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Abstract Since Bertoluzza et al.’s metric between fuzzy numbers has been
introduced, several studies involving it have been developed. Some of these
studies concern equivalent expressions for the metric which are useful for ei-
ther theoretical, practical or simulation purposes. Other studies refer to the
potentiality of Bertoluzza et al.’s metric to establish statistical methods for the
analysis of fuzzy data. This paper shortly reviews such studies and examine
part of the scientific impact of the metric.
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1 Introduction

When analyzing fuzzy-valued data from a statistical perspective the use of
suitable metrics between fuzzy data plays a crucial role.

On one hand, some of the main drawbacks associated with the difference
operation can be often overcome by using distances. Thus, as for the usual
fuzzy arithmetic there is no difference operation always well-defined and pre-
serving the main properties of the real/vectorial-valued case, this operation can
be replaced by a distance between fuzzy data when the ‘sign’ of the deviation
is not relevant. On the other hand, distances are also essential in formalizing
errors in estimating, statistical convergences in stating limit results, and so
on.
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On quantifying the distance between fuzzy data two relevant features ought
to be integrated, namely, the ease-to-handle and the intuitiveness of the inter-
pretation. In this regard, Bertoluzza et al. [1] have introduced a generalized
metric on the space of fuzzy numbers which is friendly to use and can be
intuitively supported.

This paper aims to review Bertoluzza et al.’s generalized metric between
fuzzy numbers, some equivalent expressions, as well as some topological prop-
erties. The choice of particular parameters/functions characterizing the metric
is discussed. A concise review on some of the statistical methods for fuzzy data
developed in this century and based on Bertoluzza et al.’s metric and the no-
tion of random fuzzy sets [29] (originally coined as fuzzy random variables)
is also given. The paper ends with some statistics on the scientific impact
associated with Bertoluzza et al.’s metric [1].

2 Original definition, interpretation and metric properties

In the course of some studies on fuzzy regression analysis, Bertoluzza, Cor-
ral and Salas (Bertoluzza et al.) introduced in [1] a distance between fuzzy
numbers extending the Euclidean one between real numbers.

By a fuzzy number (sometimes referred to as Zadeh’s fuzzy number -see,
for instance, Herencia and Lamata [18,19]-) we mean (see Goetschel and Vox-
man [11]) a fuzzy subset of the space of real numbers R, that is, a mapping

Ũ : R → [0, 1], which is convex, normal and upper semi-continuous with com-
pact support.

Equivalently, a fuzzy number is a mapping Ũ : R → [0, 1] such that for

each α ∈ [0, 1], the α-level set (given by Ũα = {x ∈ R : Ũ(x) ≥ α} if α > 0,

= cl{x ∈ R : Ũ(x) > 0} if α = 0) is a nonempty compact interval. Ũ(x) is
usually interpreted as the ‘degree of compatibility of the real number x with
the property associated with Ũ ,’ or ‘degree of truth of the assertion “x is Ũ”.’

Alternatively, Goetschel and Voxman [12] have proven that a fuzzy number

is a mapping Ũ : R → [0, 1] such that

– inf Ũ(·) : [0, 1] → R is a bounded non-decreasing function,

– sup Ũ(·) : [0, 1] → R is a bounded non-increasing function,

– inf Ũ1 ≤ sup Ũ1,
– inf Ũ(·) and sup Ũ(·) are left-continuous on (0, 1] and right-continuous at 0.

Let Fc(R) denote the space of fuzzy numbers. Bertoluzza et al. have sug-
gested to compute the distance between two elements in Fc(R) “... as a suitable
weighted mean of the distances between the α-levels of the fuzzy numbers.”
Consequently, “... the main difficulty is concerned with the definition of the
distance between intervals,... so our first task consists on defining a measure
of the distance between two intervals.”
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Bertoluzza et al. have pointed out some concerns related to the use of well-
known distances on the space Kc(R) of the nonempty compact intervals, like
Hausdorff L∞-metric, which for A,B ∈ Kc(R) is given by

dH(A,B) = max{| inf A− inf B|, | supA− supB|},

or the Lp-metrics (see, for instance, Vitale [33]), which for A,B ∈ Kc(R) and
1 ≤ p < ∞ are given by

δp(A,B) =

(
1

2

∣∣ inf A− inf B
∣∣p + 1

2

∣∣ supA− supB
∣∣p)1/p

.

In this way, the fact that

dH([0, 5], [6, 7]) = dH([0, 5], [6, 10])

or
δp([−2, 2], [−1, 1]) = δp([−2, 1], [−1, 2]),

although in both cases the second intervals intuitively appear to be more dis-
tant, prevent from using these metrics in the statistical setting (and especially
in the context of quantifying errors in estimation).

To overcome these drawbacks, when defining a new L2-metric in Kc(R)
Bertoluzza et al. suggest to involve not only the distances between the extreme
values of the intervals, | inf A − inf B| and | supA − supB|, but also those
between other values of the intervals.

More concretely, to quantify the distance between intervals A and B

– A bijection between them is first established by associating for any arbi-
trary t ∈ [0, 1]: A[t] ↔ B[t] (where A[t] = t · supA+ (1− t) · inf A);

– The root mean square Euclidean distance between the points associated

through the bijection (see Figure 1), that is,
∣∣A[t]−B[t]

∣∣2, is later computed.

Fig. 1 The dW -distance is given by a root mean square distance, the distance being the
one which is graphically displayed, |A[t] −B[t]|

inf A supA inf B supB

At Bt

|A[t] −B[t]|

The suggested L2-distance in Kc(R) is stated as follows:

Definition 1 Let W be a normalized weighting measure on the measurable
space ([0, 1],B[0,1]) which is formalized as a probability measure associated with
a non-degenerate distribution. The proposed distance is given for A,B ∈ Kc(R)
by

dW (A,B) =

√∫
[0,1]

∣∣A[t] −B[t]
∣∣2 dW (t).
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Although the weighting measure W is formally associated with a proba-
bility measure, it has no stochastic but weighting meaning and mission. In
particular, if W is associated with the uniform distribution on {0, 1}, then
dW reduces to δ2. On the other hand, if W is associated with the uniform
distribution on [0, 1], which will be denoted along the paper by ℓ, then

dℓ([0, 5], [6, 7]) = 4.1663 < 5.5076 = dℓ([0, 5], [6, 10]),

dℓ([−2, 2], [−1, 1]) = 0.5774 < 1 = dℓ([−2, 1], [−1, 2]).

On extending this metric from Kc(R) to Fc(R), to quantify the distance

between fuzzy numbers Ũ and Ṽ

– a double bijection between Ũ and Ṽ is first established by associating
- for any arbitrary α ∈ [0, 1]: Ũα ↔ Ṽα, and

- for any arbitrary t ∈ [0, 1]: Ũ
[t]
α ↔ Ṽ

[t]
α ;

– the root mean square Euclidean distance between the points associated

through the double bijection (see Figure 2), that is,
∣∣Ũ [t]

α − Ṽ
[t]
α

∣∣2, is later
computed.

Fig. 2 The (W,φ)-distance is given by a root mean square distance, the distance being the

one which is graphically displayed, |Ũ [t]
α − Ṽ

[t]
α |

The suggested L2-distance in Fc(R) is stated as follows:

Definition 2 Let W be a normalized weighting measure on the measurable
space ([0, 1],B[0,1]) which is formalized as a probability measure associated with
a non-degenerate distribution, and φ be a normalized weighting measure on
([0, 1],B[0,1]) which is formalized as a probability measure associated with an
absolutely continuous distribution function being strictly increasing on [0, 1].

If Ũ , Ṽ ∈ Fc(R), then the (W,φ)-distance between two fuzzy numbers is given
by the value

Dφ
W (Ũ , Ṽ ) =

√∫
[0,1]

[
dW (Ũα, Ṽα)

]2
dφ(α)
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=

√√√√∫
[0,1]

[∫
[0,1]

∣∣Ũ [t]
α − Ṽ

[t]
α

∣∣2 dW (t)

]
dφ(α).

Although the weighting measure φ is formally associated with a probability
measure, as it happens for W its meaning and mission are simply weighting
but not stochastic in nature. Actually, φ weights the influence or importance
of each level (i.e., degree of ‘vagueness’, ‘fuzziness’,...). Thus,

– if φ ≡ ℓ, Dφ
W will be mainly sensitive to ‘location’ changes;

– if, for instance, φ = Beta(1, p) with p >> 1 the lower the degree of compat-
ibility, the higher the weight, whence Dφ

W will be very sensitive to changes
at the lowest levels of compatibility;

– if, for instance, φ = Beta(p, 1) with p >> 1 the higher the degree of
compatibility, the higher the weight, whence Dφ

W will be very sensitive
to changes at the highest levels of compatibility. Bertoluzza et al. have
recommended that levels with high degree of compatibility should count
more in the distance than those with low degree.

Dφ
W defines a metric on the space Fc(R). Thus,

Proposition 1 Dφ
W is a metric on Fc(R).

Proof Indeed,

• Non-negativity: trivial to prove.

• Identity of indiscernibles: As W is not associated with a degenerate distri-
bution, Dφ

W (Ũ , Ṽ ) = 0 if, and only if,∫
[0,1]

∣∣Ũ [t]
α − Ṽ [t]

α

∣∣2 dW (t) = 0 a.s. [φ]

and, as φ is associated with an absolutely continuous distribution and∣∣Ũ [t]
α − Ṽ

[t]
α

∣∣2 is left-continuous at α ∈ (0, 1] and right-continuous at α = 0,

then
∫
[0,1]

∣∣Ũ [t]
α − Ṽ

[t]
α

∣∣2 dW (t) = 0 for all α ∈ [0, 1].

For any α ∈ [0, 1], since W is associated with a non-degenerate distri-

bution,
∫
[0,1]

∣∣Ũ [t]
α − Ṽ

[t]
α

∣∣2 dW (t) = 0 implies that there exist two values

t1(α), t2(α) ∈ [0, 1], t1(α) < t2(α), such that

t1(α)(inf Ũα − inf Ṽα) + (1− t1(α))(sup Ũα − sup Ṽα) = 0,

t2(α)(inf Ũα − inf Ṽα) + (1− t2(α))(sup Ũα − sup Ṽα) = 0,

and hence[
t2(α)− t1(α)

]
·
[
(inf Ũα − inf Ṽα)− (sup Ũα − sup Ṽα)

]
= 0.

In case either t1(α) or t2(α) belong to (0, 1), the unique possibility for the
three preceding equalities to hold is that

inf Ũα = inf Ṽα, sup Ũα = sup Ṽα.
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In case t1(α) = 0 and t2(α) = 1, then also the unique possibility for the
two first preceding equalities to hold is that

inf Ũα = inf Ṽα, sup Ũα = sup Ṽα.

Consequently, Ũ = Ṽ .

• Symmetry: trivial to prove.

• Triangular inequality: quite trivial to prove because of∣∣Ũ [t]
α − Ṽ [t]

α

∣∣2 ≤
∣∣Ũ [t]

α − T̃ [t]
α

∣∣2 + ∣∣T̃ [t]
α − Ṽ [t]

α

∣∣2
for all α ∈ [0, 1] and Ũ , Ṽ , T̃ ∈ Fc(R). �

Remark 1 It should be pointed out that for the developments in [1] authors
restrict W to be a mixture of a discrete-finite distribution and a continuous
one, but in fact there is no need for such a constraint in the general setting.
Similarly, the absolute continuity of φ could be weakened by simply demanding
a condition guaranteeing the identity of indiscernibles forDφ

W , but the assumed
condition seems to be ease-to-use and rather natural in practice.

3 Definitional and topological equivalences

As it has been detailed in previous studies (see, for instance, Blanco-Fernández
et al. [3]), the metricDφ

W can be alternatively expressed in some different ways.
The expression as it was introduced by Bertoluzza et al. is definitely the

easiest version to interpret as it involves the choice of the weighting mea-
sure W . Nevertheless, for computations, simulations, theoretical developments
and the extension to higher dimensionality spaces, some equivalences become
more appropriate. These ‘definitional’ equivalences has been also described in
Blanco-Fernández et al. [3].

3.1 Equivalent definition based on weighting
extremes and a relevant location point of the α-levels

As eventually happens in Maths, the generalized metric in Definition 2 can be
equivalently characterized by means of one of its particularizations.

Thus, Dφ
W can be fully characterized (see Bertoluzza et al. [1], Lubiano et

al. [23]) by particularizing the general weighting measure W to a discrete one
weighting (for each level) at three points: the two extremes and an intermediate
one (often the mid-point).

Thus, givenW and φ, if one denotes tW =
∫
[0,1]

t dW (t) and λ = (λ1, λ2, λ3)

with

λ1 =

∫
[0,1]

(t− tW )2 dW (t)

1− tW
, λ2 =

∫
[0,1]

t(1− t) dW (t)

tW (1− tW )
, λ3 =

∫
[0,1]

(t− tW )2 dW (t)

tW
,
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then,
Dφ

W (Ũ , Ṽ ) = Dφ
λ (Ũ , Ṽ )

=

√∫
(0,1]

(
λ1

[
Ũ

[1]
α − Ṽ

[1]
α

]2
+ λ2

[
Ũ

[tW ]
α − Ṽ

[tW ]
α

]2
+ λ3

[
Ũ

[0]
α − Ṽ

[0]
α

]2)
dφ(α).

It can be easily verified that λ1 > 0, λ2 ≥ 0, λ3 > 0, and λ1 + λ2 + λ3 = 1.
Moreover, if tW = 0.5 (like it happens, for instance, if W is associated with
a symmetric distribution w.r.t. t = 0.5, which is often a reasonable selection),

then Ũ
[tW ]
α = mid Ũα = centre of Ũα = (inf Ũα + sup Ũα)/2.

Although choosing W is more intuitive than choosing the weighting vector
λ = (λ1, λ2, λ3), the last one would be easy-to-handle in many other develop-
ments. Some possible selections for the weighting vector with the correspon-
dent measure W are gathered in Table 1.

W λ

Beta(p, q)
(

p
(p+q)(p+q+1)

, p+q
p+q+1

, q
(p+q)(p+q+1)

)
Uniform

{
0, 1

k
, . . . , k−1

k
, 1

} (
k+2
6k

, 2k−2
3k

, k+2
6k

)
Binom(k, p)

k

(
p
k
, k−1

k
, 1−p

k

)

Table 1 Some possible choices for λ = (λ1, λ2, λ3) which are based on choices for W

3.2 Equivalent definition based on weighting
the centers and radii of the α-levels

It is well-known that Hausdorff’s metric can be equivalently expressed in the
interval-valued case as

dH(A,B) = |midA−midB|+ |sprA− sprB|,

where midA = (inf A+ supA)/2 = centre (mid-point) of A, sprA = (supA−
inf A)/2 = radius (spread) of A.

In a similar way,Dφ
W can also be expressed (see, for instance, Gil et al. [8,9],

Trutschnig et al. [32]) by replacing the general weighting measure W by a non-
stochastic weighting of the squared distances between the intermediate points
associated with tW and the squared distances between the radii. Thus, given
W and φ, if one denotes θ = 4

∫
[0,1]

(t − tW )2 dW (t) = 4λ1(1 − tW ) ∈ (0, 1],

then

Dφ
W (Ũ , Ṽ ) = Dφ

θ (Ũ , Ṽ )

=

√∫
[0,1]

([
Ũ

[tW ]
α − Ṽ

[tW ]
α

]2
+ θ

[
spr Ũα − spr Ṽα

]2)
dφ(α).
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If tW = 0.5 (in particular, if W is associated with a symmetric distribution
w.r.t. 0.5), then

Dφ
θ (Ũ , Ṽ ) =

√∫
[0,1]

([
mid Ũα −mid Ṽα

]2
+ θ

[
spr Ũα − spr Ṽα

]2)
dφ(α).

Consequently, the choices of W and θ allow us to weight for each α the
effect of the deviation in ‘shape/imprecision’ in contrast to the effect of the de-
viation in ‘location/position’. From a theoretical perspective we could extend
the parameter θ to range on (0,∞), but in practice it seems more reasonable
to constrain θ to (0, 1] so that the deviation in shape/imprecision is weighted
up to the deviation in location.

Although choosing W is more intuitive than choosing the weighting pa-
rameter θ, the last one would be easy-to-handle in many other developments.
Some possible selections for the weighting parameter with the correspondent
measure W are gathered in Table 2.

W θ

Beta(p, q) 4pq
(p+q)2(p+q+1)

Uniform
{
0, 1

k
, . . . , k−1

k
, 1

}
k+2
3k

Binom(k, p)

k

4p(1−p)
k

Table 2 Some possible choices for θ which are based on choices for W

3.3 Equivalent definition based on the support functions
of the fuzzy numbers

Fuzzy numbers (in general, convex fuzzy sets) can also be characterized by

means of the so-called support function (see Puri and Ralescu [28]). If Ũ

∈ Fc(R), the support function of Ũ is the real valued function sŨ on {−1, 1}
× [0, 1] such that sŨ (−1, α) = − inf Ũα and sŨ (1, α) = sup Ũα.

By using this function, Dφ
W can be expressed (see Näther [27], Körner

and Näther [21]) by replacing the general weighting measure W by a definite
positive and symmetric kernel K defined on {−1, 1}2 × [0, 1]2 such that

dK(u, v, α, β) =

K0(u, v) dφ(α) if β = α

0 otherwise

with

K0(1, 1) =

∫
[0,1]

t2 dW (t) = λ1(1− tW ) + t2W ,
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K0(−1,−1) =

∫
[0,1]

(1− t)2 dW (t) = λ1(1− tW ) + (1− tW )2,

K0(1,−1) = K0(−1, 1) =

∫
[0,1]

t(1− t) dW (t) = (tW − λ1)(1− tW ).

Thus, given W and φ, by considering the inner product ⟨·, ·⟩K associated
with the L2-distance on the space of the Lebesgue integrable functions on
{−1, 1} × [0, 1] w.r.t. the above definite positive and symmetric kernel K, we
have that

Dφ
W (Ũ , Ṽ ) = Dφ

K(Ũ , Ṽ ) =
√

⟨sŨ − sṼ , sŨ − sṼ ⟩K

=

√∫
({−1,1}×[0,1])2

(sŨ (u, α)− sṼ (u, α))(sŨ (v, β)− sṼ (v, β)) dK(u, v, α, β).

Although choosing W is more intuitive than choosing the definite positive
and symmetric kernel K, the latter would be convenient for certain develop-
ments, as we will see in the next section. Some possible selections for the kernel
with the correspondent measure W are gathered in Table 3.

W

 K0(1, 1) K0(1,−1)

K0(−1, 1) K0(−1,−1)



Beta(p, q)


p(1+p)

(p+q)(p+q+1)
pq

(p+q)(p+q+1)

pq
(p+q)(p+q+1)

q(1+q)
(p+q)(p+q+1)



Uniform
{
0, 1

k
, . . . , k−1

k
, 1

}  2k+1
6k

k−1
6k

k−1
6k

2k+1
6k


Binom(k, p)

k

 p[(1−p)+kp]
k

p(1−p)(k−1)
k

p(1−p)(k−1)
k

(1−p)[p+k(1−p)]
k



Table 3 Some possible choices for the definite positive and symmetric kernel which are
based on choices for W

As a summary implication of the equivalences which have been just stated,
Table 4 jointly collects some particular choices of the weighting λ, θ and(

K0(1, 1) K0(1,−1)
K0(−1, 1) K0(−1,−1)

)
for certain symmetric selections of W (the symmetric

being usually the most natural ones).

On the other hand, Bertoluzza et al.’s metric is topologically equivalent to
well-known separable metrics, which leads to valuable features for Dφ

W , as can
be seen in the following subsection.
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W λ θ

(
K0(1, 1) K0(1,−1)
K0(−1, 1) K0(−1,−1)

)

Beta(1, 1) = ℓ (1/6, 2/3, 1/6) 1/3

(
1/3 1/6
1/6 1/3

)

Beta(2, 2) (1/10, 4/5, 1/10) 1/5

(
3/10 1/5
1/5 3/10

)

Beta(1/4, 1/4) (1/3, 1/3, 1/3) 2/3

(
5/12 1/12
1/12 5/12

)

Beta(1/8, 1/8) (2/5, 1/5, 2/5) 4/5

(
9/20 1/20
1/20 9/20

)

Uniform{0, 1/2, 1} (1/3, 1/3, 1/3) 2/3

(
5/12 1/12
1/12 5/12

)

Binom(4, 1/2)/4 (1/8, 3/4, 1/8) 1/4

(
5/16 3/16
3/16 5/16

)

Table 4 Some particular choices for the weighting vector, parameter and definite positive
and symmetric kernel which are based on choices for W

3.4 Topological properties

Bertoluzza et al.’s metric is topologically equivalent to the L2-metric ρ2 be-
tween fuzzy numbers based on δ2 (Diamond and Kloeden [7]), which is given
by

ρ2(Ũ , Ṽ ) =

√∫
[0,1]

[
δ2(Ũα, Ṽα)

]2
dα

=

√∫
[0,1]

[
1

2
·
∣∣ inf Ũα − inf Ṽα

∣∣2 +
1

2
·
∣∣ sup Ũα − sup Ṽα

∣∣2] dα,

and can be easily extended to

ρφ2 (Ũ , Ṽ ) =

√∫
[0,1]

[
1

2
·
∣∣ inf Ũα − inf Ṽα

∣∣2 +
1

2
·
∣∣ sup Ũα − sup Ṽα

∣∣2] dφ(α).

Whenever θ ∈ (0, 1], the last metric is equivalent to Dφ
θ . Thus,

Proposition 2 Let φ be a normalized weighting measure on the measurable
space ([0, 1],B[0,1]) which is formalized as a probability measure associated with
an absolutely continuous distribution function being strictly increasing on [0, 1],
and let θ ∈ (0, 1]. The metric Dφ

θ is topologically equivalent to the metric ρφ2
on Fc(R). More precisely,

√
θ · ρφ2 (Ũ , Ṽ ) ≤ Dφ

θ (Ũ , Ṽ ) ≤ ρφ2 (Ũ , Ṽ )

for all Ũ , Ṽ ∈ Fc(R).
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Proof Indeed, for each α ∈ [0, 1] and Ũ , Ṽ ∈ Fc(R) it is obvious that

θ · [δ2(Ũα, Ṽα))]
2 = θ ·

∣∣mid Ũα −mid Ṽα

∣∣2 + θ ·
∣∣spr Ũα − spr Ṽα

∣∣2
≤

∣∣mid Ũα −mid Ṽα

∣∣2 + θ ·
∣∣spr Ũα − spr Ṽα

∣∣2
≤

∣∣mid Ũα −mid Ṽα

∣∣2 + ∣∣spr Ũα − spr Ṽα

∣∣2 = [δ2(Ũα, Ṽα))]
2.

Since

δ2(Ũα, Ṽα) = dUniform{0,1}(Ũα, Ṽα)

=

√∣∣mid Ũα −mid Ṽα

∣∣2 + ∣∣spr Ũα − spr Ṽα

∣∣2,
then, √

θ · ρφ2 (Ũ , Ṽ ) ≤ Dφ
θ (Ũ , Ṽ ) ≤ ρφ2 (Ũ , Ṽ ).

Therefore, Dφ
θ and ρφ2 are topologically equivalent. �

Given that ρφ2 is topologically equivalent to dφ2 , which extends the L2-
metric d2 in Diamond and Kloeden as follows:

dφ2 (Ũ , Ṽ ) =

√∫
[0,1]

[
dH(Ũα, Ṽα)

]2
dφ(α),

Dφ
θ , ρ

φ
2 and dφ2 share all the topological advantages of the last one, separability

among them. Thus, by following arguments similar to those in Diamond and
Kloeden [7], the separability of the metric space (Fc(R), dφ2 ) can be proved
and, hence,

Proposition 3 (Fc(R), Dφ
W ) is a separable metric space.

Although Dφ
W and Dφ

λ have been the first versions of Bertoluzza et al.’s
metric, Dφ

K and Dφ
θ have been preferred for most statistical developments.

Some of the arguments supporting such a preference (see [3]) are the following:

– the mid/spread representation of fuzzy numbers provides some valuable
results, especially in connection with regression studies;

– Dφ
K and Dφ

θ can be extended to fuzzy sets of higher dimension Euclidean
spaces (see Näther [27], Körner and Näther [21] for the extension of Dφ

K ,
and Trutschnig et al. [32] for the extension of Dφ

θ ) on the basis of the
support function of fuzzy sets (Puri and Ralescu [28]), which is an alter-
native characterization of fuzzy sets with compact convex levels through
their boundaries;

– the covariance of two random mechanisms producing fuzzy data can be
formalized prompted by the ideas for generalized space-valued random el-
ements.
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4 Some applications to the statistical analysis of fuzzy data

The arithmetic of fuzzy numbers is a basic tool for statistically analyzing fuzzy
data. More concretely, the the sum of fuzzy numbers and the product of a real
by a fuzzy number are the key operations in this setting.

The usual arithmetic to be considered on Fc(R) is that based on Zadeh’s
extension principle [34], which level-wise inherits the usual and natural interval

arithmetic, that is, for Ũ , Ṽ ∈ Fc(R) and γ ∈ R the sum Ũ + Ṽ is the fuzzy
number such that for each α ∈ [0, 1]

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα

= [inf Ũα + inf Ṽα, sup Ũα + sup Ṽα],

and the product by the scalar γ · Ũ is the fuzzy number such that for each
α ∈ [0, 1]

(γ · Ũ)α = γ · Ũα =


[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

When the metric Dφ
W is combined with the usual fuzzy arithmetic it can

be concluded that it is translational invariant, i.e.,

Dφ
W (Ũ + T̃ , Ṽ + T̃ ) = Dφ

W (Ũ , Ṽ ),

and in case W is associated with a symmetric distribution on [0, 1] (more
generally, in case and only in case tW = 0.5) it is also rotational invariant, i.e.,

Dφ
W ((−1) · Ũ , (−1) · Ṽ ) = Dφ

W (Ũ , Ṽ ).

Random fuzzy sets is another basic tool for the analysis of fuzzy data, espe-
cially to support appropriately the methods of analysis within a probabilistic
framework. This concept was originally coined by Puri and Ralescu [29] as
fuzzy random variables. Random fuzzy sets mean a mathematical model for
the random mechanism generating fuzzy data.

In the one-dimensional case, Fc(R), a random fuzzy set (or random fuzzy
number) is formalized as follows:

Definition 3 Given a probability space (Ω,A, P ), a random fuzzy number
associated with it is a mapping X : Ω → Fc(R) such that the α-level mappings
Xα : Ω → Kc(R), with Xα(ω) = (X (ω))α for every α ∈ [0, 1], is a random
interval.
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A random fuzzy number can be proven to be Borel-measurable w.r.t. the
Borel σ-field generated by the topology induced by Dφ

W (see, for instance,
González-Rodŕıguez et al. [15]). Consequently, one can trivially refer to the
induced distribution of a random fuzzy number, the independence of two fuzzy
numbers, and so on.

The Aumann-type mean of X is one of the most valuable measures to
summarize the information in the distribution of a random fuzzy number. If it
exists, it is defined as the unique Ẽ(X ) ∈ Fc(R) such that for each α ∈ [0, 1](

Ẽ(X )
)
α
= [E(inf Xα), E(supXα)] .

This notion is coherent with fuzzy arithmetic, so that if

X = 1x̃1
· x̃1 + . . .+ 1x̃r

· x̃r,

where x̃i ∈ Fc(R) (i = 1, . . . , r) and 1 denoting the indicator function in Ω,
then,

Ẽ(X ) = P (X = x̃1) · x̃1 + . . .+ P (X = x̃r) · x̃r.

Moreover, Ẽ(X ) is coherent with Fréchet’s principle for Dφ
W , that is,

Ẽ(X ) = arg min
Ũ∈Fc(R)

E

([
Dφ

W (X , Ũ)
]2)

.

Ẽ(X ) is supported by different Strong Laws of Large Numbers (see, for in-
stance, Colubi et al. [6]).

Other relevant summary measures of the distribution of a random fuzzy
number are the Fréchet variance based on Dφ

W (see, for instance, Lubiano et
al. [23], Blanco-Fernández et al. [2]), and the L1-medians by Sinova et al. [30,
31]. The covariance of two random fuzzy numbers can be also introduced (see
González-Rodŕıguez et al. [13], Blanco-Fernández et al. [2]) in connection with
the simple linear regression analysis between random fuzzy sets, although in
this case it does not involve Dφ

W but is based on the support function.
Estimating the population fuzzy-valued Aumann-type mean of X on the

basis of a sample of independent observations from it is one of the statistical
problems in which Bertoluzza et al.’s metric is involved. More concretely (see,
for instance, Lubiano and Gil [22], González-Rodŕıguez et al. [17], Blanco-
Fernández et al. [2]),

– in what concerns to the ‘point’ estimation of Ẽ(X ), the metric Dφ
W is used

to quantify the estimation error;
– in what concerns to the ‘confidence’ estimation of Ẽ(X ), Dφ

W is used to
construct a confidence ball of this fuzzy-valued parameter.

Another statistical problem involving Bertoluzza et al.’s metric is that of
testing about the population fuzzy-valued Aumann-type mean of one or more
random fuzzy numbers on the basis of a sample of independent observations
from it or them. More concretely (see Körner [20], Montenegro et al. [25,26],
González-Rodŕıguez et al. [16,15], Gil et al. [10], and Blanco-Fernández et
al. [2]),
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– in what concerns the one-sample testing of the null hypothesis H0 : Ẽ(X )

= Ũ the metric Dφ
W is used to test the equivalent null hypothesis H0 :

Dφ
W (Ẽ(X ), Ũ) = 0;

– in what concerns the two-sample testing of the null hypothesis H0 : Ẽ(X )

= Ẽ(Y) the metric Dφ
W is used to test the equivalent null hypothesis

H0 : Dφ
W (Ẽ(X ), Ẽ(Y)) = 0 for independent and dependent samples;

– in what concerns the k-sample testing of the null hypothesis H0 : Ẽ(X1)

= . . . = Ẽ(Xm) the metric Dφ
W is used to test the equivalent null hypothe-

sis H0 :
∑m

i=1

[
Dφ

W

(
Ẽ(Xi),

1
m (X1 + . . .+ Xm)

)]2
= 0 for independent and

dependent samples.

A third statistical problem in which Bertoluzza et al.’s metric has been
shown to be useful is that of the linear regression analysis between two ran-
dom fuzzy numbers (see, for instance, González-Rodŕıguez et al. [13], Blanco-
Fernández et al. [2]). Dφ

W has been employed to develop a least squares ap-
proach to solve the linear regression problem when the usual fuzzy arithmetic
is considered.

A fourth problem using Dφ
W is that of classifying fuzzy data (see Colubi

et al. [5], Blanco-Fernández et al. [2]). The metric has been considered to
compute the distance between the fuzzy data to be classified and the set of
training fuzzy data.

An R package (http://cran.r-project.org/web/packages/SAFD/index.html) has
been designed, and it is being continuously updated, by Lubiano and Trutschnig
(see, for instance, Lubiano and Trutschnig [24]). It provides several basic func-
tions to carry out statistics with one-dimensional fuzzy data in accordance with
the statistical methodology based on Bertoluzza et al.’s metric.

5 Analyzing the impact of Bertoluzza et al.’s distance

To end this paper an elementary statistical analysis is to be considered in con-
nection with the impact of Bertoluzza et al.’s distance. For this purpose, we
have examined three scientific databases, namely, the Web of Science (Thom-
son Reuters), SCOPUS (Elsevier) and Google Scholar.

It should be highlighted that Mathware & Soft Computing, the journal
Bertoluzza et al.’s distance has been published in, has not yet entered the two
first databases. However, the three databases include the number of citations
the paper has received, this number varying among the databases because of
the type of documents they cover.

Table 5 shows the number of citations per periods of three years in accor-
dance with the three databases (notice that the number of citations in the last
considered period is likely to increase since the period is not yet ended). It
can easily be concluded from the table that this number is rather increasing,
which means the concept is being widely used.
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1999–2001 2002–2004 2005–2007 2008–2010 2010–2013 Total

Web of Science 10 8 14 20 17 69

SCOPUS 10 6 15 23 18 72

Google Scholar 11 13 24 30 40 118

Table 5 Citations received by [1] Bertoluzza, C., Corral, N., Salas, A.: On a new class of

distances between fuzzy numbers. Mathw. & Soft Comp. 2 71-84 (1995), in accordance with
Web of Science, SCOPUS and Google Scholar

The citations have been classified in different categories. The eight first (by
citations number) according to the Web of Science classification) are shown
in Figure 3. Most of them correspond to Statistics & Probability, branch
which was the original motivation for introducing the distance. It has also
been widely applied in Computer Science and Mathematics.

Fig. 3 Distribution (percentages) of the papers citing [1] Bertoluzza, C., Corral, N., Salas,

A.: On a new class of distances between fuzzy numbers. Mathw. & Soft Comp. 2 71-84 (1995) by
Web of Science Categories (eight first categories) (Source: Web of Science)

Figure 4 shows the six first (by citations number) journals the citations
have been published in. The paper has been also cited in chapters of multi-
authors books published by Springer and included in the WoS.

Fig. 4 Distribution of the journals papers citing [1] Bertoluzza, C., Corral, N., Salas, A.: On a

new class of distances between fuzzy numbers. Mathw. & Soft Comp. 2 71-84 (1995) by journals
(six first ones) (Source: Web of Science)
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Finally, Figure 5 shows the first (by citations number) countries the authors
institutions belong to.

Fig. 5 Distribution of the papers citing [1] Bertoluzza, C., Corral, N., Salas, A.: On a new

class of distances between fuzzy numbers. Mathw. & Soft Comp. 2 71-84 (1995) by countries
(eight first ones) (Source: Web of Science)

These figures prove an increasing interest on [1], so we foresee that, in a
few years, the numbers in the last two figures will substantially increase.

6 Concluding remarks

In this paper we have presented a review on how Bertoluzza et al.’s metric
has been applied aiming to analyze fuzzy data generated through a random
process.

It should be mentioned that this metric between fuzzy numbers can also
be considered in order to test about distributions of real-valued random vari-
ables. We can state a statistical distance between probability distributions
of real-valued random variables on the basis of the so-called characterizing
fuzzy representation of a random variable (see González-Rodŕıguez et al. [14],
and also Blanco-Fernández et al. in this issue [4]). This distance is given by
Bertoluzza et al.’s one between the Aumann-type means of the characterizing
fuzzy representations of these distributions. It can be used for estimating the
distribution of a random variable, for Goodness-of-Fit testing, and for testing
the equality of two or more distributions. The corresponding estimation and
testing procedures derive from the particularization of the estimators of/tests
about means of random fuzzy numbers we have succinctly recalled in Section
4.
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9. Gil, M.A., Lubiano, M.A., Montenegro, M., López, M.T.: Least squares fitting of an affine
function and strength of association for interval-valued data. Metrika 56 97–111 (2002)
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14. González-Rodŕıguez, G., Colubi, A., Gil, M.A. (2006). A fuzzy representation of random
variables: an operational tool in exploratory analysis and hypothesis testing. Comp. Stat.
Data Anal. 51 (1) 163–176 (2006)
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23. Lubiano, M.A., Gil, M.A., López-Dı́az, M., López, M.T.: The λ-mean squared dispersion
associated with a fuzzy random variable. Fuzzy Sets Syst. 111 307–317 (2000)
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