a simple approach like SPE-ranker can perform when compared
with state-of-the-art rankers. The results obtained, which are shown in a quite
large section at the end of the paper, reveal that the set of features formed
by successive powers of each single variable (following (Guyon and Elisseeff,
2003) we call variables the raw input variables and features those descriptors
constructed from the original input variables) are a good approximation to
obtain good rankings in nonlinear problems, where a full polynomial expansion
would yield intractable data sets. We will show that SPE-ranker is a filter
whose achievements are equal or better than those reached by more complex
state-of-the-art methods.

The paper is organized as follows: the next section briefly describes several
state-of-the-art ranking methods, including wrappers and filters; the third
section is devoted to describe our filter approach in detail; next, we report a
comparison between our approach and other ranking methods based on the
experimental results obtained on a large variety of artificially generated data
sets; and finally we discuss some experimental results obtained on data sets
designed ad hoc to reveal some limitations of our approach.

2 Some state-of-the-art rankers

In the following we briefly describe some state-of-the-art methods for variable
ranking that belong to one of this categories: wrappers or filters. Let us notice
that most of them are included as part of more complex selection methods but
in our comparative study we will only focus on the rankings they produce. The
only selection that we will consider is the ability of some algorithms, including
SPE-ranker, to eliminate redundant variables.

2.1 The wrapper approach

In first place we are going to review some wrappers that use a support vector
machine (SVM) as the learning algorithm. For ease of reference, let us consider
that a given learning task starts with a training set

S = {(xi,·, yi) : i = 1, . . . , n},

where xi,· ∈ Rm denotes the i-th example described by m input variables (in
particular, xi,j is the value of the j-th input variable in the i-th example), and
yi ∈ {+1,−1} is its class. Then, let us recall that a SVM is able to induce a
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function of the form

f(x) =
n∑
i=1

αiyiK(xi,·,x) + b, (1)

where the predicted output is given by sign(f(x)), K is known as the kernel
function and it is usually defined as the scalar product between the images of
two inputs in a Hilbert space; in symbols, K(v,v′) = 〈φ(v), φ(v′)〉. Therefore,

f(x) = 〈w, φ(x)〉+ b, (2)

where w =
∑n
i=1 αiyiφ(xi,·) is the vector of weights of the input variables

describing the example. In particular, when φ(v) = v, K is named linear
kernel and f(x) is a linear separator.

The first input variable ranker that we are going to describe briefly was pro-
posed by Rakotomamonjy (2003); for the sake of simplicity we will name it in
the rest of the paper as RM (for Rakotomamonjy’s Method). Its ranking cri-
terion orders the list of variables according to the influence of the variations
of their weights; in fact, it is an extension to the nonlinear case of the widely
used RFE (Guyon et al., 2002). This method removes in each iteration the
variable with the lowest ranking value, computed as:

RRM(i) = |∇i‖w‖2| =

∣∣∣∣∣∣
∑
k,j

αkαjykyj
∂K(s · xk,·, s · xj,·)

∂si

∣∣∣∣∣∣ , i = 1, . . . ,m, (3)

where s is a scaling factor used to simplify the computation of partial deriva-
tives of the kernel. Once a variable is removed the ranking is recomputed
applying the same method, that is, training again an SVM with the remain-
ing input variables. The order in which variables are removed constitutes the
final ranking given by the algorithm.

Degroeve et al. (2002) developed another SVM wrapper that was successfully
used for splice site prediction of DNA sequences. We will name their method as
DM. This method uses a ranking criterion such that variables are ordered with
respect to the loss in predictive performance when they are removed. Moreover,
the authors approximate the generalization performance when removing the
i-th variable by the accuracy on the training set while setting the value of that
variable, in every instance, to its mean value. The ranking criterion for this
method can be expresed as

RDM(i) =
∑
k

yk ·
∑
j

αjyjK(x
(i)
j,· ,x

(i)
k,·), i = 1, . . . ,m, (4)

where x
(i)
l,· denotes the vector xl,· where the value for the i-th component was

replaced by its mean value computed in the training set. Notice that a higher
value of RDM(i), that is, a higher accuracy on the training set when removing
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the i-th variable, means a lower relevance of that variable. Therefore, we will
remove the variable yielding the highest ranking value, as opposite to the RM

ranking method described previously.

Another SVM-based ranking method was proposed by Weston et al. (2001).
This method obtains the ranking by scaling the input variables by a real valued
vector σ, where larger values of σi indicate more useful features. The idea is
to find σ taking into account that the kernel can be expressed as:

Kσ(x,x′) = K(x ∗ σ,x′ ∗ σ). (5)

This can be achieved by minimizing the bound of the expectation of the error
probability, which is

EPerr ≤
1

n
E

{
R2

M2

}
=

1

2
E{R2W 2(α0)} (6)

if the training data of size n belong to a sphere of size R and are separable
with margin M . The authors propose to find σ by minimizing bound (6) using
gradient descent. In the rest of the paper we will refer to this method as R2W2.

2.2 The filter approach

The rest of the methods that we are going to summarize in this section are
filters. For the sake of simplicity, in the rest of the paper we will denote column
vectors with just one subindex, that is, xj will mean x·,j. Additionally, y stands
for the target output; that is, the vector whose component yi is the output of
the i-th example.

The first filter that we are going to mention is used in (Stoppiglia et al., 2003)
together with a method for selecting subsets of variables based on the ranking
position of a random feature. For the purpose of our comparative study we are
only going to focus on the ranking mechanism which, in fact, heavily inspired
the approach presented in this paper. The ranking procedure proposed by
Stoppiglia et al. is based on an embedded redundancy elimination mechanism
as follows:

• Select the variable that best explains the target output y. Such variable
will be the one whose corresponding column vector, xi, in the training data
set forms the smallest angle with y; therefore, the ranking criterion can be
expressed in terms of the square cosine of such angle as

RSM(i) = cos2(xi,y) =
〈xi,y〉2

‖xi‖2‖y‖2
, i = 1, . . . ,m. (7)
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Therefore, the variable selected will be the one that maximizes RSM.
• Using the Gram-Schmidt orthogonalization, project the column vectors of

the remaining input variables and the target output onto the space spanned
by the column vectors selected up to this step.
• With the projected data repeat the process starting at the first step until

an stopping criterion is met. Orthogonalization is used to discard the part
of the target concept already explained by previously selected variables, so
the variable selected in the next iteration will be the most relevant with
respect to what is not yet explained.

The use of Gram-Schmidt orthogonalization can also be found in (Guyon
et al., 2003), where the authors propose and compare several feature selection
methods. One of the most promising, which we will refer to as GSReliefK,
coincides with SM, but instead of equation 7, it uses a variant of the ranking
criterion of the popular Relief algorithm (Kira and Rendell, 1992) with Gram-
Schmidt orthogonalization.

The original Relief criterion proposed by Kira and Rendell is to compute a
score for each input variable, depending on how well such variable separates
neighboring examples. The idea is to find for each example of the training
set the nearest example of the same class (a hit example) and the nearest
example of the opposite class (a miss example); the score assigned to each
input variable xi is then computed as the ratio between the average over all
examples of the distance to the nearest miss and the average distance to the
nearest hit, projected on xi. However, this idea is extended in (Guyon et al.,
2003) using the averages of the distances to the k nearest hits and misses.
That is what we denote in this paper as ReliefK.

An interesting approach that also deals with redundancy explicitly is found
in (Yu and Liu, 2004), where the authors present FCBF, a filter consisting in
two separate stages: the first one is a relevance analysis, aimed at ordering
the input variables depending on a relevance score, which is computed as
the symmetric uncertainty with respect to the target output. This ranking
criterion can be expressed as

SU(xi,y) = 2

[
IG(xi|y)

H(xi) +H(y)

]
, (8)

where H(xi) is the entropy of the input variable xi and IG(xi|y) is the infor-
mation gain used for instance in (Quinlan, 1993). Notice that the use of the
entropy assumes that the values of xi must be discrete. This stage is also used
to discard irrelevant variables, which are those whose ranking score is below
a predefined threshold.

The second stage is a redundancy analysis, aimed at selecting predominant
features from the relevant set obtained in the first stage. This selection is
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an iterative process that removes those variables for which xi forms an ap-
proximate Markov blanket. As defined in (Yu and Liu, 2004), a variable xi
forms an approximate Markov blanket for any other variable xj if and only if
SU(xj, y) ≥ SU(xi, y) and SU(xi, xj) ≥ SU(xi, y).

3 A simple ranker

In this paper we propose a new filter method for variable ranking based in
Gram-Schmidt orthogonalization, like those used in the works of Stoppiglia
et al. (2003) and Guyon et al. (2003). However, in our approach the orthogo-
nalization does not have any influence on the ordering of the input variables;
instead, it is used after the construction of a correlation-based ranking as a
process devised for redundancy detection and elimination. This approach re-
sembles the framework proposed in (Yu and Liu, 2004) in which relevancy and
redundancy analyses are explicitly separated.

3.1 Nonlinear correlation-based ranking

In our approach we first construct a complete ranking using a correlation-based
criterion. This criterion relies on the existence of a linear relationship between
the input variables and the target output, circumstance which prevents its di-
rect application on problems where such relation is not linear. However, we can
transform the input space into a new space where a linear-in-its-parameters
model can be tested. This is the same idea found in kernel-based learning
methods which transform the original input space X into a feature space,
Φ(X ).

A polynomial model is acknowledged as a good approximation to nonlinear
functions. However, a full polynomial expansion would require to augment the
original input space with all possible monomials up to a given degree d. This
approach is clearly unfeasible when objects are described by a large number
of variables in the input space. For example, a full polynomial expansion up
to degree 3 of a 150-dimensional input space would yield a feature space with
585,275 dimensions; this number increases up to 1,373,700 dimensions for 200
input variables.

To overcome these enormous feature spaces, we propose a simplified polynomial
expansion (SPE) to transform the input space X into a new feature space
ϕ(X ), which hopefully will have a quasi-linear relationship with the class.
The feature space ϕ(X ) is constructed with the successive powers up to a
given degree d of each input variable. For a m-dimensional input space, the
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Function SPE-ranker (x, y, d) : {O,R}
/* SPE: Simplified Polynomial Expansion */
x̂← (ϕ(x)−Mean (ϕ(x))) = [xji −Mean

(
xji

)
]

i=1,...,m;j=1,...,d

;

ŷ ← [y −Mean (y)];
x̂← x̂

‖x̂‖ ; ŷ ←
ŷ
‖ŷ‖ ; /* Normalize x̂ and ŷ */

/* COMPUTING THE RANKING. . . */
O ← ∅;
repeat
i? ← arg max

i=1,...,m
i 6∈O

(〈x̂ji , ŷ〉
2

j=1,...,d

);

O ← [O, i?]; /* Append index i? to the ranking */
until (|O| = m); /* all variables are ranked */
/* REDUNDANCY DETECTION */
x̂← [xi −Mean (xi)]

i=1,...,m
; /* Using only original input variables */

N ← [‖x̂i‖]
i=1,...,m

; /* N is the vector of norms of x̂, that is, Ni = ‖x̂i‖ */

q ← ∅; R← ∅; i← 0;
repeat
i← i+ 1;
if (i 6∈ R) then
k = Oi; /* k is the index of the column vector to be appended to q */
q ← [q, x̂k

‖x̂k‖ ];
x̂← x̂ after removing x̂k;
N ← N after removing Nk;
x̂← GS-project (x̂, q);
r̂ ← {j : ‖x̂j‖

Nj
< δ; j = 1, . . . , |x̂|};

/* r̂ contains the indexes of the redundant variables detected in the
current iteration, those whose ‖ · ‖ < δ */

R← [R, r̂];
end if
Stop ← (#cols (q) ≥ #rows (q) · ξ) ∨ (i = m);

until (Stop = True)
O ← O after removing R; /* Redundant vars. are removed from the ranking */
return ({O,R});

Algorithm 1. Pseudocode of SPE-ranker. Its input is the training set {x,y}, where
xi : i = 1, . . . ,m are the columns of input matrix x that collect the values of the i-th
variable; y is the column vector of target values (class). It also needs the degree, d,
to be used by the polynomial expansion. The output of SPE-ranker is the ranking of
input variables ordered (O) by their relevancy and a set of redundant (R) variables.

dimension of ϕ(X ) will therefore be m · d.

ϕ(x1, . . . , xm) = (x1, . . . , xm, x
2
1, . . . , x

2
m, . . . , x

d
1, . . . , x

d
m). (9)
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By means of the SPE the ranking obtained in this first stage of our algorithm
can take into account nonlinear correlation with the target output. Notice that
we explicitly refuse to construct features as products among input variables
to avoid a combinatorial explosion in the feature space. For this reason, our
ranker will get into trouble trying to detect relevancy in XOR-like problems,
where the target class only depends on products among input variables. But,
as we will show in Section 5.1, this is a common difficulty for any ranker. How-
ever, when the relation between input variables and the target output is not
exclusively based on these products, SPE-ranker exhibits a good performance.

Given that our aim is to obtain a ranking of variables in the input space (and
not in the feature space), the transformation of the input space X into ϕ(X )
requires some changes in the original ranking criterion. Thus, the ranking score
of a variable xi will be given by the best score among those obtained by the
powers of xi. In symbols, our ranking criterion can be expressed as

RSPE(i) = max
j=1,...,d

ρ2(xji ,y), i = 1, . . . ,m. (10)

To compute the correlation coefficient efficiently we first standardize and nor-
malize the feature vectors, as indicated in Algorithm 1. For efficiency reasons
and given that we normalize the feature vectors after their standardization,
we can skip the division by the standard deviation without affecting the re-
sults; so we are actually normalizing mean-centered vectors, as reflected in
the pseudo-code. Standardization is a preprocessing step usually employed to
avoid the bias caused by very different ranges of values of the input variables.
It is easy to prove that the correlation coefficient between two vectors coincides
with the cosine of the angle formed by those vectors standardized. Addition-
ally, if those vectors are also normalized, then the cosine is simply their scalar
product, so we can rewrite the ranking criterion of equation (10) as

RSPE(i) = max
j=1,...,d

(ρ2(xji ,y)) = max
j=1,...,d

(cos2(x̂ji , ŷ)) =

= max
j=1,...,d

(
〈x̂ji , ŷ〉2

‖x̂ji‖2‖ŷ‖2

)
= max

j=1,...,d
(〈x̂ji , ŷ〉2), i = 1, . . . ,m,

(11)

where ĉ represents the standardized and then normalized version of a given
vector c.

3.2 Redundancy detection

The second stage of our algorithm deals with redundancy detection. For this
purpose, and starting with the ranking obtained in the first stage, we rely on
the Gram-Schmidt orthogonalization as follows:
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(1) First we select the column vector xi corresponding to the leading position
of the ranking. Then a column matrix q is built with x̂i, that is, the
standardized and then normalized version of xi.

(2) The rest of the input variables (column vectors) are standardized and
projected onto the null subspace of q using the modified Gram-Schmidt
algorithm (Björk, 1967) for numerical stability reasons.

(3) The norms of the resulting projections are compared with the norms of
the original standardized vectors. Those column vectors (i.e. those input
variables) whose norm decrease more than a given threshold δ when pro-
jected onto the null subspace of q are considered redundant with respect
to the input variables already included in q, so they are removed.

(4) We normalize and include in q the projection corresponding to the next
input variable following the order given by the ranking. If a stopping
criterion is not met, then we repeat this process starting at step 2.

At the end of the process we obtain a list of redundant variables which
are removed from the ranking obtained in the first stage of the algorithm
SPE-ranker. Notice that, in contrast with SM and GSReliefK, the orthogonal-
ization process is only used to decide which variables should be removed.

The stopping criterion is raised when all the input variables have been pro-
cessed or when the number of vectors appended to q is a fraction ξ of the
vectors needed to become a base of the subspace. This condition is imposed
to avoid the detection of redundancy due to pure algebraic reasons that arise
when the number of examples is smaller than the number of input variables.
For example, let us suppose that we have a data set with 4 examples and
100 input variables; once we have appended 4 vectors to q, the rest of the
column vectors can be expressed as a linear combination of those in q, so the
algorithm would label the remaining 96 variables as redundant. The condition
in the stopping criterion lets the algorithm detect redundancy only when this
process is reliable and not as a result of an algebraic limitation.

4 Experimental results

This section is devoted to show the empirical results obtained by our ranker
and to compare them with the results obtained by some state-of-the-art rankers.
In all cases, we are assuming that the learning task to be performed is a bi-
nary classification, although most of the rankers could deal with multi-class or
even regression problems. To carry out the comparisons we have used a ROC-
based measure to estimate the quality of the rankings obtained on a bunch of
artificial data sets. In the rest of this section we detail how we will estimate
the performance of the ranker, how we have devised the artificial data sets,
and finally we show and discuss the results obtained, focusing on the behavior

10



of the rankers when varying redundancy, number of irrelevant variables and
complexity of the model to be learned.

The MATLAB R© source code of the algorithm and the data sets generator can
be downloaded from http://www.aic.uniovi.es/speranker.

4.1 Performance estimation

Usually, the comparison among different subsets of input variables for a given
data set is established in terms of accuracy yielded by different learners when
applied to the projection of the original data set on such subsets of variables.
This is a very reasonable approach if we do not know anything about the
problem. However, given that we used artificially created data sets in our ex-
periments, we know which are the relevant, redundant and irrelevant variables,
so we can use a ROC-inspired setting to evaluate the quality of rankings, as
was made in (Jong et al., 2004). Moreover, notice that if we want to test
the performance of a ranker, we must avoid the intervention of additional
processes, like learning, since they can only hide the role played by the ranker.

Thus, for a given ranking of m input variables we can draw the so-called
ROC-FR curve (FR stands for Feature Ranking) with the points

{(FPR(i), TPR(i)), i = 1, . . . ,m},

where TPR(i) (respectively FPR(i)) stands for True (False) Positive Rate
and it is calculated as the fraction of true (false) relevant variables whose
position in the ranking is higher than i. We will use the area under the ROC-
FR curve, or AUC-FR for short, as an indicator of the quality of a ranking. A
detailed explanation of the statistical meaning of the area under a ROC curve
can be found in (Hanley and McNeil, 1982; Fawcett, 2003).

There is a slight difference in the way we calculate AUC-FR with respect to the
work of Jong et al. when data sets have redundancy. In their case it is enough
to have any combination of r variables from the 2r relevant ones (r originally
relevant plus r redundant linear combinations of the originally relevant ones)
in the top of a ranking to have a maximum AUC-FR. However, since we use
one-to-one redundancy, that is, each redundant variable is a copy of just one
relevant variable modified by a scale factor, we only consider as relevant either
an original relevant variable or one of its redundant copies (if there is more
than one), whatever occurs first starting from the top of the ranking. We argue
the reason for using this kind of redundancy in Section 4.4.1
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4.2 Artificial data sets construction

In order to compare the performance of some of the algorithms mentioned
in Section 2, with the method proposed in this paper, we have devised a
benchmark setting inspired in the statistical validation environment described
in (Jong et al., 2004). Thus, we define a problem space where each data set is
randomly generated according to the following six parameters:

• Number of input variables (m).
• Number of examples (n).
• Number of relevant input variables (r): This is the number of input variables

involved in the computation of the target concept.
• Degree (d): This parameter sets the degree of the polynomial used to obtain

the target value (class) as explained below.
• Redundancy (η): To take into account the effect of redundancy in the rank-

ing algorithms we have made data sets where η · r irrelevant variables were
replaced by η groups of redundant variables.
• Noise (σ): Input values of some data sets were perturbed by adding Gaus-

sian noise with variance σ. Additionally, a σ×100 percentage of the examples
were labeled with the incorrect class. Noise was added after redundancy.

The combination of different values for the given parameters yields different
points in the problem space; for each of these points we estimated the perfor-
mance of the algorithms as the median of the AUC-FR on 30 different data
sets; we define this as a single experiment. In turn, for a group of single exper-
iments we estimate its performance as the average performance on each single
experiment.

The data sets are generated as follows: for a given point (m,n, r, d, η, σ) in the
problem space, each data set was constructed as a n×m matrix x whose values
follow a uniform distribution in [−1, 1]. To assign a class label to each example,
first we draw a random r×dmatrix (ci,j) with coefficients in [−2,−1]∪[+1,+2].
We used this range to avoid that randomness could eventually produce coef-
ficients close to 0, which would falsify the subset of relevant input variables
given by parameter r. Then we define the following polynomial of degree d

P (v1, . . . , vm) =
d∏
j=1

(
r∑
i=1

(ci,jvi) + bj

)
, (12)

where bj is a random independent term included to ensure that there will
be monomials of all degrees up to d; also notice that there will be monomials
formed by products of different variables. Then, the class label for each training
example xi,· (i-th row of matrix x) was determined by this polynomial as
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Figure 1. Selection of parameter k in the kNN based algorithms, that is, ReliefK
and GSReliefK. For values of k > 30 the improvement is almost unappreciable.

follows:

yi =

+1, if P (xi,·) > median(P (xk,·) : k = 1, . . . , n).

−1, otherwise.
(13)

Finally, we only have to add the corresponding redundancy (η) and noise (σ).

4.3 Parameter setting for the algorithms

Some of the algorithms used in the experiments can be very sensitive to dif-
ferent values of its parameters. For instance, the election of the kernel or the
degree of overfit allowed (regulated by a parameter named C) can have an
impact on the results given by SVM-based algorithms, while scores of Relief-
based rankers are influenced by the number of neighbors used (k).

We have made several trials in order to fine-tune these parameters. Thus,
for the election of parameter C in RM and DM rankers we tried values of C ∈
{10−2, 1, 102, 105}, choosing in each experiment the value that yielded the best
results. This parameter has a default value in the implementation of R2W2 used
in the experiments (the one included in the Spider toolbox (Weston et al.,
2005)), so we used such fixed value for this ranker. Also, for the three SVM-
based rankers (RM, DM, R2W2) we have always used a polynomial kernel of the
same degree of the polynomial relation between the relevant variables and the
target output.

In the same manner, for SM and SPE-ranker we used on each experiment a
polynomial expansion up to the corresponding degree. In SPE-ranker we also
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set ξ = 2
3

(see the stopping criterion of Algorithm 1). The redundancy thresh-
old, δ, is not fixed to any value; instead, it is recalculated at each iteration of
the redundancy stage as a relative amount with respect to the decrease of the
norms of the vectors projected. In symbols,

δ =
1

2

1 +
∑#COLS(x′)
j=1

‖x′
j‖

Nj

1 + #COLS(x′)

 , (14)

where x′ is the matrix with the projections, x′j, of column vectors (see Algo-
rithm 1) and Nj is the norm of the corresponding vector before the redundancy
stage started.

Finally, for the Relief-based rankers we have constructed several artificial
data sets, varying the parameters indicated in Section 4.2 to obtain a sam-
ple of problems from the problem space; we have applied both ReliefK and
GSReliefK on this sample, using different values for k, the number of neigh-
bors. Figure 1 depicts the average results depending on such parameter. Since
there was little or no improvement when using more than 30 neighbors we
have fixed k = 30 for all the experiments described in the rest of this section.

The rest of parameters not explicitly mentioned here were set to their default
values.

4.4 Summary of results

Following the procedure described above to construct the artificial data sets,
we have conducted some experimental comparisons focusing on different char-
acteristics of the problem space to analyze how they affect the performance (in
terms of AUC-FR and computation time) of the algorithms being compared.

In the comparison we have not included the FCBF algorithm given that its
AUC-FR scores were notably worse than those obtained by the rest of the
algorithms (although it was the fastest ranker). We suspect that the reason for
this poor performance is due to its necessity of using discrete input variables.
The lack of a metric relation between the discretized variables and the target
class puts FCBF in trouble when dealing with our artificial data sets, where
the class is obtained as the sign of a polynomial involving the relevant input
variables.

Notice also that the rankers SM, GSReliefK, and SPE-ranker share some ba-
sic components, although combined in different ways, so its inclusion in this
comparative allows us to isolate and compare the benefits of each component
as well as to identify the best combination. Table 1 summarizes the structural
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Table 1
Different combinations of ranking criteria and redundancy detection give rise to
different input variable rankers.

Ranker Polynomial
expansion

Ranking
criterion

Redundancy detection
(Gram-Schmidt)

GSReliefK none Relief during ranking

SM Simplified (SPE) Correlation during ranking

SPE-ranker Simplified (SPE) Correlation after ranking

similarities among these rankers.

In the rest of this section we report the results obtained focusing on redun-
dancy, number of irrelevant input variables and degree of the polynomial rela-
tion between the relevant variables and the class. Additionally, we also studied
the performance on a specific kind of problems constructed following the in-
dications in (Weston et al., 2001) to build nonlinear problems. The results
obtained on these particular problems are shown and commented at the end
of this section. We do not report comparisons of performance varying the num-
ber n of training examples; the reason is that increasing n yields a uniform
improvement in all rankers.

4.4.1 Redundancy analysis

To analyze the effect of the presence of redundant variables we constructed ar-
tificial data sets varying the values of the parameters that define each point of
the problem space; we used the following values: m ∈ {50, 100}, n ∈ {50, 100},
r ∈ {5, 10}, d ∈ {1 (linear), 2}, η ∈ {0 (no redundancy), 1, 2, 3, 4}, and σ ∈
{0, 0.05 (5%)}, yielding 160 points in the problem space. Recall that, for each
point we estimate the performance as the median of 30 different data sets, so
in this analysis we used 160× 30 = 4800 randomly generated data sets.

Worth of mention is the kind of redundancy used in these experiments (when
η 6= 0). Usually, redundancy is attained as a (non)linear combination of all or
part of the relevant variables. However, in our experiments we used a one-to-
one redundancy, that is, each redundant variable is a copy of just one relevant
variable multiplied by a random scale factor. Notice that the presence of noise
will differentiate slightly the values of redundant variables.

Considering the performance measure that we used (AUC-FR) to estimate
the quality of a ranking, this kind of redundancy is harder to discover than
the redundancy due to linear combinations of groups of relevant variables.
Let’s illustrate the rationale behind this affirmation with a simple example.
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Figure 2. AUC-FR results obtained increasing the number of redundant copies of
the relevant variables. In addition to the rankers used in the comparative study,
we have also used a version of our algorithm with redundancy detection disabled,
labeled as SPE w/o GS.

Suppose we have a data set D1 with {a1, a2, a3, a4} input variables, where the
target concept depends only on a1 and a2 and the rest of input variables are
redundant as follows: a3 = αa1 and a4 = βa2. Among all the 4! = 24 possible
rankings, the best in terms of AUC-FR will be those whose two topmost
variables are able to fully explain the target; for data set D1 these should
include either a1 and a2, a1 and a4, a2 and a3, or a3 and a4, yielding 16
different rankings with the highest AUC-FR score. Therefore, a randomly
chosen ranking has a probability of 2/3 to be one of the best possible rankings
with this kind of redundancy.

Now let’s consider a different data set D2, almost identical to D1 except for
the redundant variables, which are defined as follows:

a3 = α1a1 + α2a2;

a4 = β1a1 + β2a2;
and

∣∣∣∣∣∣∣
α1 α2

β1 β2

∣∣∣∣∣∣∣ 6= 0.

In this case, the two topmost variables of any of the 24 possible rankings
contain the information needed to explain the target, so the probability to
choose one of the best rankings is 1. Clearly, the problem of finding the best
ranking is easier in D2 than in D1.

Figure 2 depicts a summary of the results obtained on these artificial data
sets, representing the average AUC-FR achieved on the single experiments.
To evidence the usefulness of the redundancy detection part of our approach
we have made a simple ablation analysis; thus, we have included in this com-
parative the results of a simplified version of our algorithm, labeled as SPE
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Figure 3. This graphic shows the effect of increasing redundancy on the average
time in seconds needed to complete a single experiment (training on 30 different
data sets).

w/o GS, where redundancy detection was disabled.

The trend observed indicates that these algorithms yield better performance as
redundancy increases except ReliefK, R

2W2 and, as expected, SPE w/o GS. We
can also observe that RM and DM exhibit inferior performance than the rest of
the algorithms when there is no redundancy at all (η = 0), but they are clearly
benefited when redundancy appears; in fact, these two methods together with
SPE-ranker achieve the highest scores in these block of experiments.

We have also analyzed the cost, in terms of computation time, of these algo-
rithms. Figure 3 shows the average time in seconds needed by each algorithm
to perform a single experiment (30 data sets). In general, the trend is that
increasing the number of redundant variables does not affect the running time,
with the exceptions of SM, which is faster when there is no redundancy, and
SPE-ranker, whose running time decreases as the number of redundant copies
increases. The reason is that our ranker skips redundant variables as soon as
they are discovered by the Gram-Schmidt orthogonalization. Also, notice the
log scale of the graph: the algorithms with similar performance to SPE-ranker
are between ten and one hundred times slower.

4.4.2 Number of irrelevant input variables

This block of experiments is aimed at observing the effect of irrelevant in-
put variables on the performance of the rankers. For this purpose we have
constructed 4800 artificial data sets, as for the previous block of experiments
described above, but focusing on the effect provoked by variations in the num-
ber of irrelevant variables. Although we have not explicitly defined a parameter
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Figure 4. AUC-FR scores obtained increasing the number of input variables by
adding irrelevant ones.

to determine the number of irrelevant input variables, this is implicitly defined
as (m − r) so we have experimented with several values for m, while r took
only two different values. More precisely, we used the following parameters:
m ∈ {50, 100, 150, 200, 250}, n ∈ {50, 100}, r ∈ {5, 10}, d ∈ {1, 2}, η ∈ {0, 1},
and σ ∈ {0, 0.05}.

A graphical summary of the AUC-FR obtained in this block of experiments
is shown in Figure 4. The best results were achieved by SPE-ranker and R2W2,
which exhibited a similar and almost constant performance, with slight varia-
tions with respect to the variations in the number of input variables. The most
affected algorithms were SM and GSReliefK, whose performance degraded no-
tably as the number of input variables increased. This is due to the fact that
both algorithms embed the orthogonalization process in the construction of the
ranking; as long as these algorithms project the variables in successive itera-
tions, they are “discounting” the information already included in the variables
previously projected, so the more the algorithms advance, the more similar are
the projections obtained and thus it is easier to choose a wrong variable to be
added to the ranking.

Figure 5 shows the average computation time on this block of experiments.
The graph shows that running time for all algorithms increases as the number
of input variables increases, as expected. However, this effect is more promi-
nent for RM and DM, which indicates that these algorithms do not scale well
with respect to the number of input variables. There is also an significant
difference in speed between the two algorithms that yielded the best rank-
ings, SPE-ranker and R2W2, in favor of the former which was approximately
ten times faster than the later.
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Figure 5. Effect on the running time of the variations in the number of input vari-
ables.
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Figure 6. This graphic shows the AUC-FR scores obtained by the rankers depending
on the complexity of the relation between the relevant variables and the target
output.

4.4.3 Degree of the polynomial relation with the class

We made a third block of experiments to analyze the performance with respect
to the complexity of the relation between the relevant input variables and the
target output. Thus, in this case we have focused on the results obtained
varying the degree of the polynomial used to determine the class of each
case. The values of the parameters used to construct the data sets ranged as
follows: m ∈ {50, 100}, n ∈ {50, 100}, r ∈ {5, 10}, d ∈ {1, 2, 3, 4}, η ∈ {0, 1},
and σ ∈ {0, 0.05}.

In this block of experiments we have observed that there is a group of algo-
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Figure 7. Running time and complexity.

rithms yielding an almost constant AUC-FR performance; this group is, in
descending order of performance, SPE-ranker, R2W2, ReliefK and GSReliefK.
On the other hand, we have found that for the linear case (degree 1) the al-
gorithms that performed better were DM, SM and RM, which in this case is, in
fact, RFE (Guyon et al., 2002). However, the performance of these algorithms
clearly decreases as the degree increases. Notice also that, curiously, both RM

and DM exhibited worse behavior for polynomials of even than odd degree.

The computation time of RM, DM and SM was also affected by the increase of
complexity, as it is reflected in Figure 7; RM and DM together with R2W2 show
the highest average running time; however, R2W2 exhibits an almost constant
trend while RM and DM’s trend is unpleasantly increasing with the complexity
of the problem.

4.4.4 Weston’s et al. nonlinear problems

The results obtained in the previous experiments revealed that the best AUC-
FR performance on average was obtained by SPE-ranker, followed by R2W2, so
we decided to analyze the behavior of our method on some of the artificial
problems that were used in the empirical validation of R2W2. For this purpose
we constructed several nonlinear data sets following the indications of the
authors found in (Weston et al., 2001).

Figure 8(A) depicts the scores obtained by each of the compared algorithms,
where each point is the median of 30 different data sets. Although for some
algorithms there is a noticeable difference in performance between data sets
with 20 examples and bigger data sets, the trend of the graphs indicates that
the best results are achieved by RM and GSReliefK, followed by ReliefK, R

2W2,
SPE-ranker and DM. Clearly, SM performs poorly on these data sets.
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Figure 8. AUC-FR for Weston’s et al. nonlinear problems. In (A) we used the
original definition of the problems while in (B) we standardized input variables
before applying the algorithms.

We have made an additional experiment with these data sets, whose results
are drawn in Figure 8(B). In this case we have standardized the input variables
before applying the rankers, a preprocessing stage commonly used to avoid the
bias induced by differences between the ranges of input values. The results,
depicted in Figure 8(B), show that now the standardized version is harder
for R2W2 than the original version. However, the rest of the algorithms are
practically unaffected. In particular, SPE-ranker is not affected given that
input standardization is part of our algorithm.

5 Some limitations of SPE-ranker

In this section we will show how our ranker deals with two particular difficulties
related to the ranking and redundancy detection stages, respectively.

The first difficulty arises in problems where there are input variables which are
useless by themselves but useful when they are considered together. This is an
adverse situation for those algorithms which rank the variables according to
their individual predictive power. In particular, SPE-ranker uses correlation for
this purpose so it is expected that it will be affected under these circumstances.

In turn, correlation between variables can sometimes be the cause of a second
difficulty to arise, in this case regarding the mechanism for redundancy detec-
tion. The idea is that a very high correlation or anti-correlation between input
variables does not mean absence of variable complementarity, as pointed out
by Guyon and Elisseeff (2003). The effect of having two complementary but
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highly anti-correlated variables could make a redundancy detection algorithm
to identify one of such variables as redundant; discarding that variable can be
harmful for a posterior learning process that could eventually take advantage
of both variables to accomplish its task.

We have constructed ad hoc data sets to test the behavior of our ranker under
these particular circumstances. The results are presented in the rest of this
section.

5.1 Apparently useless variables

A typical example of apparently useless variables can be found in problems
where the target output has an XOR relation with some input variables. Here
we present an experimental comparison between the rankers used in Section 4
when applied to XOR-like problems. The data sets for this experimental test
were constructed with n = 100 examples described by m = 100 input variables
whose values followed a uniform distribution in the interval [−1,+1]. We tried
with different number of relevant input variables, r = {2, 3, 4, 5}, labeling each
example with the target output calculated as

yi = sign

 r∏
j=1

xi,j

 . (15)

According to these specifications we constructed 30 different data sets for each
value of r, obtaining with each algorithm 30 values of AUC-FR whose median
is graphically represented in Figure 9.

For those rankers that have a parameter to indicate the degree of the relation
(SPE-ranker, SM, R2W2, RM, and DM) we used the value of the corresponding
r, hoping to approximate the true relation of each data set as much as pos-
sible. However, the poor results (around 50% AUC-FR) show that none of
the algorithms was able to correctly identify the relevant variables. Notice-
able exceptions are ReliefK and RM which performed very good, but only in
the two-dimensional version of the problem. However, when there were more
than 2 input variables involved in the computation of the class, their perfor-
mance decreased down to scores similar to those obtained by the rest of the
algorithms.

A workaround to solve this problem would be to use a full polynomial ex-
pansion, allowing the ranker to detect the product of relevant input variables
as a relevant feature. In fact, this is the original proposal of Stoppiglia et al.
(2003). However, this approach would make many problems intractable due
to the combinatorial explosion of new features, as explained in Section 3.1.
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Figure 9. AUC-FR obtained on XOR-like problems. We have experimented with
several degrees of complexity, from the classical bi-dimensional XOR up to problems
with 5 relevant input variables.

5.2 Highly anti-correlated complementary variables

To illustrate this situation, let us consider (Guyon and Elisseeff, 2003) a bi-
nary classification problem were examples are described by two highly anti-
correlated variables, namely x1 and x2, that follow a normal distribution with
a given standard deviation σ. Figure 11 depicts two problems of this kind,
where examples of each class are distributed along two parallel lines and the
centers of the classes are separated a distance d and aligned perpendicularly
with respect to these lines. Clearly, none of the input variables alone are use-
ful to separate the classes. However, when x1 and x2 are considered together,
classes are easily separated.

To analyze the behavior of SPE-ranker in the presence of anti-correlated vari-
ables we have constructed artificial data sets to simulate this kind of problems,
varying σ from 1 to 3 in steps of 0.1 and varying d as a fraction of σ, from
0.4σ to 0.6σ in steps of 0.01. For each combination of σ and d we randomly
generated 200 different data sets with 100 examples of each class. Figure 10
depicts the average (and standard deviation) percentage of times SPE-ranker
failed; that is, when SPE-ranker detected redundancy for each value of d/σ.

These results show that the classes must be closer than 0.54σ (Figure 11(A))
so that SPE-ranker begins to exhibit an undesirable behavior detecting re-
dundancy. As the distance between classes decreases, the frequency of re-
dundancy detection increases; moreover, when classes are closer than 0.42σ
(Figure 11(B)) our ranker always discard one of the input variables.

We have computed the average correlation between x1 and x2 for each value of
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Figure 11. When classes are separated at least as in (A) SPE-ranker behaves cor-
rectly, considering that there is no redundancy in the input variables. When classes
are closer than in (B) our ranker always discard one of the variables.

d and σ and we have observed a linear relation between such correlation and
the ratio d/σ, which is shown in the table of Figure 10. Therefore, the results
of the previous paragraph can be expressed in terms of correlation coefficients
to conclude that (anti) correlation between variables should be higher than
0.95 to make our ranker have an incorrect behavior; however, for correlation
values lower than 0.92 we can expect a correct behavior of SPE-ranker.
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6 Conclusions

In this paper we have presented a filter approach to obtain a ranking of vari-
ables according to their usefulness for classification; moreover, our filter deals
explicitly with redundancy. The filter was constructed as a combination of a
simplified polynomial expansion (SPE) of the original input variables together
with two classical techniques, correlation and orthogonalization; this simplic-
ity confers the algorithm, named SPE-ranker, a good performance regarding
computation time, while the quality of the rankings obtained is, in general,
better than that of the rankings obtained by more complex state-of-the-art
algorithms. In particular, the simplified polynomial expansion has proved to
be a good heuristic approach to general nonlinear models.

The experimental validation, thoroughly described in the paper, was made on
artificially generated data sets including a variety of conditions of noise, non-
linearity, redundancy, etc. We used a specialized version of the area under the
ROC curve (AUC-FR) to estimate the quality of the rankings obtained. The
aim of this measure is to assess the ranking abilities without the intervention
of any learner.
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