The role of reaction kinetics and mass transfer on the selective catalytic reduction of NO with NH₃ in monolithic reactors

3

4 Emilio Muñoz, Pablo Marín, Salvador Ordóñez*, Fernando V. Díez

5 Department of Chemical and Environmental Engineering, University of Oviedo, Facultad de
6 Química, Julián Clavería 8, 33006 Oviedo, SPAIN

7

8 Abstract

9 Background

Environmental regulations are moving to a tighter control of NOx emissions produced at both stationary and mobile sources. Selective catalytic reduction (SCR) of NOx with NH₃ is an efficient treatment technique capable of operating at high gas flow rates (e.g. using monolithic catalysts) and a wide range of NO concentrations. The aim of this work is to provide guidelines for designing this kind of reactors taking into account both intrinsic kinetics and mass transfer.

16 Results

The experiments have been done in lab-scale (0.5 g) and bench-scale (430 g) reactors operating at different conditions: temperature (150-320°C), space velocity (WHSV 5360-16100 mol h⁻¹ kg_{cat}⁻¹), oxygen concentration (0-21%) and NH₃/NO ratio (0.2-1.2). Temperature has a great influence in the reaction rate, and at least 300°C is required at a WHSV of 16100 mol h⁻¹ kg_{cat}⁻¹. Oxygen is required in the feed because participates as reactant in the SCR.

23 Conclusions

Data obtained in the lab-scale reactor in the absence of mass transfer limitations have been used to fit an intrinsic kinetic model of the SCR reaction. A more complex model has been

- 1 used for the bench-scale reactor accounting for reaction kinetic and mass transfer (internal
- 2 effectiveness factor was determined) in the monolithic catalyst.
- 3

4 Key words:

- 5 NOx emissions, air pollution control, monolithic catalyst, transient methods, mass transfer in
- 6 monolithic reactors.
- 7

8 Notation

9 List of symbols

- 10 a specific surface area $(m^2 m_{bed}^{-3})$
- 11 c gas mole concentration (mol m^{-3})
- 12 D_h hydraulic diameter (m)
- 13 D_{im} mixture molecular diffusion coefficient (m² s⁻¹)
- 14 D_{iz} effective axial dispersion coefficient (m² s⁻¹)
- 15 E_a activation energy (J mol⁻¹)
- 16 k kinetic constant ($m^3 mol^{-1} s^{-1} or s^{-1}$)
- 17 K_g mass transfer coefficient (m s⁻¹)
- 18 n catalyst ammonia adsorption capacity (mol kg_{cat}^{-1})
- 19 Q_g gas flow rate (m³ s⁻¹)
- 20 r reaction rate (mol $kg_{cat}^{-1} s^{-1}$)
- 21 Sh Sherwood number (-)
- 22 t time (s)
- 23 T temperature (K)
- 24 t_{sw} switching time (s)
- 25 v gas interstitial velocity (m s⁻¹)
- 26 w relative weight of catalyst (-)
- 27 W total weight of catalyst (kg)
- 28 z spatial coordinate (m)
- 29 bed porosity (-)
- 30 η_{int} internal effectiveness factor
- 31 θ solid fraction of adsorbed specie (-)
- 32 ρ_c catalyst density (kg m⁻³)
- 34 Sub indexes and super indexes
- 35 in inlet

1	ads	adsorption
-	u a al	
2	rea	reduction
3	S	catalyst surface
4		
5	Acrony	vms
6	BAT	best available techniques
7	FIC	flow indicator and controller
8	PI	pressure indicator
9	SCR	selective catalytic reduction
10	SNCR	selective non-catalytic reduction
11	TIC	temperature indicator and controller
12	WHSV	gas-hourly space velocity (mol $h^{-1} kg_{cat}^{-1}$)
13		
14		

1 Introduction

Nitric oxides (NO_x), including nitrogen oxide (NO), nitrogen dioxide (NO₂) and nitrous oxide (N₂O), are emitted to the atmosphere mainly as a result of transportation and industrial processes. They are among the most dangerous air pollutants, as they contribute to the greenhouse effect, participate in photochemical reactions that cause acid rain and the formation of troposphere ozone ('photochemical smog'), and have an important role in lakes and rivers eutrophication. In addition, they are harmful to human health, as they can damage the respiratory system.¹⁻³

Due to their quantitative importance and harmful nature, NO_x abatement has been studied
 widely during the last decades,⁴⁻⁷ and their emissions in industrialized countries are
 restrictively regulated, e.g. in the UE by Directive 2001/81/EC.

NO_x emissions can be reduced by means of primary or secondary measures. Primary 12 measures decrease NO_x formation, e.g. by controlling temperature, excess air or mixing in 13 combustion process, while secondary emissions separate or destroy NO_x from effluents. 14 Selective Catalytic Reduction (SCR) and Selective Non Catalytic Reduction (SNCR) are 15 16 secondary processes considered in the EU as Best Available Techniques (BAT) for treating NO_x in emissions from large stationary sources, such as large combustion plants.⁸ NO_x 17 selective reduction processes are based on the reaction of NO_x with a reducing agent 18 (ammonia or urea), forming molecular nitrogen and water. When performed in the presence 19 of a catalyst (SCR), the process takes place at lower temperature, is able of working with 20 load variations or variable fuel quality, and is substantially more efficient than when the 21 22 process is non-catalytic (SNCR). On the other hand, the inversion required for SNCR is lower.

23 The main reactions taking place for ammonia, the most common SCR reducing agent, are:

24	$4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$	(1)

25
$$2 \text{ NH}_3 + \text{NO} + \text{NO}_2 \rightarrow 2 \text{ N}_2 + 3 \text{ H}_2\text{O}$$
 (2)

26 8 NH₃ + 6 NO₂ \rightarrow 7 N₂ + 12 H₂O (3)

Since NO/NO_2 ratio in NO_x emissions is larger than 10, the first reaction, called 'standard SCR', is largely the most important. When temperature is low, the third reaction, called 'fast-SCR', should be also taken into consideration.

Different catalysts have been used for ammonia SCR, including noble metals, metal oxides 4 and zeolites,^{3, 9-11} operating temperature being an important factor for catalyst selection. For 5 high temperatures (345-590°C), zeolites are more durable, active and SO₂ tolerant.¹² 6 Operating at lower temperature (typically 150-300°C), allows saving fuel used for re-heating 7 the flue gas in some installations. Noble metals have shown better performance at low 8 temperature, but are expensive, the temperature operation range is narrow and present low 9 sulphur tolerance. Pd and Ag are both noble metals that present good performance for the 10 SCR reaction.^{12, 13} Pd is usually supported on perovskites or zirconia. Ag supported on Al₂O₃ 11 shows high efficiency, particularly when using hydrocarbons. 12

Metal oxide catalysts (oxides of copper, iron or vanadium, either unsupported or supported 13 on alumina, silica or titania)^{2, 8} are cheaper, and work well in the typical temperature range 14 of industrial applications. One of the most common industrial SCR catalyst types consists on 15 vanadium oxide, promoted by MoO₃ or WO₃, and supported on titania (in the anatase form). 16 WO₃-V₂O₅/TiO₂ catalysts show tolerance to SO₂ poisoning and provide high NO_x conversion, 17 the TiO₂ support providing high surface area and increased catalyst activity.⁸ In the last 18 years, the research in this field has focused in the development of vanadium-free catalysts 19 with high activity, selectivity and stability.^{12, 13} Fe containing mixed oxides and Fe-exchanges 20 zeolites were found to present high activity. The selection of an adequate support is critical 21 for the activity and stability of the catalyst.^{12, 14} Under rich oxygen conditions, Cu/ZSM-5 was 22 found to present reduction capability using hydrocarbons.^{13, 15} 23

SCR catalysts are generally used as structured beds, as this type of bed produces lower pressure drop through the reactor, helps to keep process conditions uniform along the bed, and presents higher resistance to attrition and lower tendency to fly ash plugging. A recent review about the catalyst and reactor configuration is presented by Cheng et al.¹⁶

Several mechanisms have been proposed for ammonia SCR on vanadia catalysts, including Langmuir-Hinsewood, Elay-Rideal and Mars Van Krevelen.¹⁷⁻²³ Most researchers have found that Elay-Rideal mechanisms fit better experimental results. Such models suppose that in one step of the reaction mechanism, NO from the gas phase reacts with chemisorbed ammonia, but published works differ on the nature of the involved active sites and reaction intermediates.²⁴⁻²⁶ Topsoe et al.^{27, 28} observed in FTIR studies that, while at reaction conditions NO adsorbed is negligible, ammonia adsorbs in large amounts on both Lewis and Bronsted acid sites. Based on these studies, they proposed a mechanism according to which ammonia adsorbs in equilibrium on V⁵⁺- OH sites:

7
$$NH_3 + V^{5+} - OH \iff V^{5+} - ONH_4$$
 (4)

8 Adsorbed ammonia is activated by adjacent $V^{5+}=O$ sites:

9
$$V^{5+}-ONH_4 + V^{5+}=O \iff V^{5+}-ONH_3H^+-O-V^{4+}$$
 (5)

10 Activated ammonia reacts with NO:

11
$$V^{5+}-ONH_3H^+-O-V^{4+}+NO \implies N_2+H_2O+V^{5+}-OH + V^{4+}-OH^+$$
 (6)

12 And finally, the active sites regenerate:

13
$$2 V^{4+}-OH^+ \leftrightarrows H_2O + V^{3+} + V^{5+}$$
 (7)

14
$$O_2 + 2 V^{3+} \stackrel{t}{\to} 2 V^{5+} = 0$$
 (8)

15 The kinetics of the ammonia SCR on vanadium catalysts has been widely studied in the 16 literature, using equations either derived from reaction mechanisms or empirical.^{22, 24, 26}

The aim of this work is to characterize the kinetics of ammonia SCR over a commercial 17 monolithic metal oxide (vanadium on titania) catalyst, in order to get a comprehensive 18 kinetic model adequate for simulating and optimizing the operation of steady and, specially, 19 20 un-steady state SCR reactors. Firstly, a parametric study is carried out to determine the most important variables affecting the reaction kinetics. Then, an intrinsic kinetic model is 21 proposed and fitted to lab-scale experiments. Finally, a model for the commercial monolith 22 that takes into account the different mass transfer steps is tested and fitted to bench-scale 23 experiments. 24

1 Methodology

2 Materials

High purity gaseous reactants (N₂, 2.5 % vol. NH₃ in nitrogen and 2.5 % vol. NO in nitrogen)
were provided by PRAXAIR, and air by a compressor provided with a filter to separate
humidity.

6 The catalyst used is a commercial DeNOx cordierite monolith, based on metal oxides, kindly 7 supplied by ARGILLON with square channels and 64 cpsi of cell density. The main 8 characteristics of the monolith, measured photographically, are: channel size 2.7 10⁻³ m, wall 9 thickness 4.7 10⁻⁴ m, washcoating thickness 9.6 10⁻⁵ m. The bed porosity of the monolith 10 block was calculated to be 73%. The solid density of the catalyst was experimentally 11 determined to be 2500 kg m⁻³.

12

13 Lab-scale fixed-bed reactor

14 The lab-scale fixed-bed reactor has been used to study the kinetics of the catalytic reaction 15 in absence of diffusional limitations, e.g. using the catalyst ground to a small particle size. The reactor consists of a stainless steel tube of 9 mm inside diameter and 440 mm length. A 16 17 weight of 0.5 g of catalyst, ground and sieved to 250-355 μ m, is mixed with 1 g of 355-710 um glass particles and introduced inside the tube. The bed is set in position using stainless 18 19 steel foil. The geometry of this bed is adequate to minimize axial dispersion and channelling, bed length/particle diameter = 54 > 50 and bed diameter/particle diameter = 30 > 10, 20 21 respectively. Hence, a gas flow pattern close to plug flow may be achieved inside the reactor. Upstream the catalytic fixed-bed, the reactor tube is filled with 1 mm glass spheres to ensure 22 23 a uniform pre-heating of the gas feed. The reactor temperature was controlled by an electric furnace and an electronic temperature controller that used the temperature measured by a 24 thermocouple placed inside the reactor as set point. The small reactor diameter and 25 catalytic bed length allowed assuming isothermal operation and negligible radial 26 27 temperature profiles.

The reactor feed is prepared by mixing streams from the ammonia and NO cylinders with air or nitrogen in adequate proportions. The gas flow is measured and controlled by BRONKHORST mass-flow controllers. The concentration of the reactor influent and effluent
 are analysed using a quadrupole mass spectrometer, PFEIFFER VACUUM OMNISTAR. This
 device is capable of analysing nitrogen monoxide and ammonia every few seconds. For each
 experiment, the device is re-calibrated to ensure reliable quantitative measurements.

1 Bench-scale fixed-bed reactor

2 The bench-scale fixed-bed reactor allows the study of the reaction using the catalyst in the commercial monolithic shape. The reactor consists of a stainless steel flanged tube of 57 mm 3 4 inside diameter and 450 mm length. A piece of monolith 250 mm long (430 g weight) was 5 cut to exactly fit inside the reactor. The monolith is maintained in place by means of a holey 6 stainless steel support. Upstream the monolith inside the reactor tube, a bed of 4 mm glass spheres is used to obtain a feed of uniform temperature. The feed is heated up to the 7 8 operating temperature outside the reactor in an electrically-heated compact heat 9 exchanger. The temperature of the gas inside the reactor is measured before and after the 10 monolith. The reactor tube is housed in the middle of an electrically-heated furnace that is responsible of achieving isothermal conditions. This is done by means of temperature 11 controllers that use the temperature measurements of the reactor inside to exert the 12 control action. 13

14 The preparation of the feed gas mixture and the analysis of the gases are carried out in the 15 same way as in the lab-scale reactor.

16 A scheme of the experimental units is shown in Figure 1.

17

18 Modelling

The aim of the modelling is to provide an appropriate model of the reactor capable of predicting the dynamics of outlet concentrations. A 1D heterogeneous dynamic model has been used. The model is heterogeneous, which means that accounts separately for the gas and solid phases by means of the corresponding species mass balances. This allows the prediction of the dynamics of the ammonia adsorbed on the catalyst.²⁹

The model of the lab-scale fixed-bed reactor is shown in Table 1. This model is composed by accumulation, convection and (intrinsic) reaction terms. The reaction mechanism assumed in this work is a simplification of the one presented by Topsoe and Dumesic, in which only the adsorption of ammonia and adsorbed ammonia reaction with NO are supposed to be kinetically relevant (equations 4 and 6).^{28, 29} Additionally, ammonia reaction with NO is assumed to be irreversible. For the ammonia adsorption, a Temkin-type isotherm with zero
activation energy is supposed. As explained in the previous section, the gas flow pattern of
this reactor is close to plug flow, so no axial dispersion term is required. Moreover, the
catalyst was ground to small particles, so that diffusion limitations can be neglected.

5 The bench-scale fixed-bed reactor is modelled with the same type of model, Table 2, formed 6 by accumulation, convection, dispersion and mass transfer terms. In this case, the gas flow 7 through the monolithic catalyst cannot be considered to follow a plug-flow pattern, so axial 8 dispersion terms are included. Dispersion coefficients are calculated using a correlation 9 specific for monolith catalysts,³⁰

An issue that should be considered carefully in the modelling of monolithic catalysts is mass transfer. Gas to solid surface mass transfer is accounted for by means of the film theory using mass transfer coefficients, , where Sherwood number, , is 2.977 for square monolithic channels at isothermal conditions.³⁰ The specific surface is calculated from geometrical considerations using the hydraulic diameter of the monolith, .

The interphase mass balances correlate gas to solid surface mass transfer and reaction terms. Additionally, mass transfer inside the monolith washcoating is modelled using internal effectiveness factor. This parameter, which depends on the textural properties of the washcoating, the intrinsic kinetics and the operating conditions, will be fitted to the experimental data.³¹

Both reactor models, lab-scale and bench-scale, are formed by a set of partial differential and algebraic equations. The models are solved by the 'method of lines', which consists of the approximation of the spatial derivatives (convection and dispersion terms) by finite differences in a grid of 400 points (this value was found to be high enough to obtain gridindependent solution). The resulting set of ordinary differential and algebraic equations is solved using the MATLAB function ode15s, especially suited for stiff problems. The whole problem is formulated in a code written in MATLAB.³²

The fitting of model parameters has been done using the least-square technique, based on the minimization of the sum of the square residuals. The problem has been solved in MATLAB with the help of the lsqcurvefit function, using a trust-region-reflective algorithm.

1 **Results and discussion**

2 Parametric study of the SCR kinetics

The aim of this section is to conduct a systematic study of the main variables affecting the SCR reaction kinetics. Kinetic parameters have been measured by the transient response method.⁴⁻⁶ The following variables were selected after preliminary works: temperature, oxygen concentration and NH₃/NO ratio.

Experiments consisted of measuring the evolution with time of the reactor effluent composition for different changes in the inlet composition, at constant flow rate and temperature. The experiments have been carried out in the lab-scale fixed-bed reactor described in the methodology section. Before all the experiments, the catalyst was saturated with ammonia at the corresponding temperature by flowing air with 500 ppm NH₃. At t = 0, this stream was substituted by the corresponding to each experiment.

13 *Influence of temperature*

Temperature is one of the main operating variables affecting the performance of the SCR reaction. This variable was studied by feeding to the reactor, with the catalyst previously saturated with ammonia, a stream containing of 500 ppm NO and NH₃ in air. The flow rate was 3 L min⁻¹ n.t.p. (WHSV = 16100 mol h⁻¹ kg_{cat}⁻¹) and experiments were isothermal in the temperature range 150-320°C. After the transient, the new steady state was achieved in 3-4 min in all the tests. Figure 2 shows the transient of NO and NH₃ outlet concentrations.

The transient behaviour of NO and NH₃ outlet concentrations are strictly related to each other. Thus, the introduction of NO produces a marked peak in the measured NH₃ exit concentration. This can be caused by wrong signal from the mass detector when the inlet stream is changed, by NH₃ desorption from the catalyst, or by both. After the maximum, ammonia concentration goes down to the corresponding steady state value. NO concentration rises steadily at low temperatures (150-190°C), whereas at high temperatures (220-320°C) exhibits a small maximum before going down to the steady state value.

The influence of temperature in the steady state NO conversion can be examined in Figure 3a. Conversion is lower than 60% below 200°C, so operation at these conditions is not interesting from an industrial point of view. For temperatures above 300°C, the reaction of NH₃ oxidation becomes important. This causes a reduction in NH₃ concentration and affects
 NO conversion, which actually decreases at higher temperature, as reported elsewhere. ^{33, 34}

3

4 Influence of oxygen concentration

5 The role of oxygen is crucial in the SCR reaction, as it participates in the stoichiometric 6 equation as reactant, it is always present in these emissions, and it competes as oxidant 7 reactant with the NO. In the most accepted mechanism for this reaction, oxygen is responsible of re-oxidizing the catalyst active sites.^{21, 28} In this work, the effect of oxygen in 8 the performance of the reaction is assessed by varying the oxygen concentration (0, 0.08 9 10 and 0.21 mole fraction), while maintaining constant the other variables: 250°C, inlet concentrations 286 ppm NH₃, 500 ppm NO and balance nitrogen, and flow rate 2 L min⁻¹ 11 n.t.p. (WHSV = 10700 mol $h^{-1} kg_{cat}^{-1}$). The transients for NO and NH₃ concentrations are 12 depicted in Figure 4. The steady state NO conversions obtained for the different oxygen 13 concentrations are shown in Figure 3b. This plot corroborates the role of oxygen in this 14 reaction.³⁵ When there is no oxygen in the feed, steady state conversion falls to zero, and at 15 16 conditions of excess oxygen (> 8 %), the concentration of oxygen does not affect steady state NO conversion. 17

The unsteady state behaviour observed in this set of experiments is very useful to explain 18 the mechanism of this reaction. In all cases, NO concentration increases steadily up to the 19 20 steady state value, achieved after 8-10 minutes. The experiments with 8% and 21% oxygen 21 present similar behaviour with some differences. Thus, the presence of a higher oxygen concentration delays the increase of NO outlet concentration. In the experiment with 8% of 22 oxygen, NH₃ exit concentration falls after the peak, which means a faster decrease in the 23 NH₃ catalyst surface coverage. It is well known that adsorbed NH₃ has a great impact on the 24 reaction rate.^{10, 28} For this reason, the premature decrease in adsorbed NH₃ would cause the 25 observed increase on NO outlet concentration. It can be noted that for the test with 21% of 26 oxygen the amount of NO reacted and the amount of NH₃ desorbed (NH₃ spill) are both 27 28 higher than for the experiment with 8% of oxygen. This means that a higher amount of NH₃ was adsorbed during the saturation stage of the experiment with 21% of oxygen. More 29 30 adsorbed NH₃ means high NO conversion for more time and also a higher NH₃ spill.

1 As in the experiments of the previous section, when NO is fed to the reactor, a peak in NH₃ 2 outlet concentration is observed, followed by a marked decrease. When no oxygen is fed to the reactor, the dynamics shown in Figure 4b is more complex, and can be explained based 3 on the reaction mechanism. After the ammonia spill, reaction proceeds on the oxidized 4 5 catalyst active sites, but the lack of oxygen in the gas phase avoids re-oxidation of the reduced catalyst active sites so, as the catalyst is depleted of oxidized active sites, the 6 reaction rate decreases and eventually drops to 0 (NO concentration rises to the feed value, 7 8 t = 4-6 min). However, the catalyst is still able of adsorbing NH_3 from the gas phase, causing 9 the observed decrease in the NH_3 outlet concentration (t = 2-5 min). Finally, when the catalyst is saturated, NH_3 exit concentration increases again up to the feed value (t > 6 min). 10 The dynamics of NH₃ concentration for the experiments with 0% and 21% of oxygen are 11 12 similar, but as explained the consequences of this behaviour are different. At 21% oxygen, NH₃ is reacting with NO, whereas at 0% oxygen is adsorbing in the catalyst. 13

14

15 Influence of NH₃/NO ratio

The NH₃/NO ratio is an important operating variable in industrial scale reactors, which must be adjusted carefully to avoid slips of un-reacted NH₃. The stoichiometric NH₃/NO ratio for the SCR reaction is 1, but depending on the operating conditions, higher ratios can be used to compensate the loss of NH₃ by oxidation and other side reactions. The influence of the NH₃/NO ratio has been studied in the range 0.3-1.2 at different operating conditions: 250-300°C and 1-2 L min⁻¹ n.t.p. (WHSV = 5360-10700 mol h⁻¹ kg_{cat}⁻¹).

As an illustration, Figure 5 shows the transient of a set of experiments, where NO feed 22 concentration is kept constant at 500 ppm and NH₃ feed concentration is increased step-23 24 wise from 0 to 500 ppm. Hence, NH₃ is the limiting reactant, outlet NH₃ concentration being close to zero during the whole test. On the contrary, NO concentration decreases as NH₃ 25 26 concentration increases, to reaction completion. The corresponding steady state NO conversions are depicted in Figure 3c for different operating conditions. The maximum NO 27 28 conversion calculated from the stoichiometry, assuming complete NO reaction is indicated by a straight line. Thus, for NH₃/NO ratios lower than 0.8 nearly the maximum attainable NO 29 30 conversion is achieved. For higher ratios, NO conversion tends to be independent of the NH₃/NO ratio and highly dependent on temperature: an increase of 14% in NO conversion is
 observed when temperature increases from 250 to 300°C. The influence of space time is less
 marked, only a 3% increase in NO conversion is obtained when the space time is halved. This
 behaviour is in agreement when previous studies that reported a critical NH₃/NO ratio of 0.7.
 ³⁵

6 Kinetic modelling

The experiments carried out at different operating conditions (temperature, flow rate and 7 8 concentration) have been used to characterize the kinetics of the SCR reaction. As indicated in the methodology section, the monolithic catalyst was ground and sieved to a small size, in 9 10 order to eliminate the influence on the kinetics of the diffusional steps. In that section, a model for the lab-scale fixed reactor based on gas and solid phase mass balances was also 11 12 presented. This model must be completed with the kinetic equations, as show in Table 1. The mechanism of the reaction suggests the form of the kinetic equations: NH₃ absorbs and 13 desorbs in the catalyst active sites according to first order elementary steps (net adsorption 14 15 rate,) and NO from the gas phase reacts with adsorbed NH_3 (). The kinetic constants 16 are assumed to vary with temperature according to Arrhenius dependence. The 17 corresponding equations are included in Table 1.

The model parameters are calculated by fitting the model to the results of two types of experiments. The first type consists of NH₃ dynamic adsorption and desorption experiments on the catalyst. These tests were carried by flowing 500 ppm of ammonia in nitrogen in the adsorption, or nitrogen in the desorption experiments, in the range 150-300°C and 1-3 L min⁻¹ n.t.p. (WHSV 5360-16100 mol h⁻¹ kg_{cat}⁻¹). Figure 6 (symbols) shows typical experimental results obtained in this case at 1 and 3 L min⁻¹ n.t.p. and 300°C.

In the adsorption experiment, a step of NH₃ is fed to the reactor and a breakthrough curve is obtained in the effluent. The existence of this sigmoidal breakthrough curve, instead of a straight step, indicates that the adsorption is not instantaneous, and hence equilibrium is only achieved at the end of the experiment, when the catalyst is completely saturated with NH₃. On increasing the gas flow rate, the transient of the experiment is modified, producing a decrease in the breakthrough time. Desorption experiments were carried out after the adsorption, when the NH₃ of the feed was replaced by nitrogen. This leads to the desorption of most of the NH₃ previously adsorbed. Part of the NH₃ is adsorbed strongly, and can be
desorbed only at higher temperature. The shape of the effluent concentration curve
depends on the desorption reaction rate.

4 The dynamic NH₃ adsorption and desorption experiments allow the determination of the 5 kinetic parameters of the net adsorption rate equation, e.g. adsorption and desorption 6 kinetic constants (and) and total adsorption capacity (). These parameters have been obtained by fitting the un-steady state NH₃ outlet concentration predicted by the lab-7 8 scale fixed-bed reactor model to all the experimental data (adsorption and desorption) at 9 once. It should be noted that in the model considered, adsorption and desorption curves are 10 affected by both adsorption and desorption kinetic constants. Results are summarized in Table 3. Model predictions are depicted in Figure 6 (lines) together with the experimental 11 data, in order to evaluate the goodness of the fitting. As shown, the model is able to predict 12 the breakpoint of the adsorption tests accurately, small discrepancies being observed in the 13 14 vicinity of the saturation.

The second type of experiments consists of NO reduction studies, in which NO and NH₃ are 15 fed to the reactor, containing the catalyst previously saturated with NH₃. Experiments have 16 been done at the following range of operating conditions: 220-320°C, 1-3 L min⁻¹ n.t.p. 17 (WHSV 5360-16100 mol h^{-1} kg_{cat}⁻¹) and 500 ppm NO and 290-500 ppm NH₃. The unsteady 18 state NO and NH₃ outlet concentrations are compared for experiments at 1 L min⁻¹ n.t.p., 19 500 ppm NO and NH₃ and different temperatures in Figure 7. At the beginning of the 20 21 experiment, NO conversion is complete because of the high reaction rate achieved when the catalyst is saturated with NH₃. As the reduction reaction proceeds, adsorbed NH₃ decreases, 22 which is only partially replaced by NH₃ from the gas phase, so reaction rate decreases 23 gradually (and hence NO concentration increases), until reaching the steady state. 24

The results of these experiments were used for fitting the kinetic parameters corresponding to the SCR reaction. As before, all the unsteady state concentration data have been used together in the fitting. The values used for the adsorption parameters were the ones determined in the adsorption experiments. Results can be found in Table 3.

1 Reactor modelling

2 The experiments carried out in the lab-scale fixed-bed reactor are useful to get insight into 3 the catalyst kinetics, but give no information on the influence of mass transfer processes in 4 the monolith. For this reason, additional experiments have been carried out in the benchscale fixed-bed reactor, in which the catalyst is used in its commercial monolithic shape. 5 Information obtained in this way represents better the behaviour of the catalyst in 6 industrial-scale reactors. The range of operating conditions in these experiments 7 corresponds to temperature 180-300°C and flow rate 8-12 L min⁻¹ n.t.p. (WHSV 35.6-53.4 8 mol $kg_{cat}^{-1} h^{-1}$). NO and NH₃ feed concentrations have been fixed to 500 ppm. 9

10 As explained in the methodology section, external and internal mass transfer must be accounted for in the model of the bench-scale reactor (see equations in Table 2). External 11 mass transfer in the monolithic channels was modelled using a literature correlation.³⁰ On 12 the contrary, internal mass transfer in the monolithic washcoating, modelled by the internal 13), was fitted to the data obtained in this set of experiments. The 14 effectiveness factor (15 fitting has been done by least-square regression of the NO conversion obtained at steady-16 state. This way, the risk of misleading internal mass transfer due to transient phenomena 17 (e.g. NH₃ adsorption and desorption dynamics) is eliminated.

For each experiment, the internal effectiveness factor that fits the experimental NO 18 19 conversion was determined. It was found that the internal effectiveness factors obtained 20 from experiments at the same temperature but different flow rates were not significantly 21 different. This is in agreement with a phenomenological analysis of internal mass transfer, which suggests that the rate of mass transfer depends on the textural properties of the 22 washcoating, the physical properties of the gas (diffusion coefficients) and the intrinsic 23 24 kinetics. These properties may depend on temperature, but not on gas flow rate. Regarding 25 temperature, it was found that the internal effectiveness factor is highly influenced by this parameter; an exponential decrease with temperature was observed. Thus, the data were fit 26 27 to the following expression, found to provide the best fit: . The goodness of the fitting can be observed in Figure 8; the correlation coefficient R^2 was 0.993. 28

The performance of the reactor model, completed with the internal effectiveness factor, was tested at steady and unsteady state conditions by comparison with experimental data. In

Figure 9, the steady state NO conversion used to calculate the internal effectiveness factors (symbols) are depicted together with the predictions of the reactor model (line). It can be observed that the model is able to predict the experimental data successfully within the temperature range considered.

The performance of the model in unsteady state is evaluated in Figure 10 in terms of the 5 6 evolution of NO concentration at the reactor exit. The conditions of the experiment, which influence the interpretation of the results, are the following: first, only NO is fed to the 7 reactor and when the outlet concentration is constant, NH₃ is added in stoiquiometric 8 proportion. For this reason, a transient decrease of NO is observed, until the steady state 9 value is reached. Figure 10 shows that the reactor model is able of predicting this transient 10 in the temperature range considered in this work. As shown, on increasing temperature the 11 12 decrease is more pronounced and the steady state is reached faster.

13

14 **Conclusions**

The kinetics of NO SCR has been studied in two fixed-bed reactors, a lab-scale reactor using ground catalyst and a bench-scale reactor using the catalyst in its commercial monolithic shape.

The parametric study of the reaction carried out with the most important variables has revealed the following conclusions. Temperature has a great influence in the reaction rate, and at least 300°C is required at a WHSV of 16100 mol h⁻¹ kg_{cat}⁻¹. Oxygen is required in the feed because participates as reactant in the SCR, having a positive effect on the reaction rate below 8% oxygen.

The experiments done at the lab-scale reactor have been used for the fitting of a kinetic model, based on a reaction mechanism considering the adsorption of NH_3 on the catalyst, followed by the reaction between NO and adsorbed NH_3 with satisfactory results.

Additional experiments carried out in the bench-scale reactor were used for the modelling of mass transfer in the monolithic catalyst. Thus, the internal effectiveness factor was calculated and correlated with temperature. Overall, the reactor model is able of predicting both steady and unsteady state experiments.

2 Acknowledgements

- 3 This work was financed by the Spanish Council of Environment (ref. 165/PC08/1-13.1). Emilio
- 4 Muñoz thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo
- 5 Ochoa Program). Catalysts samples were a generous gift from ARGILLON

6

2 Caption to figures

	4 I	Figure 1	Diagram of the bench-scale reacto
--	-----	----------	-----------------------------------

- 5 Figure 2 Influence of temperature. Transient in NO (a) and NH₃ (b) outlet 6 concentrations. Flow rate = 3 L min⁻¹ n.t.p. NO and NH₃ inlet concentration = 7 500 ppm. Temperature: $150^{\circ}C$ (--), $170^{\circ}C$ (---), $190^{\circ}C$ (•---), $220^{\circ}C$ (--), 8 $280^{\circ}C$ (•---) and $320^{\circ}C$ (•••).
- 9 Figure 3 Steady state NO conversion. Influence of operating variables:

10	(a) Temperature. 3 L min⁻¹	⁻ n.t.p., NH₃/NO=1.
----	----------------------------	--------------------------------

- 11 (b) Oxygen concentration. 2 L min⁻¹ n.t.p., 250°C, NH₃/NO=0.6.
- 12 (c) NH₃/NO ratio. (■) 2 L min⁻¹ n.t.p., 250^oC. (♦) 2 L min⁻¹ n.t.p., 300^oC. (▲) 1
- L min⁻¹ n.t.p., 300°C. The straight line indicates the maximum stoichiometric
 NO conversion.
- 15Figure 4Influence of oxygen concentration. Transient in NO (a) and NH3 (b) outlet16concentrations. Flow rate = 2 L min⁻¹ n.t.p., temperature = 250° C,17NH3/NO=0.6. Oxygen concentration: 0% (—), 8% (— —) and 21% (- -).
- 18Figure 5Influence of NH_3/NO feed ratio. Variation of NH_3 feed concentration (•••) and19the corresponding evolution in NO (—) and NH_3 (— —) outlet concentrations.20Flow rate = 2 L min⁻¹ n.t.p., temperature = 250°C.
- Figure 6 Fitting of NH₃ adsorption (a) and desorption (b) transient experiments. Feed
 concentration: 500 ppm. Temperature: 300°C. Flow rate: 1 (●) and 3 L min⁻¹
 n.t.p. (▲). Symbols: experiments. Lines: model fitting.
- Figure 7 Fitting of NO transient reduction experiments: NO (a) and NH₃ (b) effluent
 concentrations. Feed concentration: 500 ppm NO and NH₃. Flow rate: 1 L min⁻¹
 ¹ n.t.p. Temperature: 220 (◆), 280 (▲) and 320°C (●). Symbols: experiments.
 Lines: model fitting.

- Figure 8 Influence of temperature in the internal effectiveness factor. Symbols:
 internal effectiveness factor fit from experiments. Line: fitting.
- Figure 9 Comparison of model simulations (line) and experiments (symbols) in terms of
 NO steady state conversion. Flow rate: 8-12 L min⁻¹ n.t.p. Inlet concentration:
 5 500 ppm NO and NH₃.
- 6 Figure 10 Evaluation of the performance of the model to predict the unsteady state
 7 experiments in the bench scale reactor. Flow rate: 8 L min⁻¹ n.t.p.
 8 Concentrations: 500 ppm NO and NH₃. Temperature: 180 (◆), 250 (▲) and
 9 300°C (●). Symbols: experiments. Lines: simulations.
- 10

2 Figure 1

2 Figure 2

2 Figure 3

1 Figure 4

2 Figure 5

2 Figure 6

2 Figure 7

2 Figure 8

-

Figure 9

2 Figure 10

1		
2	List of tables	
3		
4	Table 1	Model for the lab-scale fixed-bed reactor.
5	Table 2	Model for the bench-scale fixed-bed reactor.
6	Table 3	Parameters of the kinetic model obtained by fitting of experimental data of
7		the lab-scale fixed-bed reactor.
8		
9		
10		
11		
12		
13		

1 Table 1

2

Boundary conditions

3 A = NO, B = NH₃

4

1 Table 2

2

Gas phase mass balances	Boundary conditions
<u> </u>	
Solid phase mass balance	Boundary conditions
Interphase equations	
Kinetic equations	
$A = NO. B = NH_3$	

4

- 5
- 6

1 Table 3

Kinetic parameters
0.113 mol NH ₃ kg _{cat} ⁻¹
2.75 m ³ mol ⁻¹ s ⁻¹
0.0278 s ⁻¹ at 280°C
9.8 kJ mol ⁻¹
260 m ³ mol ⁻¹ s ⁻¹ at 280ºC
92.8 kJ mol ⁻¹

2 References

- Jin Y, Veiga MC and Kennes C, Bioprocesses for the removal of nitrogen oxides from polluted
 air. Journal of Chemical Technology & Biotechnology 80: 483-494 (2005).
- Roh SA, Jung SH, Jeong SM and Kim SD, Selective catalytic reduction by urea in a fluidized bed reactor. *Journal of Chemical Technology & Biotechnology* 78: 1104-1109 (2003).
- Inger M, Wilk M, Parres-Esclapez S, Illán-Gómez MJ, Salinas-Martínez de Lecea C and Bueno-López A, Nitrous oxide decomposition in a real nitric acid plant gas stream with a RhOx/Ce0.9Pr0.1O2/alumina catalyst. *Journal of Chemical Technology & Biotechnology* 88: 2233-2238 (2013).
- Berger RJ, Kapteijn F, Moulijn JA, Marin GB, De Wilde J, Olea M, Chen D, Holmen A, Lietti L,
 Tronconi E and Schuurman Y, Dynamic methods for catalytic kinetics. *Applied Catalysis A: General* 342: 3-28 (2008).
- 145.Nova I, Lietti L, Tronconi E and Forzatti P, Transient responce method applied to the kinetic15analysis of the DeNOx-SCR reaction. Chemical Engineering Science 56: 1229-1237 (2001).
- Lietti L, Nova I, Camurri S, Tronconi E and Forzatti P, Dynamics of the SCR-DeNOx Reaction by
 the Transient-Response Method. *AIChE Journal* 43: 2559-2570 (1997).
- Shafeeyan MS, Wan Daud WMA and Shamiri A, A review of mathematical modeling of fixedbed columns for carbon dioxide adsorption. *Chemical Engineering Research and Design* 92: 961-988 (2014).
- Zhibo X, Chunmei L, Dongxu G, Xinli Z and Kuihua H, Selective catalytic reduction of NOxwith
 NH3over iron-cerium mixed oxide catalyst: catalytic performance and characterization.
 Journal of Chemical Technology & Biotechnology 88: 1258-1265 (2013).
- Won W, Lee S and Lee KS, Modeling and parameter estimation for a fixed-bed adsorption
 process for CO2 capture using zeolite 13X. Separation and Purification Technology 85: 120 129 (2012).
- Tronconi E, Nova I, Ciardelli C, Chatterjee D, Brandl-Konrad B and Burkhardt T, Modelling of
 an SCR catalytic converter for diesel exhaust after treatment: Dynamic effects at low
 temperature. *Catalysis Today* 105: 529-536 (2005).
- Thang, Chen and Shangguan, Low-temperature SCR of NO with propylene in excess oxygen
 over the Pt/TiO2 catalyst, in Catal Commun, pp. 1330-1333 (2009).
- Liu F, Yu Y and He H, Environmentally-benign catalysts for the selective catalytic reduction of
 NOx from diesel engines: structure-activity relationship and reaction mechanism aspects.
 Chemical Communications (2014).
- Roy S, Hegde MS and Madras G, Catalysis for NOx abatement. *Applied Energy* 86: 2283-2297
 (2009).
- Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y and Mussmann L,
 Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith
 catalysts. *Applied Catalysis B: Environmental* 66: 208-216 (2006).
- 40 15. Iwamoto M and Hamada H, Removal of nitrogen monoxide from exhaust gases through
 41 novel catalytic processes. *Catalysis Today* 10: 57-71 (1991).
- 42 16. Cheng X and Bi XT, A review of recent advances in selective catalytic NOx reduction reactor
 43 technologies. *Particuology*.
- Odenbrand CUI, Bahamonde A, Avila P and Blanco J, Kinetic study of the selective reduction
 of nitric oxide over vanadia—tungsta—titania/sepiolite catalyst. *Applied Catalysis B: Environmental* 5: 117-131 (1994).
- 47 18. Koebel M and Elsener M, Selective catalytic reduction of NO over commercial DeNOx48 catalysts: experimental determination of kinetic and thermodynamic parameters. *Chemical*49 *Engineering Science* 53: 657-669 (1998).

- Tronconi E, Lietti L, Forzatti P and Malloggi S, Experimental and theoretical investigation of
 the dynamics of the SCR DeNOx reaction. *Chemical Engineering Science* 51: 2965-2970
 (1996).
- Pinaeva LG, Suknev AP, Budneva AA, Paukshtis EA and Bal'zhinimaev BS, On the role of
 oxygen in the reaction of NO reduction by NH3 over monolayer V2O5^[2]TiO2 catalyst. *Journal*of Molecular Catalysis A: Chemical **112**: 115-124 (1996).
- Busca G, Larrubia MA, Arrighi L and Ramis G, Catalytic abatement of NOx: Chemical and
 mechanistic aspects. *Catalysis Today* 107–108: 139-148 (2005).
- 9 22. Busca G, Lietti L, Ramis G and Berti F, Chemical and mechanistic aspects of the selective
 10 catalytic reduction of NOx by ammonia over oxide catalysts: A review. *Applied Catalysis B:*11 *Environmental* 18: 1-36 (1998).
- Lei Z, Han B, Yang K and Chen B, Influence of H2O on the low-temperature NH3-SCR of NO
 over V2O5/AC catalyst: An experimental and modeling study. *Chemical Engineering Journal* 215–216: 651-657 (2013).
- Inomata M, Miyamoto A and Murakami Y, Mechanism of the reaction of NO and NH3 on
 vanadium oxide catalyst in the presence of oxygen under the dilute gas condition. *Journal of Catalysis* 62: 140-148 (1980).
- Ramis G, Busca G, Bregani F and Forzatti* P, Fourier transform-infrared study of the
 adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia titania and mechanism of selective catalytic reduction. *Applied Catalysis* 64: 259-278 (1990).
- 26. Tufano V and Turco M, Kinetic modelling of nitric oxide reduction over a high-surface area
 V205-TiO2 catalyst. *Applied Catalysis B: Environmental* 2: 9-26 (1993).
- 23 27. Topsoe NY, Topsoe H and Dumesic JA, Vanadia/Titania Catalysts for Selective Catalytic
 24 Reduction (SCR) of Nitric-Oxide by Ammonia: I. Combined Temperature-Programmed in-Situ
 25 FTIR and On-line Mass-Spectroscopy Studies. *Journal of Catalysis* 151: 226-240 (1995).
- Z8. Topsoe NY, Dumesic JA and Topsoe H, Vanadia-Titania Catalysts for Selective Catalytic
 Reduction of Nitric-Oxide by Ammonia: II. Studies of Active Sites and Formulation of Catalytic
 Cycles. Journal of Catalysis 151: 241-252 (1995).
- 29. Marin P, Fissore D, Barresi AA and Ordonez S, Simulation of an industrial-scale process for
 30 the SCR of NOx based on the loop reactor concept. *Chemical Engineering and Processing* 48:
 31 311-320 (2009).
- 30. Hayes RE and Kolaczkowski ST, Introduction to catalytic combustion. Gordon and Breach
 Science Publishers, Amsterdam (1997).
- 31. Marín P, Ordóñez S and Díez FV, Monoliths as suitable catalysts for reverse-flow combustors:
 modeling and experimental validation. *AIChE Journal* 56: 3162-3173 (2010).
- 36 32. Marin P, Ordonez S and Diez FV, Systematic study of the performance of a reverse flow
 37 reactor for the treatment of lean hydrocarbon emissions. *Journal of Chemical Technology* 38 *and Biotechnology* 84: 1292-1302 (2009).
- 39 33. Chen C-T and Tan W-L, Mathematical modeling, optimal design and control of an SCR reactor
 40 for NOx removal. *Journal of the Taiwan Institute of Chemical Engineers* 43: 409-419 (2012).
- 41 34. Heck RM, Catalytic abatement of nitrogen oxides-stationary applications. *Catalysis Today* 53:
 519-523 (1999).
- 43 35. Svachula J, Ferlazzo N, Forzatti P, Tronconi E and Bregani F, Selective reduction of NOx by
 44 NH3 over honeycomb DeNOxing catalysts. *Industrial and Engineering Chemistry Research* 32:
 45 1053-1060 (1993).