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Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography

plus dry etching techniques on sputter-deposited NdCo5 thin films with perpendicular magnetic ani-

sotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-

of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to

an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the

thicker elements provides an extra tool to design the global magnetic behavior of the patterned lat-

eral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magne-

tometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can

be switched on/off by the applied magnetic field. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4895771]

Patterned magnetic media have been the focus of an

intense research during the last decade due not only to fun-

damental physical interest but also because of their poten-

tial for technological applications.1–7 Usually, these systems

consist in arrays of structures, where the magnetic behavior

is studied as a function of shape and/or structures density

without changing the intrinsic magnetic properties. The use

of magnetic lateral multilayers, i.e., extended films with a

1D lateral modulation of intrinsic magnetic properties, such

as magnetic anisotropy,8 saturation magnetization,9 or

exchange bias,10 introduces an extra freedom degree, which

should be useful in the development of forefront magnetic

devices. The combination of different exchange coupled

materials gives rise to many interesting phenomena in

standard vertical multilayers such as standard exchange bias

in antiferromagnetic/ferromagnetic systems11,12 or isother-

mal field induced exchange bias effects in coupled ferro-

magnetic bilayers with orthogonal anisotropies.13–16 A

lateral exchange coupled configuration could be used to

reproduce these phenomena. For example, exchange-spring

behavior has been demonstrated in soft-magnetic films with

laterally modulated saturation magnetization9 and misfit

strain has been shown to take a central role in the magnetic

configuration of stripe domains in weak perpendicular mag-

netic anisotropy lateral multilayers.17 This lateral approach

can be taken a step further with the design of 2D lateral

structures on continuous magnetic films: ordered 2D arrays

of hard magnetic elements (Co and CoPt) coupled to soft

permalloy films have been used to modify its magnetization

reversal process through magnetostatic interactions;18,19

also, out-of-plane exchange bias effects have been demon-

strated in arrays of CoPt platelets coupled to a continuous

CoPt film with strong perpendicular magnetic anisotropy.20

In this framework, magnetic materials with weak per-

pendicular magnetic anisotropy (PMA),21 such as thin films

of amorphous NdCo alloys, present several interesting fea-

tures for the design of 2D hard/soft lateral composites since

their magnetic behavior is strongly thickness dependent due

to the interplay between out-of-plane anisotropy and magne-

tostatic energy.22 Below a critical thickness, they show a soft

magnetic behavior with in-plane magnetization; however,

above this critical thickness, weak stripe domains are

nucleated in the magnetic film, which implies a significant

hardening of in-plane hysteresis loops and the onset of the

so-called rotatable anisotropy.23 Thus, lateral thickness var-

iations provide a simple way to create a pattern of exchange

coupled hard/soft regions within the sample.17 Even more,

the in-plane easy axis of rotatable anisotropy is determined

by the direction of the last saturating magnetic field.24 Thus,

in-plane magnetic anisotropy in the hard regions can be

tuned through magnetic history, which adds to the flexibility

of the design of the final hard/soft composite.

In this work, we report the fabrication of soft 2D

NdCo5-based magnetic lateral hard/soft composites as

sketched in Fig. 1(a). The samples consist in patterned

microstructure arrays of NdCo5 discs with 3 lm diameter

and 60 nm of thickness, arranged in a square lattice geometry

and exchange-coupled to a NdCo5 etched film with 30 nm of

thickness. This highly symmetric 2D design allows us to

take advantage of rotatable anisotropy to control the mag-

netic response of these systems by the orientation of the last

saturating magnetic field. Actually, we observe an “exchange

bias-like” shift (Hb) of few Oe in the in-plane magnetization

hysteresis cycles [M(H)] of the NdCo5 etched film tunable

through magnetic history.
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The samples have been fabricated by the combination of

electron beam lithography (EBL), sputtering deposition, and

ion milling techniques similar to the process described in

Ref. 25. The patterned microstructures consist of rectangular

300� 1000 lm2 magnetic frames, where the central square

area of 300� 300 lm2 is filled with 3 lm diameter discs, in a

square lattice with different lattice parameters L (6, 7.5, and

9 lm) and different thicknesses regarding to the rest of the

layer [Fig. 1(a)]. First of all, a first EBL process defines a

positive resist mask of Poly(methyl methacrylate) (PMMA)

950 K A4 from MicrochemTM with thickness of �200 nm.

After sputtering deposition and lift-off processes, the desired

magnetic frames with the following layer structure: Si(100)/

Al (10 nm)/NdCo5 (60 nm)/Al (3 nm) are obtained. Then, a

second EBL process is performed to create an array of 12 nm

thick Nb discs, again by sputtering deposition and lift-off,

over the center of the magnetic frame, which will act as a

protective mask during an Arþ ion milling. In this way, we

get, after the milling of the complete Nb layer, an exchange

coupled system of 60 nm thick NdCo5 discs within 30 nm

thick NdCo5 etched layer [Fig. 1(b)]. Finally, a 3 nm Al pro-

tective layer is sputter deposited over the whole sample to

prevent oxidation. During this process, continuous control

samples have been fabricated within the microstructures fol-

lowing all fabrication steps mentioned above. These unpat-

terned samples consist, after an Arþ ion milling process, in

full films of NdCo5 with 60 and 30 nm of thickness. In the

former case, the sample was coated with 12 nm Nb protec-

tive layer.

Figure 1(c) shows the resulting hysteresis loops in the

control continuous layers sputter deposited at the same time

that the 2D micro-composite, measured by transverse

magneto-optical Kerr effect (T-MOKE),26 where the applied

magnetic field direction is parallel to the in-plane E.A.

Depending on the thickness of the magnetic layer, the mag-

netic hysteresis loop of the system can change from a clear

transcritical loop (a reduced in-plane remanent magnetiza-

tion followed by an almost linear reversible region as the

magnetization approaches to saturation) with remarkable

PMA (Nb protected layer), to an in-plane uniaxial loop

(etched layer) with a reduction in coercivity from 300 Oe to

50 Oe in agreement with previous results.25,27,28 The reason

for the in-plane uniaxicity comes from the co-sputtering dep-

osition method29 and its magnetic easy axis (E.A.) is parallel

to the short side of the magnetic frames [Fig. 1(a)]. In the

patterned sample, the behavior indicated by the control films

is confirmed, as can be observed from the remanence mag-

netic force microscopy image of a disc and its surrounding

etched film [Fig. 1(d)]. The signal from the disc shows mag-

netic stripe domains and the etched film around it not, thus

we have fabricated an exchange coupled 2D hard-soft sys-

tem, where the discs present a PMA magnetic material

behavior with weak magnetic stripe domains17,22,30 and the

rest of the layer exhibits an in-plane uniaxial magnetization

behavior. The magnetic differences between the discs and

the etched layer allow us to perform the following experi-

ment to control the magnetization reversal in this last one:

first, by the application of an in-plane saturating field

(H� 1500 Oe) we can orient the weak magnetic stripe

domains in the discs along the field direction,23,25 and sec-

ond, measure the hysteresis loops of the etched layer in the

in-plane E.A. direction with a field amplitude smaller than

150 Oe which, according to the hysteresis loops of the con-

trol layers shown in Fig. 1(c), should be enough to reverse

the etched layer keeping the discs magnetization orientation

unchanged. The selected saturation senses are positive (!)

and negative ( ), both parallel to E.A., and also perpendicu-

lar (").
In Figure 2, the hysteresis loops of the sample with a lat-

tice parameter L¼ 7.5 lm are presented with domain images

taken simultaneously to the acquisition of the loops by Kerr

Microscopy (KM).22 Images and loops are measured

FIG. 1. (a) Scheme of the NdCo5 discs

patterned arrays. (b) Atomic force mi-

croscopy (AFM) profile of a disc and

surrounding layer (image at inset). (c)

In-plane hysteresis loops measured by

transverse magneto-optical Kerr effect

of the continuous NdCo5 control sam-

ples showing the Nb protected and

etched layers. (d) Magnetic force mi-

croscopy (MFM) profiles of both, disc

and surrounding etched layer (image at

inset).
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following the previous method: after positive E.A. [Fig. 2(a)

(1–6)], perpendicular to E.A. [Fig. 2(b) (7–12)] and negative

E.A. [Fig. 2(c), images not shown] saturations. Dark and

bright grey contrasts in KM images indicate in-plane mag-

netization domains pointing to the left ( , white arrows)

and right (!, black arrows), respectively, and the magnetic

field direction applied during the loop measurement is paral-

lel to the etched layer E.A., which is parallel to the arrows in

the images. The jump on the Kerr signal has been normalized

between the positive and negative saturation senses of the

etched layer. The NdCo discs keep their image color (same

orientation of the in-plane M component) during the whole

M(H) loop of the etched layer, which should introduce a ver-

tical shift in the M(H) cycle, as reported in Ref. 16.

An asymmetry in the backward and forward branches of

the hysteresis loops and an “exchange bias-like” field shift

(this last one calculated as half the difference between the

coercive fields of the loops) can be observed in the positive

[Fig. 2(a)] and negative [Fig. 2(c)] E.A. orientations, respec-

tively, while in the perpendicular one, no bias-field shift is

observed and the loop keeps its symmetry [Fig. 2(b)]. Thus,

the system exhibits a tunable “exchange bias-like” effect,

which is a very interesting feature in exchange bias standard

vertical multilayers.11,31 Our results show a similar behavior

than those reported in Refs. 12 and 16 but with external

applied magnetic fields needed to tune the exchange bias

effect at least one order of magnitude lower (103 Oe) than

those used (104–105 Oe) in Refs. 12 and 16.

The observed tunable exchange bias-like effect can be

linked to coupling effects between the discs and the etched

layer. In general, the coupling in laterally patterned struc-

tures is caused by exchange at the interfaces and magneto-

static charges created by the lateral modulation of in-plane

magnetization.30 In the present case, KM images indicate

significant differences in the magnetization reversal of inter-

disc areas [labeled as I in Fig. 2(d)] and of the linear regions

in between the rows of discs [labeled as II in Fig. 2(d)]. In

the case of positive E.A. orientation, regions II reverse first,

while regions I remain with the original magnetization orien-

tation [Fig. 2(a) (1–2)]. A field of �100 Oe is needed to com-

pletely remove these inter-disc domains. The second

magnetization reversal shows the opposite behavior: the first

reversed domains appear at regions I [Fig. 2(a) (4)] and,

then, expand into regions II [Fig. 2(a) (5)], and the final field

to saturate the etched layer is reduced to 70 Oe. The same

behavior is observed in the negative E.A. orientation of the

FIG. 2. Kerr microscopy hysteresis loops and domain images of the sample with lattice parameter L¼ 7.5 lm after disc’s in-plane magnetization orientation

parallel positive [(a), images (1–6)], perpendicular [(b), images (7–12)], and parallel negative [(c), images not shown] to E.A. (schemes at inset of hysteresis

loops). (d) Stray field map at remanence along the E.A. (Hstray) obtained by micromagnetic calculations for an array of discs with L¼ 6 lm. Regions I and II

correspond to inter-disc and linear areas in between the rows of discs, respectively.
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discs in-plane magnetization, but in the opposite order.

These different magnetic domains behaviors are responsible

of the asymmetries observed in the branches of the M(H)

loops. In the case of perpendicular to E.A. orientation, no

inter-disc domains are observed during the whole magnetiza-

tion reversal process [Fig. 2(b) (7–12)]. Regions I and II are

directly connected with the configuration of the stray field

created by the array of discs. We have performed micromag-

netic simulations by using Mumax 3.5 (Ref. 32) of the mag-

netic configuration of the array of discs (L¼ 6 lm) after

saturating them in-plane and along the positive E.A. direc-

tion. The simulation was done using an exchange stiffness of

10�6 erg/cm, a PMA energy density of 106 erg/cm3 and a sat-

uration magnetization of 103 emu/cm3. Figure 2(d) shows a

map of the calculated stray field (Hstray) along the E.A. cre-

ated by the discs in regions I and II at remanence after satu-

rating them at the positive direction. Region I corresponds to

a positive stray field, whereas in regions II, Hstray changes

between positive and negative values. The local stray field in

the center of region I has positive values of 40 Oe at discs

remanence and 17 (22) Oe at forward (backward) coercive

field (Hc). Therefore, we have always a significant positive

bias field in region I, indicating that magnetostatic interac-

tions alone can introduce a shift in the hysteresis loop.

However, in the presented system, the exchange interaction

between the discs and the etched layer should also play a

role in the observed exchange bias-like effect. In Table I, the

experimental forward (Hþc ) and backward (H�c ) coercive

fields and bias field (Hb) as a function of sample lattice pa-

rameters (L) are presented for the three different disc’s in-

plane magnetization orientations: parallel [positive (!) and

negative ( )] and perpendicular (") to E.A. The applied

magnetic field amplitude during the measurement of the hys-

teresis loops is 150 Oe for the sample with L¼ 6 lm and

120 Oe for the others.

The existence of a switchable bias field shift is observed

in all the fabricated samples due to the same magnetic

domain’s behavior during the magnetization reversal proc-

esses. This shift can be understood in terms of exchange and

magnetostatic interactions between the discs and the surround-

ing etched layer, mainly because of the in-plane magnetization

discontinuities at the discs edges.30 The discs act as nucleation

points for the domains in the etched layer with the same orien-

tation than the discs in-plane magnetization (! or  ), and

because of the stray field generated at the edges, a faster

(stronger) growth (pinning) of reversed (original) inter-disc

domains takes place. Due to its magnetostatic origin, we can

tune the magnitude of the bias field by changing the lattice pa-

rameter of the system as illustrated in Table I, where the sam-

ple with L¼ 9 lm shows a Hb of 4.5 Oe, which is smaller than

the bias field of the L¼ 7.5 lm sample (7.0 Oe). However, not

only the lattice parameter controls the strength of Hb, but also

the maximum amplitude of the applied magnetic field during

the measurement of the hysteresis loop of the etched layer

seems to play an important role. In the case of the sample

with L¼ 6 lm, a field amplitude of 150 Oe has been used to

completely saturate the etched layer (because of the higher

strength of the bias field). We think that the effect of this

higher applied field amplitude induces a different minor loop

in the discs so that the recorded in-plane magnetization com-

ponent is reduced, originating a smaller stray field that con-

tributes to the bias field decrease. This phenomenon was also

observed in Refs. 13 and 16 for a system consisting of two

perpendicularly coupled ferromagnets.

In summary, we have fabricated patterned 2D NdCo5-

based magnetic lateral hard-soft composites with PMA,

where the thickness of the NdCo5 layer is laterally modu-

lated so that soft (hard) regions are below (above) the critical

thickness for nucleation of weak stripe domains in the sys-

tem. This spatial modulation of the magnetic behavior leads

to an exchange coupled system, which exhibits a tunable

“exchange bias-like” shift in the M(H) hysteresis loops of

the thin NdCo5 etched layer, switchable (on/off) by the ori-

entation of the weak stripe domains of the thick NdCo5 discs

that are controlled by the last saturating magnetic field.
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