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Study of the aerobic biodegradation of coke wastewater in a two and
three-step activated sludge process
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I. Vázquez, J. Rodrı́guez, E. Marañón ∗, L. Castrillón, Y. Fernández5

Department of Chemical and Environmental Engineering, Higher Polytechnic School of Engineering, University of Oviedo, 33204 Gijón, Spain6

Received 14 September 2005; received in revised form 1 May 2006; accepted 2 May 2006

7

Abstract8

A laboratory-scale biological plant composed of two aerobic reactors operating at 35 ◦C was used to study the biodegradation of coke wastewater.
The main pollutants to be removed are organic matter, especially phenols, thiocyanate and ammonium nitrogen. The concentrations of the main
pollutants in the wastewater during the study ranged between 922 and 1980 mg COD/L, 133 and 293 mg phenol/L, 176 and 362 mg SCN/L and
123 and 296 mg NH4

+–N/L. The biodegradation of these pollutants was studied employing different hydraulic residence times (HRT) and final
effluent recycling ratios in order to minimize inhibition phenomena attributable to the high concentrations of pollutants. During the optimisation of
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 Phe operating conditions, the removal of COD, phenols and thiocyanate was carried out in the first reactor and the nitrification of ammonium took
lace in the second. The best results were obtained when operating at an HRT of 98 h in the first reactor and 86 h in the second reactor, employing
recycling ratio of 2. The maximum removal efficiencies obtained were 90.7, 98.9, 98.6 and 99.9% for COD, phenols, thiocyanate and NH4

+–N,
espectively. In order to remove nitrate, an additional reactor was also implemented to carry out the denitrification process, adding methanol as an
xternal carbon source. Very high removal efficiencies (up to 99.2%) were achieved.

2006 Published by Elsevier B.V.

eywords: Coke wastewater; Phenol; Ammonium; Thiocyanate; Activated sludge; Nitrification; Denitrification

. Introduction

Coke wastewater is a complex industrial wastewater present
n many steel production facilities that originates from the pro-
ess of destructive distillation of coal at high temperatures
900–100 ◦C) in the absence of air. The coal breaks down, giving
ise to gases, liquid and solid organic compounds of low molec-
lar weight and a non-volatile carbonaceous residue known as
oke.

The substances exiting the coke ovens as liquids under ambi-
nt conditions undergo further processing so as to obtain by-
roducts such as ammonium sulphate, the resulting wastewater
rom these processes constituting coke wastewater, which con-
ains considerable amounts of toxic compounds such as CN−,
CN− and phenols [1–3].

Phenol is a highly toxic organic compound even at low
oncentrations and its presence in aqueous media is severely

∗ Corresponding author. Tel.: +34 985182027; fax: +34 985182337.
E-mail address: emara@uniovi.es (E. Marañón).

restricted by current legislation. Coke wastewater also contains
high concentrations of ammonium salts, thiocyanates and chlo-
rides, though low concentrations of heavy metals, and very low
levels of phosphorus [4,5]. The individual concentrations of each
pollutant vary due to the different types of coal and conditions
used in the coking process.

In a biological nitrification process, the autotrophic microor-
ganisms that oxidize the NH4

+–N are normally sensitive to the
presence of certain chemical substances such as phenols [6].
However, this sensitivity can be overcome by decreasing the
effective concentration of the inhibiting compounds by means
of adsorption, precipitation, quelation and biodegradation. Nitri-
fying microorganisms may also develop a tolerance to the
inhibitors. Other compounds contained in coke wastewater that
have a toxic effect on oxidizing bacteria, both autotrophic and
heterotrophic, are CN− (at concentrations higher than 50 mg/L),
SCN− and NH4

+–N itself at high concentrations [7]. Similarly,
biological degradation of SCN− is also affected by the presence
of compounds such as NH4

+–N, phenols, NO2
− and NO3

− [8].
The complexity of coke wastewater resulting from the pres-

ence of a great variety of pollutants that may be removed biolog-
304-3894/$ – see front matter © 2006 Published by Elsevier B.V.
oi:10.1016/j.jhazmat.2006.05.007
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ically but which are also toxic for the microorganisms that carry59

out their degradation make it necessary to conduct an in-depth60

study of the biological treatment of these pollutants in order to61

optimize the process.62

This paper presents a study of the biological treatment of coke63

wastewater that forms part of a European project whose general64

aim is to study biological processes for treating wastewater from65

the steel industry. The present study focuses on coke wastewater,66

since at the time of carrying out the study, no biological treatment67

plant for this type of wastewater existed in Spain, though a num-68

ber of industrial plants were in operation in other countries. In69

Zentralkokerie Saar, Dillingen (Germany), the process has two70

biological steps: the first includes denitrification and removal of71

organic matter and is carried out in separate tanks; nitrification72

takes place in the second step. In other existing plants, such as73

those in Kaiserstuhl (Germany), Serémage (France) and Sidmar74

(Belgium), a prior sedimentation step is followed by a biological75

treatment (combination of aerobic and anoxic tanks) and sludge76

settling and treatment. The main differences among these plants77

are the aeration system (pure oxygen or air), the type of coag-78

ulant, the concentration of excess sludge and the use or not of79

dilution water.80

The removal of organic matter, phenols, SCN− and NH4
+–N81

in a one-step activated sludge system was previously studied and82

the results are pending publication. Phenol removal efficiencies83

were always higher than 90% even for an HRT of 17.6 h and COD84
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tank. The mixed liquor from this first reactor passed into a 114

settling tank by gravity, the sludge being recycled to the reac- 115

tor with a recycling ratio (R = QR/Q) of 1 by means of an 116

Ismatec Ecoline pump model VC-280. The clarified effluent 117

(effluent 1) from the first settling tank was fed by gravity into 118

a second aerated tank of 15 L volume in which nitrification 119

took place. As the wastewater presents very low alkalinity val- 120

ues, a dosage of sodium bicarbonate that varied between 0.84 121

and 1.4 kg/m3 depending on the ammonium concentration was 122

added to this reactor as a source of carbon in order to favour the 123

growth of autotrophic microorganisms. The amount added is 124

in accordance with a consumption of 6.5 kgCaCO3/kgNH4
+–N, 125

found to be the optimum in a previous study [9]. The mixed 126

liquor from the second aerated reactor passed by gravity into 127

a second settling tank in which the sludge was separated and 128

recycled to the reactor by means of an Ismatec pump model 129

VC-380 with R = 1, obtaining a final clarified effluent (effluent 130

2). 131

From Day 261 onwards, the final effluent was recycled to the 132

first reactor by an Ismatec pump model ISM 834A with the aim 133

of decreasing the concentration of NH4
+–N in the reactor and 134

of favouring the biodegradation of SCN− (as the presence of a 135

higher ammonium concentration was found to decrease SCN−
136

removal efficiency) [9]. Different recycling ratios (R = 1–3) were 137

employed to determine the optimum value. 138

The pH of the first reactor was kept around 6–6.5, found to 139
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emovals of up to 75% were obtained. Biodegradation of SCN−
nd nitrification varied depending on the addition of bicarbonate
o the system (as the alkalinity of the coke wastewater employed
n the study was very low). A maximum removal of 90% was
chieved for SCN− working at very high HRT (167 h) and of
1% for NH4

+–N for an HRT of 54.3 h.
Although it is possible to remove a major part of the pol-

utants contained in the wastewater using a single-step pro-
ess, the concentrations obtained in the effluent are not low
nough for disposal. In the present paper, a potential solution
o obtain higher removal efficiencies involving a two-step pro-
ess is studied. Organic matter and SCN− are removed in the
rst step and nitrification is performed in a second. In order

o complete the removal of nitrogen compounds, a series of
enitrification experiments were carried out in an additional
tep.

. Materials and methods

The wastewater from a coke plant previously underwent a
tripping treatment with NaOH to maintain NH4

+–N concentra-
ions at values of around 200 mg/L. The wastewater was stored in
200 L tank to which sulphuric acid was added to decrease pH,
long with Na2HPO4 as a source of phosphorous (130 g/m3),
l2(SO4)3 to facilitate clarification of the effluent (10 g/m3) and
small amount of antifoaming agent (NALCO 71D5). Start-up
f the reactors was carried out using sludge from the leachate
reatment plant at the Central Landfill for Municipal Solid Waste
f Asturias (COGERSA).

The wastewater was pumped by means of an Ismatec Ecol-
ne pump model ISM 834A into a 17 L volume activated sludge
HAZMAT 5593 1–8

e the optimum value for the biodegradation of thiocyanates in
previous study [9], in agreement with other researchers [8].
he second reactor was operated at a pH of 8–8.5 to favour
itrification. The temperature of both reactors was kept constant
t a value of 35 ± 0.5 ◦C by means of a heating element. This
emperature was chosen due to the fact that the temperature of
oke wastewater at the steel works usually varied between 35 and
5 ◦C, Moreover, as is well known, mesophilic microorganisms
perate in the range 10–35 ◦C, the reaction kinetics increasing
ith temperature.
The volatile suspended solids in the mixed liquors repre-

ented an average percentage value of 75% of total suspended
olids and ranged between 2.0 and 3.0 g/L. The sludge generally
resented good settling conditions throughout the entire oper-
tion (Sludge Volume Index, SVI, lower than 100 mL/g). The
xygen concentration in the reactors was always kept above
mg/L.

Different volumetric flow rates were employed and thus dif-
erent hydraulic retention times (HRT). Table 1 shows the differ-
nt HRT employed and the average concentrations of pollutants
uring the different steps of the study. Due to variations in the
omposition of the coke wastewater, it was very difficult to main-
ain a fixed value for the organic loading rate (OLR) and for the
itrogen loading rate (NLR), and so the chosen operating param-
ter was the HRT. Table 2 shows the values of OLR, NLR and
ood to microorganisms ratios (F/M) for the different working
onditions.

The study of the final denitrification stage commenced once
he two-step process was operating steadily, with HRT of 96
nd 86 h in the first and the second reactor, respectively, and an
ffluent recycling ratio of 2. The final effluent from the two-step
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Table 1
Average composition of coke wastewater under different working conditions

HRT1 (h) HRT2 (h) R pHa COD (mg O2/L) SCN− (mg/L) NH4
+–N (mg/L) Phenols (mg/L)

27.8 20.3 0 6.9 1539 316 193 264
42.4 31 0 6.7 1454 298 204 255
61 44.6 0 5.8 1197 234 186 194
98 86 0 5.3 1175 266 233 237
98 86 1 2.6 1187 215 194 187
98 86 2 2.2 1361 277 206 221
98 86 3 2.2 1609 326 180 193

a These values are obtained after the addition of 98% H2SO4 (initial pH values: 8.1–8.8).

process was fed into a 10 L volume reactor. The study lasted171

156 days, employing different HRT (86.4, 61.7 and 43.2 h),172

SRT (71, 52 and 37 days) and F/M ratios (0.17, 0.30 and173

0.44 kgNO3
−/kgSSV/day). The oxygen concentration in the174

denitrification reactor was kept around 0.16 mg/L to maintain175

the anoxic conditions required for the denitrification process176

[10].177

The pH inside the denitrification tank was kept between178

8.3 and 8.5 [11]. The average concentration of total suspended179

solids (TSS) in the denitrification reactor was 3.0 g/L, 78% being180

volatile suspended solids (VSS).181

With the aim of monitoring the biodegradation process tak-182

ing place inside the reactors, the influent and the effluents were183

analysed using standard methods [12]. In the case of not being184

able to carry out immediate analyses, the samples were always185

kept under refrigeration at 4 ◦C. Phenols, COD and nitrates186

were analysed by colorimetric methods using a HACH DR/2010187

Spectrophotometer. NH4
+–N concentration was measured by188

potentiometry using an Orion 95–12 BN ion selective electrode.189

SCN− was analysed by means of a colorimetric method based on190

the formation at an acid pH of an intense red complex between191

Fe+3 and SCN−.192

3. Results and discussion 193

3.1. Removal of thiocyanate 194

Fig. 1 shows the concentration of SCN− in the influent 195

and effluents from both reactors, as well as the total removal 196

efficiency obtained throughout the study. Removal efficiencies 197

higher than 90% were obtained for a recycling ratio of 2, the 198

maximum being 98.7%. Very low SCN− concentrations in the 199

effluent were likewise achieved (minimum value: 4 mg/L). An 200

important decrease in removal was observed when the recycling 201

ratio was increased to 3. This ratio gave rise to hydrodynamic 202

problems in the reactors and system instability, resulting in final 203

SCN− concentrations of up to 81 mg/L. 204

Note should be taken that SCN− removal occurred in both 205

reactors, since its biodegradation may take place via differ- 206

ent mechanisms [8,13]. According to Kim and Katayama [14], 207

Thiobacillus thioparus oxidizes thiocyanate as an energy and 208

nitrogen source to CO2, NH3 and SO4
−2 during autotrophic 209

growth. Likewise, several heterotrophic bacteria degrade thio- 210

cyanate during their growth and use the released ammonia as a 211

source of nitrogen [15,16]. 212

Table 2
A +

S

R

S VSS

R
3.0
2.2
1.5
1.9
2.1
1.9
2.2
U
N

C
O

R
Rverage COD and NH4 –N removals under different working conditions

RT HRT R kgCOD/m3d

eactor 1
38 27.8 0 1.33
42 42.4 0 0.82
47 61 0 0.48
76 98 0 0.29
76 98 1 0.35
93 98 2 0.42

100 98 3 0.78

RT HRT R kgNH4
+–N/m3d

eactor 2
32 20.3 0 0.14
32 31 0 0.08
32 44.6 0 0.10
52 86 0 0.09
64 86 1 0.04
73 86 2 0.02
54 86 3 0.05
HAZMAT 5593 1–8

VSS (g/L) kgCOD/kgVSS/day COD removal (%)

3.0 0.41 45.5
2.6 0.31 68.6
2.0 0.26 77.6
2.1 0.13 65.9
2.5 0.13 79.6
2.8 0.13 86.2
2.6 0.15 74.9

(g/L) kgNH4
+–N/kgVSS/day NH4

+–N removal(%)

0.04 65.6
0.03 67.1
0.05 34.7
0.03 99.0
0.02 97.6
0.01 99.3
0.01 32.4
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Fig. 1. SCN− evolution in the influent and effluents and total removal efficien-
cies obtained in the biological treatment of coke wastewater.

Recycling of the effluent favoured the biodegradation of213

SCN− in the first reactor, as it leads to a decrease in NH4
+–N214

concentration. The biodegradation of SCN− may be influenced215

by the presence of other compounds such a NH4
+–N, phenols,216

nitrates or nitrites [7,8]. To evaluate this influence, the effect of217

NH4
+–N concentration on SCN− removal was studied for an218

HRT of 98 h and different recycling ratios. The ammonia con-219

centration in the first reactor is plotted against removed SCN−
220

in Fig. 2. The experimental data can be fitted (r = 0.994) to a221

theoretical curve according to the following equation:222

%SCN− = 100 + 15.1 × (1 − e0.0056 × [N–NH+
4 ])223

According to this curve, employing an HRT of 98 h, removal effi-224

ciencies of SCN− higher than 98% are obtained when NH4
+–N225

concentrations are lower than 23 mg/L. If the NH4
+–N concen-226

tration increases above 260 mg/L, however, the efficiency will227

fall below 50%. Other authors [8] found that ammonium nitrogen228

presents a slightly inhibitory effect on thiocyanate degradation229

for concentrations higher than 3 g/L. However, these authors230

employed synthetic wastewaters in their studies. Industrial coke231

wastewater may present a greater complexity owing to the pres-232

ence of different types of toxic pollutants.233

The removal of SCN− in the first reactor by heterotrophic234

bacteria is a relevant factor for the subsequent correct function-235

Fig. 2. NH4
+–N influence on SCN− biodegradation for an HRT of 98 h.

ing of the nitrification process in order to avoid inhibitory effects 236

in the nitrifying bacteria [9]. 237

3.2. Removal of COD 238

Fig. 3 shows the COD concentration in the process influent 239

and effluents as well as total removal efficiencies. COD removals 240

Fig. 3. COD evolution in the influent and effluents and total removal efficiencies
obtained in the biological treatment of coke wastewater.
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of around 80% were obtained for an HRT1 of 61 h, increasing241

to around 90% when the effluent was recycled, except for a242

recycling ratio of 3, for the aforementioned reason.243

Apart for the first few days of operation, in which the system244

was not steady, the concentration in the effluent from Reactor 1245

was very similar to that from Reactor 2, which means that the246

COD is almost totally removed in the first step. The lower COD247

concentration obtained in the final effluent was 159 mg/L for an248

HRT1 = 96 h and R = 2.249

As can be seen in Table 2, except for the lowest HRT250

employed (OLR = 1.3 kgCOD/m3 d), the average COD removals251

were always ≥70% under the different working conditions (OLR252

from 0.3 to 0.8 kgCOD/m3 d. and F/M ratios from 0.13 to253

0.31 kgCD/kgVSS/day.254

3.3. Removal of phenols255

The concentration of phenols in the final effluent varied256

between 2.3 mg/L for R = 2 and 16 mg/L for R = 3, being very257

similar to that obtained in effluent 1. This means that phenols are258

also mainly removed in the first reactor (Fig. 4). Very high total259

removal efficiencies (≥95%) were obtained under all the con-260

ditions employed, values higher than 98% being obtained for a261

recycling ratio of 2. Removal decreased slightly when operating262

at R = 3, due to the aforementioned problems of instability.263

F
c

3.4. Removal of NH4
+–N 264

One of the aims of the two-step process was to remove 265

NH4
+–N in a second reactor once the major part of COD, phe- 266

nols and SCN− had been removed in the first step. Autotrophic 267

nitrifying microorganisms need to have a certain available alka- 268

linity. With an average alkalinity value in the wastewater of 269

0.25 gCaCO3/L and for an initial NH4
+–N concentration of 270

around 200 mg/L, the ratio kgCaCO3/kgNH4
+–N is 1.25, a 271

clearly low value [10,17]. In a previous study, a value of 272

6.5 kgCaCO3/kgNH4
+–N was found to be the optimum for 273

NH4
+–N removal in this coke wastewater [9]. Therefore, alka- 274

linity was added throughout the entire study to the nitrification 275

reactor in the form of sodium bicarbonate. 276

Fig. 5 shows the variation in NH4
+–N concentration in the 277

influent and effluents as well as the total removal obtained via 278

nitrification. The ammonia concentration in the influent ranged 279

between 123 and 296 mg/L. Throughout the first part of the 280

experiment (from Day 1 to 140), effluent 1 presented lower 281

NH4
+–N concentrations than the influent, which means that 282

nitrification was partially taking place in the first reactor. This 283

could be the result of poor control of pH during that period (aver- 284

age pH 8.5 in the first reactor), since pH values of between 7.8 285

and 8.9 favour the nitrification process [18,19]. From Day 150 to 286

240, operating at higher HRT but without recycling of the final 287
C
O

R
R

E
C
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U
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ig. 4. Phenols evolution in the influent and effluents and total removal efficien-
ies obtained in the biological treatment of coke wastewater.

F
c

HAZMAT 5593 1–8

ig. 5. NH4
+–N evolution in the influent and effluents and total removal effi-

iencies obtained in the biological treatment of coke wastewater.
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Fig. 6. Influence of SCN− on removed NH4
+–N loading rate in the nitrification

reactor for an HRT of 44.6 h.

effluent, the ammonia concentration increased in the first reactor.288

This may be due to both the transformation of organic nitrogen289

into NH4
+–N and the biodegradation of SCN− into NH4

+, CO2290

and SO4
2− [7,8,13].291

The highest ammonium removal (99%) was obtained when292

operating at an HRT2 of 86 h and a recycling ratio of 2 (min-293

imum effluent concentration of 0.12 mgNH4
+–N/L), although294

very high removals were also obtained for the same HRT without295

recycling of the final effluent. As occurs with the other pollu-296

tants, a recycling ratio of 3 gave rise to a decrease in removal297

efficiency. Table 2 shows the average removals obtained under298

the different working conditions. For an SRT of 32 days, an299

increase in the nitrification efficiency was not observed when300

increasing the HRT. With respect to the specific loading rate,301

values higher than 0.04 kgNH4
+–N/kgVSS/day led to a decrease302

in nitrification. A marked increase in nitrification was observed303

for an SRT of 52 days and an HRT of 98 h. Under these working304

conditions, the presence of thiocyanate does not seem to have a305

notable influence on nitrification. When the recirculation ratio306

was increased from 2 to 3, removal decreased from 99 to 32%307

due to hydrodynamic problems.308

To study the influence of SCN− on nitrification when operat-309

ing at low HRT, experiments were carried out with coke wastew-310

ater containing different concentrations of SCN for an HRT of311

44.6 h. The experimental results, shown in Fig. 6, were fitted312

to an exponential curve (r = 0.997) according to the following313

e314

N315

where N is the volumetric nitrification rate (kg NH4
+–N 316

removed/m3/day). 317

According to the theoretical curve, in the absence of SCN−, 318

0.081 kgNH4
+–N/m3/day could be removed, whereas for SCN−

319

concentrations higher than 150 mg/L, the denitrification rate 320

decreases to 0.037 kgNH4
+–N/m3/day. 321

To evaluate whether the nitrification process functions cor- 322

rectly, measurement of the NH4
+–N concentration alone would 323

be insufficient, since this does not confirm that the final product 324

obtained is NO3
−. In some cases, the final transformation of 325

NO2
− to NO3

− in the final nitrification step may be inhibited, 326

especially when the concentration of dissolved oxygen in the 327

mixed liquor is lower than 2 mg/L or when SRT lower than 15 328

days are employed [20,21]. 329

Throughout this study, the concentration of both compounds 330

was measured regularly, no NO2
− being detected, the NO3

−
331

concentration ranging between 282 and 428 mgNO3
−–N/L. 332

In order to remove the nitrate formed in the nitrification pro- 333

cess, the effluent from the two-step process was treated in a 334

third reactor of 10 L volume. Table 3 shows the average con- 335

centrations of the different pollutants in the effluent entering 336

the denitrification reactor for the different HRT employed. The 337

concentrations of COD, phenols and SCN− fed into the denitri- 338

fication reactor were very low, since these pollutants had already 339

been removed in the previous steps. COD values ranged between 340

165 and 220 mg/L and therefore, as denitrifying microorganisms 341
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f 360
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T
A reac
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W

8 23
6 29
4 27

n

U
N

C
Oquation:

= 0.081 − {0.043 × (1 − e−0.031[SCN−])}

able 3
verage characteristics of coke wastewater and the influent to the denitrification

RT3 (h) COD (mg/L) Phenols (mg/L)

WW DN WW DN

6.4 1312 220 210 4.4
1.7 1337 165 220 2.6
3.2 1400 175 221 2.7

.d., not detected.
HAZMAT 5593 1–8

re heterotrophic, methanol was added in this study as an exter-
al organic carbon source.

The methanol dosage employed was varied throughout the
tudy so as to determine the optimum value that would give rise
o maximum nitrate removal and would not increase the COD of
he effluent. During the first 16 days, a ratio of 6.7 mgCOD/mg
O3

−–N was used to favour heterotrophic growth. A high
emoval of nitrates was observed, although an important increase
f the effluent COD also occurred (Figs. 7 and 8). Differ-
nt ratios were subsequently assayed, ranging between 3 and
mgCOD/mgNO3

−–N. The optimum value was 3.5, corre-
ponding to a dosage of 1.2 L methanol/m3. This value was
ubsequently used in the experiments from Day 48 onwards.

The nitrate loading rate varied between
.09 kgNO3

−–N/m3/day for HRT of 86.4 h and
.23 kgNO3

−–N/m3/day for 43.2 h. Fig. 7 shows the evo-
ution of the nitrate concentration in the influent and effluent
f the denitrification process as well as the removal obtained
or the different conditions employed. Influent concentrations
anged between 282 and 428 mg NO3

−–N/L and effluent
oncentrations were lower than 0.12 mg NO3

−–N/L. Removal

tor during the three-step study

N− (mg/L) NH4
+–N (mg/L) NO3

−–N (mg/L)

W DN WW DN WW DN

4 10.9 196 5.6 n.d. 331
7 4.8 218 1.6 n.d. 412
2 6.0 197 1.3 n.d. 420
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Table 4
Average characteristics of the final effluent and removal obtained in the three-step biological treatment of coke wastewater under different working conditions

HRT3 (h) SRT
(day)

kgNO3
−–

N/m3/day
kgNO3

−N/
kgSSV/day

COD (mg/L) Phenols (mg/L) SCN (mg/L) NH4
+–N (mg/L) Total-N (mg/L)

Effluent % Effluent % Effluent % Effluent % Effluent %

86.4 71 0.07 0.04 306 75.4 4.4 97.8 10.9 95.3 5.6 97.1 16.4 95.3
61.7 52 0.16 0.07 261 80.5 2.6 98.8 4.8 98.3 1.6 99.3 2.8 99.3
43.2 37 0.24 0.10 251 82.0 2.7 98.7 6.0 97.7 1.3 99.2 2.9 99.2

Fig. 7. NO3
−–N evolution in influent and effluent and removal efficiency of the

denitrification process.

efficiencies were very high (ranging between 81.9 and 99.9%),363

even for the lowest HRT tested (or highest loading rates:364

0.23 kgNO3
−–N/m3/day and 0.44 kgNO3

−/kgVSS/day).365

The COD of the influent to the denitrification reactor varied366

between 148 and 269 mg/L, as can be seen in Fig. 8. When a ratio367

of 6.7 mg COD/mg NO3
−–N was used (Day 1–16), although368

high removal efficiencies of nitrates were obtained, the excess369

of methanol employed increased the effluent COD to 704 mg/L.370

When a ratio of 3 mg COD/mg N was used (Day 17–44), the371

influent COD decreased to 143 mg/L, although nitrate removal372

efficiency also decreased (Fig. 7). Using the optimum value373

of 3.5 mg COD/mg N, the effluent COD increased slightly to374

245 mg/L.375

F

The concentration of the rest of the pollutants did not experi- 376

ment any change during this final step. Table 4 shows the average 377

concentrations of the different pollutants in the final effluent as 378

well as the average removal efficiencies obtained under the dif- 379

ferent working conditions employed in the three-step process. 380

The lowest concentrations of pollutants obtained were 251 mg 381

COD/L, 2.6 mg phenols/L, 4.8 mg SCN−/L, 1.3 mg NH4
+–N/L 382

and 2.8 mg Total-N/L. 383

4. Conclusions 384

The presence of NH4
+–N influences the biodegradation 385

of SCN−. Employing an HRT of 98 h, no removals would 386

be obtained for an ammonia concentration higher than 387

360 mg/L. Likewise, the presence of SCN− influences the 388

nitrification process, decreasing the nitrification rate from val- 389

ues of 0.08 kgNH4
+–N/m3/day in the absence of SCN− to 390

0.04 kgNH4
+–N/m3/day for SCN− concentrations between 125 391

and 230 mg/L. 392

The biological treatment of coke wastewater in a two-step 393

activated sludge system is favoured when an effluent recycling 394

ratio of 2 is employed, obtaining average removal efficien- 395

cies of 86.2, 98.8, 97.9 and 99.3% for COD, phenols, SCN−
396

and NH4
+–N, respectively, for a total HRT of 184 h (98 h 397

in the first step and 86 h in the second). Under these condi- 398

t −
399

m 400

s 401

t 402

m 403

t 404

405

d 406

C 407

r 408

e 409

t 410

A 411

412

f 413

C 414

c 415

t 416

p 417
U

ig. 8. COD evolution in the influent and effluent of the denitrification process.
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ions, the removal of COD, phenols and SCN takes place
ainly in the first reactor, whereas nitrification occurs in the

econd. Recycling of the effluent leads to lower concentra-
ions in the reactors and less inhibition phenomena between the
icroorganisms responsible for SCN− and NH4

+ biodegrada-
ion.

If denitrification is carried out as a third step, a methanol
osage of 1.2 L/m3 (which represents a consumption of 3.5 mg
OD/mg NO3

−–N) must be added in order to achieve very high
emoval efficiencies (>99%). A slight increase in the final efflu-
nt COD takes place (from 176 to 251 mg O2/L) as a result of
his addition of methanol.

cknowledgments

The authors gratefully acknowledge the funding received
rom the European Union for the project “Advanced Process
ontrol for Biological Water Treatment Plants in Steelworks”,
ontract no. ECSC-7210-PR-235, and the Arcelor Group for
heir collaboration. They also wish to thank Mr. Paul Barnes for
roof reading the English version of the manuscript.



E
D

 P
R

O
O

F

8 I. Vázquez et al. / Journal of Hazardous Materials xxx (2006) xxx–xxx

References418

[1] D. Bamelis, Biological purification of coking plant waters, La Revue de419

Metallurgie (February) (1992) 132–145.420

[2] D. Jenkins, Towards a comprehensive model of activated sludge bulking421

and foaming, Water Sci. Technol. 25 (6) (1992) 215–2302.422

[3] W. Keith, J. Antil, Biotreatment of coke oven effluent, Steel Time Inter-423

nat. (1991) 26–35.424

[4] J. Wanmmer, The implementation of bulking control in the design425

of activated sludge systems, Water Sci. Technol. 29 (7) (1994) 193–426

202.427

[5] G.M. Wong-Chong, Retrofitting LTV coke plant wastewater treatment428

system to comply with treatment discharge limits, Iron Steel Eng. (Octo-429

ber) (1994) 26–28.430

[6] T. Yamagishi, J. Leite, S. Ueda, F. Yamaguchi, Simultaneous removal431

of phenol and ammonia by an activated sludge process with cross-flow432

filtration, Water Res. 13 (2001) 3089–3096.433

[7] D.J. Richards, W.K. Shieh, Anoxic–oxic activated-sludge treatment of434

cyanides and phenols, Biotechnol. Bioeng. 33 (1989) 32–38.435

[8] H.K. Kwon, S.H. Woo, J.M. Park, Thiocyanate degradation by Acremo-436

nium strictum and inhibition by secondary toxicants, Biotechnol. Lett.437

24 (2002) 1347–1355.438

[9] I. Vázquez, Study and modellization of the biological removal of pol-439

lutants in coke wastewaters (Estudio y modelización de la eliminación440

biológica de contaminantes en aguas de coquerı́a). Ph.D. Thesis, Uni-441

versity of Oviedo, 2005.442

[10] N.H. Callado, E. Foresti, Removal of organic carbon, nitrogen443

and phosphorous in sequential batch reactors integrating the aer-444

obic/anaerobic processes, Water Sci. Technol. 44 (4) (2001) 263–445

273.

[11] R.S. Ramalho, Tratamiento de aguas residuales, Editorial Reverté, S.A., 446
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