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Quantum interference in single molecule electronic systems
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We present a general analytical formula and an ab initio study of quantum interference in multibranch
molecules. Ab initio calculations are used to investigate quantum interference in a benzene-1,2-dithiolate (BDT)
molecule sandwiched between gold electrodes and through oligoynes of various lengths. We show that when
a point charge is located in the plane of a BDT molecule and its position varied, the electrical conductance
exhibits a clear interference effect, whereas when the charge approaches a BDT molecule along a line normal to
the plane of the molecule and passing through the center of the phenyl ring, interference effects are negligible.
In the case of oligoynes, quantum interference leads to the appearance of a critical energy E. at which the
electron transmission coefficient 7'(E) of chains with even or odd numbers of atoms is independent of length. To
illustrate the underlying physics, we derive a general analytical formula for electron transport through multibranch
structures and demonstrate the versatility of the formula by comparing it with the above ab initio simulations.
We also employ the analytical formula to investigate the current inside the molecule and demonstrate that large
countercurrents can occur within a ringlike molecule such as BDT, when the point charge is located in the plane
of the molecule. The formula can be used to describe quantum interference and Fano resonances in structures

with branches containing arbitrary elastic scattering regions connecting nodal sites.
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I. INTRODUCTION

The field of molecular electronics' is a rapidly expanding
research area, which bridges the gap between physics and
chemistry. Recently there has been much interest in developing
strategies to control the current through a single molecule.>>
Of the various effects that can be exploited, quantum inter-
ference is expected to play a fundamental role in long phase-
coherent molecules,* where multiple reflections can occur,
and in molecules made of rings, where electrons can follow
multiple paths between the electrodes.’® The modification
of the electronic properties of such systems has applications
such as the quantum interference effect transistor (QuIET)’
and can potentially be used for implementing data storage,®
information processing,” and the development of molecular
switches.'?

In this paper, we study quantum interference effects in
molecules between metallic leads using a combination of
an analytical model and large-scale ab initio simulations.
We derive a versatile analytical formula for the electrical
conductance of molecular structures, which captures quantum
interference effects in linear and multibranch molecules. For
linear oligoyne molecules or an atomic chain linking two
electrodes, we predict that, for odd- or even-length chains,
quantum interference leads to the presence of a critical energy
E. at which the electron transmission coefficient becomes
independent of length for odd or even numbers of atoms in
the chain. The presence of this critical energy in more realistic
structures is confirmed by performing an ab initio calculation
of electron transmission through an oligoyne molecular wire
connecting gold electrodes. We also present results of an
ab initio numerical simulation on an electrostatically gated
benzene-1,2-dithiolate (BDT) molecule, attached to gold
electrodes, which is an example of a QuIET. In this calculation,
gating is achieved through the presence of a calcium or
potassium ion, which induces quantum interference as the
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position of the ion and the molecular orientation are varied. We
show that the qualitative features of this interference effect are
captured by the analytical formula described above through
an appropriate choice of parameters. Finally, we note that
quantum interference in such multibranch structures leads to
the appearance of large, internal countercurrents, which exceed
the external current carried by the electrodes.

II. AN ANALYTICAL FORMULA FOR ELECTRON
TRANSPORT THROUGH MULTIBRANCH
STRUCTURES

Figure 1 represents a tight-binding (Hiickel-type) model
of a multibranch structure in which each atom is assigned a
single atomic orbital. The structure consists of left and right
leads connecting external electron reservoirs (not shown). The
atoms of the left lead (L) are labeled j = —1, —2, —3,....
The orbital energy of each atom is denoted &, and these
are coupled to each other by a nearest-neighbor matrix
element —y;. Similarly, the atoms of the right lead (R),
labeled j = 1,2,3, ..., are assigned orbital energies ez and
these are coupled to each other by a nearest-neighbor matrix
element —yg. The loop structure comprises M branches,
labeled [ = 1,2, ...,M. Branch [/ possesses NN; atoms, labeled
n; = 1,2,...,N;, with atomic-orbital energies ¢;, coupled by
nearest-neighbor matrix elements —y;. (Note that hopping
matrix elements could be positive or negative and the inclusion
of a minus sign is merely convention. For simplicity, we
consider the case of a real Hamiltonian, since, in molecules,
orbital effects due to applied magnetic fields are usually
negligible.) The left-most atom (n; = 1) of each branch is
connected by a matrix element —¢; to a nodal atom (labeled
L) of orbital energy 82. The latter is connecting the right-most
atom of the left lead by a matrix element —« . Similarly, the
right-most atom (n; = N;) of each branch is connected by a
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FIG. 1. (Color online) A multibranch structure with nodal sites
L and R (on the left and right) connecting external current-carrying
leads, by hopping matrix elements —c;, (on the left) and — g (on the
right), and to internal branches (/), by hopping matrix elements —«;
and —f3;, respectively. The energies of the nodal sites are £? and 5.
The site energy and hopping matrix element of branch / are & and
—y,, respectively.

matrix element —f; to a nodal atom (labeled R) of orbital
energy €%, which in turn is connecting the left-most atom of
the right lead by a matrix element — .

In the presence of an incoming plane wave from the left,
the solution to the Schrédinger equation, Hy = E, in the
left lead (j < —1) is of the form

YiY = M r(E)e . (M)

Similarly, the solution in branch / can be written as
1pr(ll[) — Aleikml + Blefikm,’ )
and the wave function in the right lead (j > 1) is of the form
v = (B, 3)

Finally, the wave function on the left and right nodal
atoms will be denoted x; and xg, respectively. In the above
equations, E is the energy of the incident electron, and
r(E) and #(E) are reflection and transmission amplitudes,
respectively. For a given E, the dimensionless wave numbers
in the left and right leads, and in branch /, are given by k, =

cos™! (s”z;nE ), where the index 1 is either L, R, or [, respectively.
The corresponding group velocities (a,/h)dE/dk can be
written as (a, /h)v,, where a,, is the atomic spacing in region 7,
and v, = 2y, sink,,. In what follows, we adopt the convention
of choosing real values of k,, such that v, is positive, and
complex values of k,, such that Im(k,,) is positive.

Our initial goal is to obtain an expression for the trans-
mission amplitude f(E), which, as shown in the Appendix,
can be obtained either by matching wave functions at the
nodal atoms or by using Green’s functions. According to
the Landauer formula, the zero-bias electrical conductance
is simply (2¢*/ h)T(Er), where Ef is the Fermi energy and

T(E) = (vg/vD)It(E), “

which satisfies T(E) 4+ R(E) = 1, where R(E) = |r(E)|? is
the reflection coefficient. In terms of T(E), the current per
unit energy carried by the left and right leads is (2e/h)T (E)
and, since T(E) < 1, the current per unit energy in the left
and right leads cannot exceed 2e/h. As we shall see below,
for M > 1, this upper bound does not apply to the current
per unit energy carried by the internal branches, which we
denote (2e/h)1;. Indeed, for M > 1, I; can be either positive
or negative and is unbounded.
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As shown in the Appendix, 7'(E) can be written as

oL ? 2 Br ?
T(E)=v, (-) |GRreL (-) UR. Q)
YL

YR

This expression is very general and shows how the various
contributions combine to control the current through a single
molecule. Equation (5) shows that the transmission coefficient
T(E) is a product of several factors: the “group velocities”
vy and vg describe the ability of the left and right leads to
carry a current, ‘;‘/—Z and i—}’: describe the ability of the couplings
between the nodal atoms and the external leads to transfer
electrons, and, finally, G, describes the ability of a current
from a source at node L to be carried to a current sink at
node R. In this expression, Gg; describes propagation from
the nodal site L to the nodal site R, and is sensitive to quantum
interference within the multibranch structure. Since v, and vg
have dimensions of energy, whereas Gg; has dimensions of
1/energy, the right-hand side of Eq. (5) is dimensionless, as
expected.
As shown in the Appendix, Gg is given by

GrL = % 6)
where
A =y? —(a — xp)(ag — xg). )

In this equation,

M
Y= ®)
=1

M
x =y xft, ©)
=1
and
M
Xp = leR, (10)
=1
where
yi = o By sink; /[y, sink;(N; + 1], (11)
x," = a,2 sin k;(N;) /[y, sink;(N; + 1)], (12)
and
xf = B} sinky(N)/Lys sinky(N; + 1)]. (13)
Finally, the parameters a; and ay are given by
0 “i ik
a, = (&0 — E) — Lot (14)
YL
and
Br
agp = (8(1)3 — E) — DR ik (15)
YR

Clearly, the parameters a;, and ag are independent of the
details of the internal branches /, and are properties of the
left and right leads and their respective nodal atoms only.
Properties of the branches are contained within the parameters
XL, Xg,and y only. From Eq. (6), T (E) will vanish when y = 0.
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This condition for destructive interference does not depend on
the parameters describing the leads (sg, 8%, YL, YRr), nor does it
depend on the parameters describing the contacts to the leads
(oep, €1, g, €g). It is a fundamental property of the branches
and their couplings to the nodal sites.

Asnoted in the Appendix, Eq. (5) is extremely general. With
a slight modification of the nodal energies &) and &%, it can be
used to describe the effect of Fano resonances due to dangling
bonds at the nodes. Furthermore, with a slight redefinition
of y;, xf, and x}, it describes electron transmission arising
when the branches are replaced by arbitrary elastic scatterers
connected by single bonds to the nodal sites.

An alternative form of Eq. (5) is obtained by A = A} +
iAz, ap = &L — l.I:L, and ar = ZZR - ifR, where ZZL = 82 —
E — (ai/yL) cosk;, and [} = (ai/yL) sinky, and similarly
for dg and I"g. With this notation,

Ay =y? — (xp —a)(xg —ag) + Tk, (16)
Ay = Tr(xp —ar) + Tr(xg — dg), a7
and
4FLfRy2
T(E)= 18
(E) A2+ A (18)

Equation (5) describes the transmission coefficient of the
combined structure and allows us to evaluate the current per
unit energy (2e/ h)T (E) due to incident electrons from the left
lead with energies E. We shall also be interested in the current
per unit energy (2e/ h)I; carried by branch /. As shown in the
Appendix, this is given by

Iy =T(E)y/y, 19)

which clearly satisfies

M
Z I, = T(E). (20)
=1

Unlike T(E), which satisfies 0 < T(E) < 1, I; can have
arbitrary sign and arbitrary magnitude.

Before using Eq. (5) to describe quantum interference
within linear and multibranch molecules, we consider the
simplest choice of a single impurity level, weakly coupled
to external left and right leads by matrix elements «; and Sy,
respectively, as shown in Fig. 2.

This corresponds to the choice M =1, Ny =1, y. = oy,
Y& = Br, e = &Y, and ex = £%. In this case, Eq. (5) reduces
to the well-known Breit-Wigner formula,

4I' Tr

T(E)= ,
& (E—¢e1+oL+0op)?+ T +Tg)?

2y

where o7 = (af/yL)cosky, og = (B}/yr)coskg, T, =
(a%/yL)sinkL, and 'y = (ﬂlz/yR) sinkg.

III. QUANTUM INTERFERENCE IN LINEAR
MOLECULES OR ATOMIC CHAINS

The choice M =1, Ny > 1 corresponds to the case of
external left and right leads, coupled by matrix elements o,
and B, respectively, to nodal sites L and R, which in turn are
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FIG. 2. (Color online) A single impurity in a one-dimensional
chain.

connected by matrix elements «; and §; to an atomic bridge
of N, atoms. The case N; = 3 is shown in Fig. 3.
For M = 1, one obtains

a1

sin kg

= , 2
YT TSk (N, + 1) (22)
012 Sink]Nl
Xy =t — (23)
yp sink;(Ny + 1)
2 Gink N
= DSl (24)

7 sink (N + 1)

In the case of a metallic or “z bridge,” k| will be real. In the
case of a “o bridge” (which acts as a tunnel barrier), k; will
be imaginary, and Eq. (5) [or, equivalently, Eq. (18)] describes
electron transport via superexchange. Equations (22), (23),
and (24) highlight a curious feature, occurring at a special
energy E., which corresponds to electrons propagating at the
band center of a w bridge and at which k; = /2. At this
energy, vy, x1, and xg become independent of the length N,
of the bridge. On the one hand, if the bridge contains an even

M=l N33

3,2 1 123ER 2 5a
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0 0
g € € € & €& € & & § ¢

FIG. 3. (Color online) A schematic of the nodal atoms connected
by an atomic chain.
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FIG. 4. (Color online) Transmission functions for increasing
lengths of molecular wire using the general formula. The system is
modeled using the following parameters: in the leads, ¢, = ex = 0.0
and y; = yg = 5.0; for the contacts, &) = &% = —0.4; in the chain,
e; = 0.5 and y; = 6.0; and the coupling between the wire and the
electrodes are defined by «; = Sz = 3.0. All curves intersect at
E. =~ 0.5eV. Close inspection reveals that at £ ~ —0.2 eV, the
curves approach each other, but do not intersect at a single energy.

number of atoms (i.e., if Nj is even), then xg = x;, =0,y =
(1 B1/y)(=D™/? and

4T TRl Bi/n)?
[(e1B1/y1)? — arégr + CLTR1> + (@, Tr +arlr)?
(25)

T(E)=

On the other hand, if the bridge contains an odd number of
atoms, then x;,xg, and y diverge, and

AR, Fp
(oZag + B2as)’ + (2Fg + B2F,)°

which is independent of the length N; of the bridge. This
situation can arise, for example, in the case of oligoynes
connecting external electrodes.

These predictions are shown in Fig. 4 for increasing
numbers of atoms in the wire, Ny = 2,4,6, and 8. At the critical
energy E. ~ 0.5 eV, all curves intersect. Consequently, for
energies E slightly greater than E., T(E) will increase
monotonically as the length of the bridge increases by 2; and
for E slightly less than E., T (E) will decrease when the length
of the bridge increases. This effect is a clear manifestation of
phase-coherent quantum transport.

To demonstrate that this effect is present in atomistic
calculations of electron transport, we compare Eq. (25) with
a calculation based on the ab initio transport code, SMEAGOL.
This code uses a combination of density functional theory
(DFT)!"" and the nonequilibrium Green’s function (NEGF)
formalism'? to calculate the transport characteristics of atomic
scale devices. The DFT Hamiltonian is obtained from the
SIESTA code'® and is used by SMEAGOL to calculate the
electronic density and the transmission. Within the NEGF,
the system is divided into three parts: the left lead, the right
lead, and the extended molecule (EM). The EM contains the
molecule plus some layers of gold, whose electronic structure

T(E) = (26)
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FIG. 5. (Color online) Transmission curves from the SMEAGOL
simulations of oligoynes of varying lengths.

is modified due to the presence of the molecule and the
surfaces, and differs from the bulk electronic structure. The
molecular structure consists of oligoynes capped with phenyl
rings and attached to the electrodes by thiolate groups. The
SMEAGOL results, shown in Fig. 5, clearly possess a critical
energy, E. & (0.5 eV, at which all curves (at least for the longer
chains) intersect. The analytical expression assumes that the
parameters €, and y, describing the chains, are independent
of length. In fact, the self-consistent DFT parameters of the
shortest chain (N = 2) differ slightly from those of the longer
chains and, therefore, the black curve (N; = 2) of Fig. 5
does not quite pass through the intersection point at £ = E,.
Clearly, the length independence of even and odd chains
leads to an even-odd oscillation in the electrical conductance
of oligoynes, when E is close to E.. This effect has also
been observed in experiments on atomic wires of Au, Pt,
and Ir,'* which exhibit electrical conductance oscillations as
a function of the wire length and similar oscillations as a
function of bias voltage and electrode separation.'>!¢ Several
theoretical papers'’—** have also addressed these oscillations.
The above analysis also demonstrates that this effect is
present in multibranch structures, provided the band centers
of different branches occur at the same energy.

IV. QUANTUM INTERFERENCE IN A
TWO-BRANCH MOLECULE

We now turn to the quantum interference effect transistor
(QuIET) discussed in Ref. 7, which corresponds to the choice
M = 2. To demonstrate that Eq. (5) [or, equivalently, Ref. 18]
reproduces the key features of a QuIET, we compare it with
the results of a detailed simulation using SMEAGOL.3!

The atomic arrangements for the SIESTA/SMEAGOL cal-
culations are shown in Fig. 6. The first arrangement
(C1) corresponds to the point charge located along a line
perpendicular to the plane of the molecule, which passes
through the molecule’s center. In this configuration, the point
charge produces a symmetric voltage which affects the two
branches to the same extent. The second arrangement (C2)
corresponds to the point charge located in the plane of the
molecule, closer to one branch of the BDT. In this case, the two
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FIG. 6. (Color online) Molecular structure used in the transport
simulations with the potassium point charge in configuration C1 (a)
and the calcium point charge in configuration C2 (b).

branches are subject to different electrostatic potentials, which
induces quantum interference in the electron transmission
through the molecule. Both configurations are simulated using
a point charge of either potassium (K) or calcium (Ca), giving
a total of four cases. K and Ca are alkali and alkaline-earth
atoms, with one- and two-valence electrons in the last shell,
respectively. Due to their high electropositivity, both atoms
lose their valence electrons when they are inserted in the
unit cell and become ionized with a charge of +e and +2e,
respectively. The complete removal of the valence electrons
from these atoms can be ensured by reducing the cutoff radii
of their orbitals to 3.5 bohr, which confine the electrons in
the atom more closely and therefore increase their energy,
making sure they move to lower energy states in the extended
molecule. The basis sets used in the simulation were single zeta
(SZ) for the point charge and double-zeta polarized (DZP) for
all other elements. The exchange and correlation potential was
calculated with the generalized gradient approximation (GGA)
and the Perdew-Burke-Ernzerhof parametrization.?> The gold
leads were grown along the (001) direction, and each side of
the extended molecule had three and five layers, respectively,
with 36 atoms (12 x 3 atoms) per layer. The molecule was
contacted in a hollow configuration to four additional gold
atoms on each side. Since the system was much larger in the x
(3 atoms) than in the y direction (12 atoms, to leave space for
the charge to move), one k point was used along x and four k
points along y.

The results are shown in Figs. 7 and 8, for potassium
and calcium, respectively. Each graph contains two curves,
corresponding to the cases C1 and C2. In plot (a), the charge
is located at a far distance (~15 A) from the molecule, and
therefore both C1 and C2 produce the same curve. From plot
(b) to plot (d), the charge is gradually moved toward the
molecule [at 6.29, 5.29, and 4.79 A away from the center
of the ring in plots (b), (c), and (d), respectively].

We observe that when the charge moves toward the
molecule, the peaks shift in energy in the negative direction
due to the positive potential. However, the effect is different
depending on where the charge is located relative to the ring.
As can be seen, there is a clear difference in both Fig. 7
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FIG. 7. (Color online) Transmission functions obtained from
SMEAGOL simulations with the potassium point charge moving closer
to the molecule through (a)—(d). The solid curve corresponds to
configuration C1 and the dashed curve to configuration C2.

and Fig. 8 between the solid and dashed transmission curves
in plots (b)-(d). An extra peak in the dashed transmission
curve (C2) appears and the height of the highest occupied
molecular orbital (HOMO) peak is reduced, whereas the solid
transmission curve (C1) is simply shifted to lower energies
without much change in the resonances. Also, through a
comparison of plots (a) and (d), we notice a clear narrowing
of the HOMO and broadening of the lowest unoccupied
molecular orbital (LUMO) peak in all cases. We observe a
clear reduction of the transmission at the Fermi energy when
the charge is located closer to one arm of the molecule (C2).
In contrast, for system Cl1, there is very little change of the
transmission about the Fermi energy, because the point charge
produces the same phase shifts in the two branches and,
therefore, does not modify interference effects associated with
coherent superposition of waves propagating along separate
paths.
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FIG. 8. (Color online) Transmission functions obtained from
SMEAGOL simulations with the calcium point charge moving closer
to the molecule through (a)—(d). The solid curve corresponds to C1
and the dashed curve to C2.
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FIG. 9. (Color online) Transmission curves for the tight-binding
model. The solid line corresponds to the case where the charge is
located along a line perpendicular to the ring and which passes
through its center. The dashed line corresponds to the case where
the charge is closer to one arm. (a) shows the transmission curves
when the charge is away from the molecule. In (b)—(d), the on-site
energy parameters are changed to simulate the charge moving toward
the molecule.

We also check the projected density of states (PDOS) on
each branch of the BDT to see the specific effect of the charge
on the electronic structure in each case. In C1, the PDOS
on each branch remains equally distributed and simply shifts
to lower energies. However, in C2, there is a clear difference
in the PDOS on each branch: the PDOS on the closest branch to
the charge is more affected and shifted to lower energies than
the PDOS of the opposite branch. This supports the observation
of the previously suggested QulET.

To elucidate the underlying physics, we employ Eq. (5) to
model electron transmission through a two-branch structure.
In the absence of any charge, we choose the hopping pa-
rameters oy = Bg = 1.5,y = yg = 4.0,and y; = y» = 1.0,
and the on-site energies &9 = &% =2.0, &; = 0.0,6, = 0.0,
and g; = gp = 4.0. This leads to the transmission curve
shown in Fig. 9(a), which is very close to the ab initio
result. In configuration C1, where a charge affects both
branches equally, the presence of a charge is modeled by
shifting the on-site energies er, €1, &, and er upward
or downward by the same amount, which depends on the
sign and strength of the charge. The outcome produced by
a positive charge is represented by the solid transmission
curves in Fig. 9. The charge moves closer to the ring from
plots (b) to (d), and the parameters are chosen as follows:
B e =eh =14,61=60=-08() e =% =1.2,¢) =
e =—1.8; and (d) & = &% = 1.0, &; = &, = —2.0. In each
of these plots, ¢; = ex remain unchanged throughout. As in
the ab initio simulations, we see that the entire transmission
curve is shifted to lower energies and quantum interference
effects are negligible. Interestingly, as a consequence of this
shift and the corresponding change in the electronic structure,
the width of the variability in the local density of states at
the contact, where the width of the HOMO decreases and
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FIG. 10. (a) Total current through the molecule, (b) the current
through branch 1, (c) branch 2 of the molecule. Parameters used
are exactly the same as the dashed red line in Fig 9(d), namely,
er=¢e,=40,6"=¢%=10,6 =-18,6,=-09, yp =y =
4.0, Vi =WV = 10, and o = ﬂR =1.5.

the width of the LUMO increases, is in agreement with the
ab initio results.

To produce quantum interference, we now examine the
effect of a scanning point charge placed in configuration C2,
i.e., closer to one branch of the ring. To model this effect using
Eq. (18), the parameters are now adjusted asymmetrically, i.e.,
they are changed less in the branch that is far away from the
charge and more in the branch that is closer. The adjustment
also includes changing the contact points &9 and €9, as these
will feel a smaller effect from the charge than the nearer
branch. The adjusted parameters are chosen as follows: (b)

e) =e% =135 6 =—1.0, &5 = -05; (c) &¥ =¢&% = 1.1,
g1 =—1.5, & =—0.8; and (d) &) =% =1.0, &y = —1.8,
& = —0.9. As before, ¢, = eg and are unchanged. The

transmission corresponding to these parameters is shown in
Fig. 9 (dashed curves), where the point charge is brought
successively closer to the molecule from plots (b) to (d). We see
again from plots (a) through (d) that the peaks have all shifted
to lower energies, but the HOMO dramatically changes and
reduces its height. Also, an additional peak appears due to the
point-charge effect on the electronic structure on only one arm
of the molecule, which causes interference in the transmission
through the system. This again agrees with the SMEAGOL
simulations and suggests this analytical model captures the
qualitative features of transmission in ringlike molecules.
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Having established that the analytical model captures the
essential features of the ab initio simulations, we now show
how this model can be employed to examine the internal
currents within different branches of the molecule, which are
obtained by evaluating Eq. (19). When the ion is located close
to branch 1, Figs. 10(a) and 10(b) show the internal currents
I, and I, through the individual branches, whereas Fig. 10(c)
shows the total current Itor = I} + I, = T(E). Figures 10(b)
and 10(c) clearly demonstrate that the current in a single branch
can greatly exceed the total current through the molecule when
a countercurrent of opposite sign occurs in the other branch
of the molecule and can clearly exceed the upper bound of
Itor = 1. The appearance of such unbounded countercurrents
is yet another manifestation of quantum interference within
single molecules.®

V. SUMMARY

In conclusion, we have presented ab initio simulations and
an analytical formula, which highlight a range of interference
effects in single-branch and multibranch structures. The
analytical solution is rather versatile and has the advantage that
it can be evaluated on a pocket calculator. It provides insight
into length-independent electrical conductances for even and
odd oligoyne chains, when the Fermi energy coincides with the
band center of the oligoyne bridge, and allows us to predict that
this behavior is also present in multibranch structures, provided
the branches share a common band center. As demonstrated
in this paper, the energy E. at which this odd-even effect
occurs corresponds to k1 =z /2. This condition is very
general and is independent of the nature of the orbitals.
For the particular case of oligoynes, this is a consequence
of m coherent transport, but for other systems, such as
metallic wires, this would not be the case. The case M =1
demonstrates that quantum interference does not require the
presence of physically different paths because, even in this
case, interference due to scattering from nodal impurity sites
and connections to external leads arises from the amplitudes ay,
and ag in Egs. (14) and (15). Both the magnitudes and phases of
these amplitudes appear on the right-hand side of Eq. (7) and,
therefore, even for a single-branch system, they contribute to
interference.

Ab initio simulations, based on density functional theory,
demonstrate the presence of quantum interference in BDT,
due to electrostatic interactions associated with a scanning
point charge positioned close to the molecule. We have shown
that a scanning charge located within the plane of a BDT
molecule produces a sizable quantum interference, whereas a
charge approaching the molecule along a line perpendicular
to the plane produces a much smaller effect, in agreement
with the analytical formula. In spite of the consistency between
the tight-binding result and the ab initio result for the BDT
system, there are, of course, quantitative differences between
them. In part this arises because the tight-binding model
includes only a single (“7”’) orbital per atom, whereas the ab
initio description includes both 7 transport and o tunneling.
In addition, the tight-binding model includes only a single
scattering channel in each lead, whereas the ab initio model
contains multiple channels.
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Using the analytical model, we have also investigated the
internal currents within a two-branch molecule and demon-
strated that large currents and countercurrents can occur,
which exceed an upper bound for the total current through
the molecule.
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APPENDIX: DERIVATION OF EQ. (5) FOR TRANSMISSION
THROUGH THE MULTIBRANCH STRUCTURE OF FIG. 1

We derive the equation for T(E) by matching wave
functions at the nodes of a multibranch structure, and later
make a comparison with results obtained from a corresponding
Green’s function analysis. The starting point is the tight-
binding Schrodinger equation, which can be written as

8;”#/4 - Z%,u% = Ew/u

v

(AD)

where the summation is over all nearest-neighbors v of site
. Choosing o to label the site just to the left of the nodal
site L (whose wave function is denoted y,) yields ¢, w(fl) —
)/u//(_Lz) —ar XL = Ew(_L), where y, =y—1, —2 and o =
yr.—1. From this expression, and noting that the Schrodinger
equation in the left lead takes the form of a recurrence
relation,®> the wave function at the node L is given by

_ oy +r)
S

XL (A2)

Similarly, choosing u to label the site just to the right of the
nodal site R (whose wave function is denoted y ) yields
_ Vet
= E.

Choosing i to label the first site (1;) of chain [ yields, for all /,

XR (A3)

xr = i/a(Ar + By), (A4)

and choosing u to label the last site (N; of chain /) yields, for

all /,
Xk = (/B (A" ™MD 4 B~ NED) o (AS)

Finally, choosing u to label the nodal sites L and R yields
M
00— Y ) —arle™ +r(E)e*] = Ex. (A6)
I=1
and

M
Eaxr — Y BN — Bri(E)e™ = Exg.
=1
Equations (A2) with (A6), and (A3) with (A7), combine to
yield

(A7)

M ) ..
M oY — 20y sin(ky)
ar

=250 +r) = (A8)
ar,
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and

M o
_ Qt _ pIy :3le, ’ (A9)

XR =
Br ag

where a; and ay are given by Eqgs. (14) and (15).
From the form of the wave functions in the branches, given
by Eq. (2), the following can be written:

(XL)_ 1 (—ZiaLsin(kL)>
xr/)  a 0

M aeh e Al
a a
+3 <ﬂ e ) ( 5 ) (A10)
=1 ag ag !

Since Egs. (A4) and (AS) yield

A\ _ 1 aje”MNED g\ (g
B, )7 2iy;sink;(N; + 1) \ —ogeiNth g, XrR )’

(A11)

A; and B; can be eliminated from Eq. (A10) to yield

XL _ 2i0[L SiIl(kL) _ GLL . .
(XR) =G < 0 > = (GRL> 2iay sin(ky).

(A12)
In this expression, the matrix G has the form
Grr Grr
G = , Al3
( Grr Grr ) (A13)
and is given by
1 _(—ar O XLy
G —< 0 —aR>+(yxR>’ (Al14)

where x;, xg, and y are given by Egs. (8), (9), and (10). From
this expression, one obtains xz and hence the transmission
amplitude ¢, via Eq. (A3).

The physical meaning of the various contributions to
the above expressions can be understood by carrying out
a parallel analysis based on Green’s functions,*®*’ which
reveal that Eq. (A14) is simply the Dyson equation for the
Green’s-function matrix elements involving the nodal sites L
and R. A comparison with Refs. 36 and 37 also demonstrates
that vy (o /y.)? and vg(ag/ygr)? in Eq. (5) are imaginary
parts of the self-energies of the left- and right-hand electrodes,
respectively.

This is demonstrated by noting that the Green’s function for
a finite linear chain of N; sites, with nearest-neighbor hopping
elements —y; and diagonal elements g, is

(np.n)) = Aysinkng sink;[n; — (N;+1)]  (forn; < nj)
S kin) sink;[n; — (N;+1)]  (forn) < ny),
(A15)

where A; = 1/[y; sink; sink;(N; 4+ 1)]. An alternative form
of this expression is g;(n;,n;) = (A;/2)(cos k;[N; + 1 — |n; —
n;|] —cosk[N; +1 —n; —nj]). The quantity g;(n;,n)) is
the Green’s-function matrix element connecting atom n;
to atom n; of the decoupled branch /, which would arise
when «; = B; = 0. The off-diagonal matrix element, describ-
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ing propagation from one end of such a branch to the
other, is

&i(1;,Ny) = —sink; /y; sink;(N; + 1), (Al6)

whereas the diagonal matrix element, evaluated on an end
atom, is

g1, 1) = gi(Ni,Ny) = —sink; Ny [y sinky(N; + 1) (A17)

As expected, these quantities diverge when sink;(N; +
1) = 0, which corresponds to the eigenenergies of an isolated
branch. In terms of these Green’s functions,

v =—apigi(1,Np), (A18)

xf = —ofgi(l, 1)), (A19)
and

xf = —pla(NLN)). (A20)

Within a Green’s-function approach, one defines the nodal
self-energy matrix o to be

M
o = E oy,
=1

where o is the contribution to the self-energy from branch /

given by
o = — 0 — 0
=No -5)¥ 0 -8)

In this expression, g; is the Green’s function connecting the
end atoms of an isolated branch,

g(1;,1;) g(1;,Ny)

(A21)

(A22)

= . A23
8 (gz(Nz,lz) gz(Nz,Nz)) (423)
This demonstrates that
(“ Y ) =—o, (A24)
Yy XRr

and therefore Eq. (A14) takes the form of the Dyson equation,

—1
G71 - (g(L) (3]) — 0,
8r

where g, = —a;l and gg = —a,;l are diagonal elements of
the Green’s function of the decoupled semi-infinite chains
(obtained by setting all ; = §; = 0), evaluated on the left (L)
and right (R) nodal sites, respectively. This also demonstrates
that the form of Eq. (5) and, in particular, G g, does not change
even when the branches [/ are replaced by arbitrary elastic
scattering regions, connecting nodal sites by bonds «; and
Bi, provided g; is replaced by the Green’s function of the /th
scattering region. With this redefinition of y;, the condition
for destructive interference (y = 0) remains unchanged. For
example, if instead of a linear chain of n; sites, branch [ is
replaced by a loop of n; sites, then Eq. (A15) is replaced by
the Green’s function of a linear chain of n; sites with peri-
odic boundary conditions, namely g;(n;,n;) = (cos k;[N;/2 —

(A25)

[n; — nj|1)/QQy sink; sin[k;N;/2]), and Eq. (A23) is
replaced by
gi(ng,ny) gi(ng,my)
= , A26
8l <g1(m,,n1) gl(mz,mz)> (A26)
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where n; and m; label the sites of the loop connecting the
nodal sites L and R, respectively. Taking this to an extreme,
any of the branches / could even be replaced by a multibranch
scatterer, simply by replacing g; by the Green’s function of
an isolated multibranch system, obtained from G by setting
ap = Br =0.

The above analysis, which focuses on the wavelike nature of
Green’s functions, is rather different in spirit from alternative
approaches that emphasize the algebraic nature of Green’s
functions, which, for finite structures, take the form of ratios of
polynomials whose denominator is proportional to the secular
equation.*® To make contact with this approach, we note that
Eq. (A25) yields

G=__1<x—aR -y )
A -y Xx—ap
where A = A| +iA;, and therefore the equation A; =0
is the secular equation for the isolated multibranch struc-
ture, which arises when o), = Bz = 0. More generally, from
Egs. (16) and (17), the equation A; = I'; ' is the secular
equation for the same isolated system, but with the site energies
of the nodal atoms shifted by the real part of their respective
self-energies.

Finally, the current per unit energy in branch [, carried by
electrons of energy E injected from the left lead, is (2e/h)1;,
where

(A27)

I= (AP~ B, (A28)
v

Expressions for A; and B, are obtained from Eq. (A11), which

combine to yield Eq. (19).

The above comparison between the wave-function match-
ing and Green’s function underpins a deep understanding of
Eq. (A12), because if u < —1 labels a site in the left lead
and v > u labels a site inside the scattering region or in the
right lead, then the wave function v/, is related to G, ;, by the
expression

W, = 2iyy sink ™" G, ,. (A29)

Furthermore, starting from the limit «o; =0, and then
including the effect of o, via the Dyson equation, yields
G = (yu/ap)e ™ Gy _y and Grr = (yp/ap)e *Gg ;.
Hence Eq. (A12) can be written in the intuitive form

(;;) = (g;j ) e 25y, sin(ky),

which is simply an example of Eq. (A29), with © = —1 and
v=_LorR.

As mentioned previously, Eq. (5) is extremely versatile. For
example, the case of M = 1, N; > 1, can be used to describe
donor-bridge-acceptor molecules. In this case, to obtain a
simple description of rectification, all parameters should be
assigned an appropriate dependence on the applied voltage V.
The simplest model is obtained by setting €.,(V) = €.(0) +
eV/2, (V) =€Y(0) +eV/2, er(V) = €g(0) — eV/2, and
eg(V) = e%(O) —eV/2, and then computing the current via
the expression I = EE, F:f‘;//zz T(E)dE.

To further demonstrate the versatility of Eq. (19), we
end this Appendix by noting that Eq. (19) readily describes
the effect of Fano resonances on transport and the effect of

(A30)
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(a)

(b)

FIG. 11. (Color online) The case of a molecule with dangling
branches. (a) and (b) show two equivalent representations of the
same system.

coupling to a molecule at different points along its length. To
illustrate this, consider a structure in which dangling branches,
labeled! = Oand! = M + 1, are attached by couplings «( and
Bu+1 to the nodal sites on the left and right, respectively, as
shown in Fig. 11.

In this case, Eqs. (5) and (18) are unchanged, except that &9,
and &Y are renormalized by the self-energies of the dangling
branches and replaced by

8% = &% + B gmn (A31)
and
89 = & 4+ ad g, (A32)
where
sin k()N()
go=—""F7""""— (A33)
Yosinko(No + 1)
and
inkyi N,
g1 = ———— MM (A34)

Ym+1 sinkpyp1(Nppr + 1)

Clearly an antiresonance occurs when the energy E
coincides with an eigenenergy of either of the two branches
because, at these energies, one of the Green’s functions (g
or gy+1) diverges and therefore one of the renormalized
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nodal-site energies (é% or 52) diverges. This is equivalent
to introducing an infinite potential at one of the nodes and,
therefore, at these energies, T(E) vanishes. This behavior
arises from the interaction between bound states in the
dangling branches and the continuum of states associated with
the external leads, and is typical of a Fano resonance.

By redrawing Fig. 11(a), as shown in Fig. 11(b), one can see
that the above equation describes a linear molecule contacted
at atoms within the length of the molecule, rather than simply

PHYSICAL REVIEW B 83, 075437 (2011)

at the end atoms. As an example, consider the case where
M:l, E1 =€&) =& =¢&E] = €R, and Yi=Yo=Y2=0y)=
B> = a1 = Bi. The system then comprises a linear chain of
length L = Ny + N| + N, + 2sites, connecting external leads
by nodal sites located at positions Ny + 1 and N; 4+ Noy + 2
along the chain. By varying Ny and Nj, but with fixed L,
the expression for T'(E) then describes quantum interference
effects which arise when external leads are connecting a fixed-
length molecule, at different locations along its length.
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