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Abstract. We consider the fuzzy job shop scheduling problem, which is
a variant of the well-known job shop problem, with uncertainty in task
durations that we model using fuzzy numbers. We propose a tabu search
algorithm for minimising the expected makespan based on reversing arcs
within critical blocks. We test the algorithm and then combine it with
a genetic algorithm from the literature so we can observe the synergy
effect, obtaining better results with the hybrid algorithm than with its
components by separate. Finally we compare our hybrid algorithm with
a memetic algorithm from the literature and show that even in similar
times, our method is better in terms of expected makespan.

1 Introduction

Scheduling problems have formed an important body of research during the last
decades as they are present in multiple applications in industry, finance and
science [15]. Part of that research is focused on dealing with the uncertainty
and vagueness pervading real-world situations [9]. Among the different ways of
representing the uncertainty, fuzzy sets have emerged as a very interesting tool
and have been extensively used in different manners, ranging from representing
incomplete or vague states of information to using fuzzy priority rules with
linguistic qualifiers or preference modelling [4],[18].

In deterministic scheduling the complexity of problems such as shop prob-
lems means that practical approaches to solving them usually involve heuristic
strategies: simulated annealing, genetic algorithms, local search, etc. [2]. Some
attempts have been made to extend these heuristic methods to the case where
uncertain durations are modelled via fuzzy intervals, among others: a genetic
algorithm is hybridised with a local search procedure in [10] for the flow shop
problem, and in [13] a particle swarm is proposed to solve the open shop prob-
lem. For the job shop with different optimisation criteria, we find a neural ap-
proach [19], genetic algorithms [17],[14], simulated annealing [5], genetic algo-
rithms hybridised with local search [6] or particle swarm optimisation [12].

In this paper, we intend to advance in the study of local search methods to
solve the fuzzy job shop problem with expected makespan minimisation, denoted



J |fuzz pi|E[Cmax] according to the three field notation. We shall propose a new
local search algorithm and see how it can be combined with a genetic algorithm
to improve the quality of the best solutions found so far.

2 The Fuzzy Job Shop Scheduling Problem

The job shop scheduling problem, also denoted JSP, consists in scheduling a set
of jobs {J1, . . . , Jn} on a set of physical resources or machines {M1, . . . ,Mm},
subject to a set of constraints. There are precedence constraints, so each job Ji,
i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be sequentially scheduled. Also,
there are capacity constraints, whereby each task θij requires the uninterrupted
and exclusive use of one of the machines for its whole processing time. A feasible
schedule is an allocation of starting times for each task such that all constraints
hold. The objective is to find a schedule which is optimal according to some
criterion, most commonly that the makespan is minimal.

2.1 Uncertain Durations

In real-life applications, it is often the case that the exact time it takes to process
a task is not known in advance, and only some uncertain knowledge is available.
Such knowledge can be modelled using a triangular fuzzy number or TFN, given
by an interval [n1, n3] of possible values and a modal value n2 in it. For a TFN N ,
denotedN = (n1, n2, n3), the membership function takes the following triangular
shape:

µN (x) =


x−n1

n2−n1 : n1 ≤ x ≤ n2
x−n3

n2−n3 : n2 < x ≤ n3

0 : x < n1 or n3 < x

(1)

In the job shop, we essentially need two operations on fuzzy numbers, the
sum and the maximum. These are obtained by extending the corresponding
operations on real numbers using the Extension Principle. However, comput-
ing the resulting expression is cumbersome, if not intractable. For the sake
of simplicity and tractability of numerical calculations, we follow [5] and ap-
proximate the results of these operations, evaluating the operation only on the
three defining points of each TFN. It turns out that for any pair of TFNs M
and N , the approximated sum M + N ≈ (m1 + n1,m2 + n2,m3 + n3) coin-
cides with the actual sum of TFNs; this may not be the case for the max-
imum max(M,N) ≈ (max(m1, n1),max(m2, n2),max(m3, n3)), although they
have identical support and modal value.

The membership function of a fuzzy number can be interpreted as a possibil-
ity distribution on the real numbers. This allows to define its expected value [11],
given for a TFN N by E[N ] = 1

4 (n1 + 2n2 + n3). It coincides with the neutral
scalar substitute of a fuzzy interval and the centre of gravity of its mean value [4].
It induces a total ordering ≤E in the set of fuzzy numbers [5], where for any two
fuzzy numbers M,N M ≤E N if and only if E[M ] ≤ E[N ].



2.2 Fuzzy Job Shop Scheduling

A job shop problem instance may be represented by a directed graph G =
(V,A ∪D). V contains one node x = m(i − 1) + j per task θij , 1 ≤ i ≤ n, 1 ≤
j ≤ m, plus two additional nodes 0 (or start) and nm+ 1 (or end), representing
dummy tasks with null processing times. Arcs in A, called conjunctive arcs,
represent precedence constraints (including arcs from node start to the first
task of each job and arcs form the last task of each job to node end). Arcs in
D, called disjunctive arcs, represent capacity constraints; D = ∪mj=1Dj , where
Dj corresponds to machine Mj and includes two arcs (x, y) and (y, x) for each
pair x, y of tasks requiring that machine. Each arc (x, y) is weighted with the
processing time px of the task at the source node (a TFN in our case). A feasible
task processing order σ is represented by a solution graph, an acyclic subgraph of
G, G(σ) = (V,A ∪R(σ)), where R(σ) = ∪mj=1Rj(σ), Rj(σ) being a hamiltonian
selection of Dj . Using forward propagation in G(σ), it is possible to obtain the
starting and completion times for all tasks and, therefore, the schedule and the
makespan Cmax(σ).

The schedule will be fuzzy in the sense that the starting and completion times
of all tasks and the makespan are TFNs, interpreted as possibility distributions
on the values that the times may take. However, the task processing ordering σ
that determines the schedule is crisp; there is no uncertainty regarding the order
in which tasks are to be processed.

Given that the makespan is a TFN and neither the maximum nor its approx-
imation define a total ordering in the set of TFNs, it is necessary to reformulate
what is understood by “minimising the makespan”. In a similar approach to
stochastic scheduling, it is possible to use the concept of expected value for a
fuzzy quantity and the total ordering it provides, so the objective is to minimise
the expected makespan E[Cmax(σ)], a crisp objective function.

Another concept that needs some reformulation in the fuzzy case is that of
criticality, an issue far from being trivial. In [5], an arc (x, y) in the solution graph
is taken to be critical if and only if the completion time of x and the starting
time of y coincide in any of their components. In [8], it is argued that this
definition yields some counterintuitive examples and a more restrictive notion is
proposed. From the solution graph G(σ), three parallel solution graphs Gi(σ),
i = 1, 2, 3, are derived with identical structure to G(σ), but where the cost of arc
(x, y) ∈ A∪R(σ) in Gi(σ) is pix, the i-th component of px. Each parallel solution
graph Gi(σ) is a disjunctive graph with crisp arc weights, so in each of them
a critical path is the longest path from node start to node end. For the fuzzy
solution graph G(σ), a path will be considered to be critical if and only if it is
critical in some Gi(σ). Nodes and arcs in a critical path are termed critical and
a critical path is naturally decomposed into critical blocks, these being maximal
subsequences of tasks requiring the same machine.

In order to simplify expressions, we define the following notation for a feasible
schedule. For a solution graph G(σ) and a task x, let Pνx and Sνx denote the
predecessor and successor nodes of x on the machine sequence (in R(σ)) and
let PJx and SJx denote the predecessor and successor nodes of x on the job



Generate an initial solution S
S∗ ← S
tabuList← ∅
while ¬StoppingCriterion do
Ω ← Neighbourhood(S)
Ω ← Ω − {ωi ∈ Ω | ωi ∈ tabuList ∧ ¬aspiration(ωi)}
S = ChooseNeighbour(Ω)
if Cmax(S) <E Cmax(S∗) then
S∗ ← S

Update tabuList
return S∗;

Alg. 1: General schema for tabu search

sequence (in A). The head of task x is the starting time of x, a TFN given
by rx = max{rPJx + pPJx , rPνx + pPνx}, and the tail of task x is the time lag
between the moment when x is finished until the completion time of all tasks, a
TFN given by qx = max{qSJx + pSJx , qSνx + pSνx}.

3 Tabu Search for FJSP

Roughly speaking, a typical local search schema starts from a given solution,
calculates its neighbourhood and then chooses a promising neighbour, which is
usually the neighbour with the best value for the objective function. The chosen
neighbour replaces the current solution and the process repeats until a stopping
criterion is met. The algorithm finally returns the best solution found so far
which in our case means that one with the smallest E[Cmax]. In case we have
two solutions A and B with the same E[Cmax] we use a ranking from [1] which
chooses the solution with the minor modal value and, if the tie persists, then
chooses the solution with the minimum support width.

The simplest local search schema is Hill Climbing, which moves from a solu-
tion to a neighbour only if the latter provides an improvement. This approach is
fast but it gets easily stuck in local optima. To prevent this, tabu search allows a
solution S to move to a non-improving neighbour. This usually makes the algo-
rithm find better solutions at the cost of more evaluations, and in consequence,
longer runtime. In our tabu search, starting from an initial solution S, the algo-
rithm moves towards the neighbour with the best E[Cmax] value. However, in
the case that all neighbours of S are worse than it, we may choose a neighbour
S′ and find at the next step that the best neighbour of S′ is S again so we
get trapped in a loop. To avoid this, tabu search uses a tabu list that stores
forbidden solutions or forbidden movements, which are called tabu. In addition
to a tabu status, a so-called aspiration criterion is associated with each move,
so if a movement satisfies the associated aspiration criterion, it is considered an
admissible move even if it is in the tabu list. Algorithm 1 shows the general
schema for the tabu search.



3.1 Neighbourhood

During the last years, many neighbourhoods have been used for solving the
job shop problem with deterministic task durations. In particular, in [20], a
neighbourhood structure is introduced based on reversing all the critical arcs in
the disjunctive graph G(σ). This is extended to the fuzzy framework in [5], where
an arc (x, y) is taken to be critical in G(σ) if exists i = 1, 2, 3 such that rix+pix =
qiy. A second extension to the fuzzy case was proposed in [8], using the definition
of criticality based on parallel solution graphs instead. As a consequence of the
criticality definitions, the new neighbourhood is a proper subset of the previous
one while still containing all the improving solutions. Additionally, all neighbours
in this structure are feasible and the connectivity property holds: starting from
any solution, it is possible to reach a given global optimum in a finite number
of steps using this structure. In [6] a new neighbourhood is proposed, based
on reversing only those critical arcs at the extreme of critical blocks of a single
path. Although the connectivity property does not hold any more, it contains
only feasible solutions and it proves to be a very efficient structure.

More recently, in [16] the authors propose a new neighbourhood for the fuzzy
job shop inspired in the work from [3] for the deterministic problem based on
also reversing adjacent arcs to (x, y) (machine predecessor Pνx and successor
Sνy) as explained in Definition 1.

Definition 1. Let σ be a task processing order and let v = (x, y) be an arc at the
extreme of a critical block in the associated graph G(σ). Then, the neighbourhood
structure NR

3 (σ) is obtained as follows: if (x, y) is the only arc in the critical
block, then (x, y) is reversed; if Pνx is also critical (and Sνy is not), then we
consider all possible permutations of (Pνx, x, y) where (x, y) is reversed; else, if
Sνy is critical, then we consider all possible permutations of (x, y, Sνy) where
(x, y) is reversed.

In the proposed tabu search, only the best neighbour is of interest. Thus, a
makespan lower bound may help find the best neighbour in less time discarding
those which are far from being the best of the neighbourhood. Therefore we
use the method proposed in [16] which calculates a lower bound for the fuzzy
makespan of a NR

3 neighbour as the longest path that would pass throw the af-
fected nodes if we performed the move. This method also allows to easily discard
moves that yield to non-feasible solutions (notice that the neighbourhood itself
could generate non-feasible solutions). Details on how neighbours are chosen
using lower bounds are given in Algorithm 2.

3.2 The Tabu List

In its conception, a tabu list is a set of forbidden solutions so the local search does
not explore them any more. However, storing complete solutions and testing if
a neighbour belongs to the list is too inefficient in terms of computational time.
Usually, a tabu list stores the opposite of any move applied during the search to
transform a solution into a new one, e.g. the case that we reverse the arc (x, y),



Method ChooseNeighbour(Ω)
ω∗ ← emptySolution
Compute the lower bound estim(ωi) for each neighbour ωi ∈ Ω
while Ω 6= ∅ do
ωc ← arg minωi∈Ω{estim(ωi)}
Ω ← Ω − {ωc}
Evaluate ωc updating heads and tails [6]
if ω∗ is empty or Cmax(ωc) <E Cmax(ω∗) then
ω∗ ← ωc
Ω ← Ω − {ωi | estim(ωi) > E[Cmax(ω∗)]}

return ω∗;

Alg. 2: Neighbour choice

we forbid the reversal of arc (y, x) by including it in the tabu list. This simple
case cannot be trivially extended to the neighbourhood used herein, where a
critical arc (x, y) can generate up to 5 different neighbours.

If we move to a neighbour generated from the critical arc (x, y), we propose
to store the relative order before the change of the involved tasks and forbid
any movement that yields to a solution with that relative order. For example,
if we are in the state (Pνx, x, y) and decide to move to (y, Pνx, x), we store the
first tuple and forbid any movement that generates any solution in which these
3 tasks are sorted as (Pνx, x, y). We also introduce a parameter tabuSize that
determines the maximum size of the list. The behaviour of the list is FIFO, that
is, if we need to introduce a new forbidden order in the list and the tabuSize
has been reached, we remove the oldest one.

A tabu move is allowed provided that it fulfills an aspiration criterion, in
our case, that its expected makespan improves the best solution found so far,
provided that there is no non-tabu neighbour with same or better quality.

3.3 Stopping Criterion

Unlike other methods like hill climbing, tabu search algorithms do not have a
well-established stopping criterion. In the algorithm we propose, the tabu search
runs for a number of iterations and finishes if the most recent improvement of
the best solution has not occurred in the last maxIter iterations.

4 Experimental Results

The purpose of this section is to provide an experimental evaluation of the
proposed algorithm in combination with a genetic algorithm. To this end, as in [6]
we shall use a set of instances generated by fuzzifying 12 benchmark problems for
job shop: the well-known FT10 (size 10×10) and FT20 (20×5), and La21, La24,
La25 (15× 10), La27, La29 (20× 10), La38, La40 (15× 15), and ABZ7, ABZ8,
ABZ9 (20× 15), a set of 10 problems considered to be hard to solve for classical



job shop. We use a fuzzy instance of each benchmark, generated following [5], so
task durations become symmetric TFNs where the modal value is the original
duration, thus ensuring that the optimal solution to the crisp problem provides
a lower bound (LB) for the fuzzified version. This allows to measure the quality
of solutions as a relative error (RE) with respect to that lower bound.

RE =
| E[Cmax]− LB |

LB
(2)

All the experiments reported in this section, correspond to a C++ implementa-
tion running on a PC with Xeon processor at 2,2Ghz and 24 Gb RAM running
Linux (SL 6.0.1).

Local search algorithms are very sensitive to the starting solution. It is a
common practice to run the algorithm several times using different starting so-
lutions (multi-start LS) that could be generated randomly or using a heuristic to
obtain good starting points. Here, the multi-start feature is achieved by combin-
ing the tabu search (TS) with a genetic algorithm (GA); the resulting method is
denoted HTS. This kind of hybridisation generally improves the quality of those
methods run independently as the GA keeps the quality of the solutions and the
diversity, while the TS provides a deeper exploitation of the solutions. We apply
the TS to every individual in the population right after its evaluation, resulting
in a so-called memetic algorithm. In the GA, individuals are permutations with
repetitions which are evaluated using a fuzzyfied G&T algorithm. To obtain the
best possible performance, a parametric analysis (not reported here due to lack
of space) was conducted. The resulting parameter values were: Population=100,
JOX crossover with probability 0.9, selection with random pairs (all the indi-
viduals are paired), 4:2 tournament between parents and their offspring for the
replacement, tabu list size = 8 and maxIter = 10 as stopping criterion for the
search.

To estimate the number of generations needed by HTS to converge we run
it 10 times on the fuzzy benchmark and record average objective values for the
best individual in the population in each run and the average population quality.
We conclude the algorithm needs 100 generations to converge. The parameter
maxIter for the TS has a special relevance for the algorithm behaviour as it
defines the length of the TS and as a consequence the level of exploration around
the initial solution. Figure 1 illustrates the algorithm’s behaviour with varying
values of maxIter. We can appreciate that the algorithm is scalable as it can
reduce the relative error when given more time. Of course the longer the runtime
is, the lower the error reduction is. However, choosing a value for the parameter
is not easy, since it depends strongly on the available runtime. Being aware of the
sensitivity of this parameter, for this work we set it to 10 so we can compare HTS
with other another method from the literature [16] in equal runtime conditions.

We run HTS on the benchmark 30 times and store the best and average
solution values as well as average runtime across the 30 runs. In order to asses
whether the combination of the TS with a GA adds any value to the TS alone,
we have implemented a GRASP algorithm which generates random solutions
using the same evaluation function as the GA and then applies the TS to them.
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For the sake of comparison, it generates 10.000 different starting solutions (HTS
evaluates 100 populations of size 100). In addition, to assess the synergy effect we
also run the GA with no local search, letting it evolve with the same population
size (100) for the same time HTS takes to finish. Figure 2 shows there is a clear
synergy effect; in terms of RE, the improvement of HTS with respect to the GA
is 81,0% in average, being the minimum improvement 59,1% for ABZ8 and the
maximum 96,3% for FT20. Despite the GRASP being better in RE than the
GA, HTS outperforms it in 74,8%, with the improvement ranging from 52,5%
(ABZ8) to 93,5% (FT20). In addition, it is remarkable that the runtime for the
GRASP is more than 3 times (370%) longer than the runtime for the GA or
HTS. This demonstrates the great relevance of the starting solutions for the TS.

Finally, we compare our algorithm with MA from the literature [16] denoted
MA − 3 therein, which combines a GA analogous to the one used here with
hill-climbing. Table 1 shows the best and average RE values obtained with both
algorithms. We see that HTS is better than MA-3 in average for all the instances,
having an average improvement of 33,9%. The highest improvement is in problem
FT20 (81,2%) and the smallest is in problem LA24 (15,5%). If we perform an
analysis per family, the best results are obtained on the FT problems, and the
lesser improvement is for ABZ problems. We can also appreciate that the new



Table 1. Comparison with an MA from the literature

Method Problem
RE Time

Problem
RE Time

Best Avg (sec.) Best Avg (sec.)

MA-3 FT10 0.30 1.06 2.8 LA29 1.45 3.53 8.4
HTS (930) 0.30 0.56 4.2 (1130) 1.61 2.54 9.5

MA-3 FT20 0.04 0.84 3.8 LA38 0.61 2.53 9.0
HTS (1165) 0.04 0.16 4.6 (1196) 0.61 1.47 10.1

MA-3 LA21 0.50 1.17 5.3 LA40 0.63 1.47 9.5
HTS (1046) 0.33 0.82 6.0 (1222) 0.43 0.96 9.9

MA-3 LA24 0.61 1.21 5.0 ABZ7 2.21 4.00 15.9
HTS (935) 0.56 1.02 5.9 (656) 2.06 3.06 16.7

MA-3 LA25 0.15 0.80 5.0 ABZ8 5.85 7.73 16.9
HTS (977) 0.15 0.51 6.0 (645) 5.27 6.53 16.3

MA-3 LA27 0.30 2.01 9.0 ABZ9 4.88 7.36 17.2
HTS (1236) 0.36 1.35 9.4 (661) 4.69 5.95 17.2

algorithm takes less than an additional second in average in comparison with
MA-3 in terms of computational time.

5 Conclusions

We have tackled a variant of the job shop scheduling problem where uncertainty
in durations is modelled using triangular fuzzy numbers and where the objective
is to minimise the expected makespan. We have proposed a TS algorithm and
combined it with a GA in order to have better initial solutions and keep diversity.
The experimental results have shown that this combination outperforms both
the behaviour of the TS and the GA when they are run independently. Finally we
have compared the new memetic algorithm HTS with a MA from the literature
and obtained better results for all tested instances using similar computational
times. Based in the promising results, in the future we intend to improve on the
TS, starting by adapting the most competitive search algorithms for the problem
with deterministic durations to the problem with uncertainty. We also intend to
create additional harder benchmarks for the fuzzy job shop which provide greater
room for improvement for future metaheuristics.
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