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■ INTRODUCTION

Coating thickness control is a very important issue in a gal-
vanizing process. Producing coating thicknesses lower than
required may lead to product rejection by quality control
checks or by the customer, while higher coating thicknesses,
on the other hand, lead to unaffordable costs, due to the high
cost of zinc. Accurate control of zinc coating thickness in hot
dip galvanizing lines, however, is a difficult issue. First, we
often lack an accurate model of the process, due to the high-
ly complex and nonlinear nature of the hot-dip coating pro-
cess that involves tightly coupled chemical, mechanical and
thermal phenomena. Besides this, in many cases thickness
sensors (X-ray gauges) are not installed in the same point
where the coating thickness is being controlled but several
meters away downstream (typically about a hundred meters).
A typical hot-dip galvanizing line is depicted in figure 1.

Two important problems can arise in the control of the coating
thickness:

- A transport delay is introduced by the misplacement of the
X-ray gauge (fig. 2). This degrades thickness control perfor-
mance as a result of delayed control actions, leading to slow
transient behaviours, overshot and even instability.

- In addition, the X-ray sensor can fail to give measurements
to the control system due to damages in the transmission
line or in the sensor. When this happens, the technicians who
supervise the process have to turn off the automatic control
system and work in manual mode (open loop), assigning
presets for the control variables from preconfigured tables,
but without having into account the actual coating thickness
that is being obtained. This obliges them to set higher objec-
tive coatings to ensure the required tolerances.

Virtual sensors allow the measuring of variables 
for which no physical sensor is available using
indirect measurements of related variables.

In this work we describe the implementation 
of a virtual sensor for the zinc coating thickness 
in a hot dip galvanizing line from related process
variables such as blowing pressure, knives-to-strip
distance, knives-to-pot distance, based on artificial
neural networks (multilayer perceptrons - MLP)
that model nonlinear dynamical relationships
(NARX models).

The virtual sensor is currently working on Avilés
(Galvanizing 2) and encouraging results have been
achieved that suggest future developments.
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Fig. 1 - Schematic diagram of the hot-dip galvanizing line.

Fig. 1 - Schéma d’une ligne de galvanisation à chaud.
Subject of a presentation at the 2005 ATS International Steelmaking
Conference (Paris, December 15-16, 2005).
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Les capteurs virtuels permettent la mesure de variables
pour lesquelles il n’existe pas de capteur physique ; ils uti-
lisent la mesure indirecte de variables connexes. Le texte
décrit l’installation d’un capteur virtuel de l’épaisseur du
revêtement de zinc en ligne de galvanisation à partir de
variables process : pression du gaz, position des buses par
rapport à la bande et au bain. La méthode est fondée sur
des réseaux neuronaux (MLP) qui modélisent des relations
non linéaires dynamiques (NARX).

Le contrôle de l’épaisseur du revêtement est un enjeu
majeur du procédé de galvanisation. Les épaisseurs trop
faibles peuvent conduire à un litige avec l’utilisateur et les
épaisseurs trop fortes entraînent des coûts supplémentai-
res par consommation excessive de zinc. Le contrôle pré-
cis de l’épaisseur du revêtement de zinc est difficile, à
cause de la nature non linéaire du process de revêtement
par immersion à chaud. De plus, la plupart des jauges d’é-
paisseur (RX) ne sont pas situées dans la zone même où est
déterminée l’épaisseur. Le délai qui en résulte peut intro-
duire des régimes de transition lente, des dépassements de

consigne ou même de l’instabilité. D’autre part, les jauges
RX peuvent être défaillantes par suite d’endommagements
divers ce qui rend nécessaire le pilotage manuel de la ligne
sans retour d’information.

Un capteur virtuel a été développé pour le contrôle de l’é-
paisseur de zinc en ligne de galvanisation. Il utilise des
variables connexes du process qui ont un effet établi sur la
détermination de l’épaisseur du revêtement : position des
buses d’essorage, pression du gaz, température du bain,
vitesse de la ligne,…Le développement du capteur est
fondé sur l’acquisition et l’analyse de données pertinentes
avec des techniques de data mining, de visualisation, de
matrices de corrélation (SOM).

Différents modèles, statiques ou dynamiques, linéaires ou
non, ont été testés en vue de leur apprentissage. Le modè-
le finalement mis en service est du type non linéaire dyna-
mique. Les estimations de l’épaisseur du revêtement
donnent des résultats satisfaisants sur la ligne de galvani-
sation 2 d’Avilés.

In this work we describe the design and implementation of a
virtual sensor to provide an estimation of the coating thick-
ness in a hot-dip galvanizing line that Arcelor has in the fac-
tory of Avilés, based on other related process variables which
have a proven influence on this parameter, such as those rela-
ted to the position of knives (distance to the strip, skew, verti-
cal height, etc.), pressure of the air jet, temperature of the zinc
pot, line speed, etc. The produced estimation, on one hand,
corresponds to the point where the control process takes place
and, on the other hand, has into account not only the control-
lable variables but also other measured process variables, thus

providing a coating value that could be potentially used for
control and supervision.

■ VIRTUAL SENSOR DESIGN

A virtual sensor provides an estimation of an unavailable pro-
cess variable using available measurements and a model of
the process. As seen in figure 3, it can be considered as a sin-
gle sensor that provides an estimation of the desired variable

Fig. 2 - Simplified block diagram of the coating thickness
control.

Fig. 2 - Diagramme simplifié du dispositif de contrôle
d’épaisseur.

Fig. 3 - Block diagram of a virtual sensor.

Fig. 3 - Diagramme simplifié d’un capteur virtuel.
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from indirect but related physical measurements. The success
of a virtual sensor design relies on an adequate selection of
the variables (features) that are used to compute the estima-
tion, a proper choice of the model structure and an adequate
estimation of the model parameters.

Feature selection

The first step for the virtual sensor design is feature selection.
Feature selection is an indispensable part of the design pro-
cess with two main objectives:

- To reduce complexity of the sensor by excluding redundant
or useless variables.

- To maximize the information input to the sensor, by selec-
ting those input variables that convey the largest amount of
information regarding the estimated variable.

We used two main approaches to carry out the feature selec-
tion process:

Prior knowledge
First we relied on prior knowledge about the process, which
involved the study of the process physics and meetings with
plant staff to exploit the expert knowledge they had in selec-
ting the most useful variables. Despite the complexity of the
hot dip coating process, theoretical models (10, 11) reveal that
information about the coating thickness is present in certain
process variables, such as those related to the position of the
knives (distance to the strip, skew, vertical height etc.), pres-
sure of the air jet, temperature of the zinc pot, line speed, strip
thickness, line speed, strip tension. Also, other variables can
be considered such as, for instance, air pressure at different
points of the knives (primary pressure, or the value of pressu-
re at front or rear sections), or the height of each individual
knife with respect to the pot (both at operator and motor side).

Visual data mining techniques
Once a set of feasible variables is obtained, statistical methods
that make few assumptions about the problem allow determi-
ning the most related variables. We used mainly a visual data
mining approach (2) using advanced data visualization
methods such as correlation matrix visualization and self orga-
nizing maps (SOM). Correlation matrix visualization (fig. 4,
5), consists of visualizing using a colour code the elements of
the correlation matrix of the set of variables under study, sho-
wing up in a visual way the correlations (values and signs)
existing between all the variables. Sorting the rows and
columns of this matrix by means of a similarity preserving
algorithm (1D versions of SOM or MDS algorithms can be
used for this) so that similar variables are positioned adjacent-
ly (3) provides an additional insight on the most relevant rela-
tionships as well as groups of related variables that show up in
a visual way the main relationships between the involved
variables. Self organizing maps (fig. 6) can be used to deter-
mine in a visual way the most important clusters of states of
the process. As correlation matrix visualization, the SOM also
allows to find correlated variables by looking at similar com-

TABLE I: Input variables obtained after the feature
selection process.

TABLEAU I: Données d’entrée retenues après l’étape de
sélection des paramètres.

Z*
n reference value for coating thickness

Ao height from knives to pot (operator side)

Am height from knives to pot (motor side)

do distance from knives to strip (operator side)

dm distance from knives to strip (motor side)

σ strip tension

P1 main pressure on the knives

Pf knives pressure (frontal)

Pr knives pressure (rear)

e strip thickness

v line speed
Fig. 4 - Unsorted correlation matrix, as a visual aid for

feature selection.

Fig. 4 - Matrice de corrélation non triée, visualisation pour la
sélection des paramètres.

Fig. 5 - Sorted correlation matrix, as a visual aid for feature
selection.

Fig. 5 - Matrice de corrélation triée, visualisation pour la
sélection des paramètres.
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ponent planes that reveal variables that behave in a similar way
for all the process states and in consequence, are redundant.
Moreover, SOM allows determining in a visual way whether
correlations between two given variables hold for all process
states or if they only hold under certain circumstances. Table I
displays the variables that were selected as inputs for the vir-
tual sensor after the feature selection process.

Dynamical models of the process

After the feature selection stage, the hot-dip galvanizing pro-
cess can be modelled by means of a functional relationship
between the selected variables, and the coating thickness:

Zn = f(d,σ,A,P,T,v, ...) [1]

where Zn denotes the zinc coating thickness. If we denote the
vector of known process variables as u = [d, s, A, P, T,v, ...]T,
the problem can be stated in a more compact form as finding
a functional relationship f(.), such that:

y = f(u) [2]

The problem so posed can be regarded as a regression or func-
tion approximation problem. However, expression [2] repre-
sents a static model, where the process inputs immediately
affect the process outputs. In complex processes that involve
dynamical phenomena such as the hot dip zinc coating, inputs
can affect internal states that evolve according to some dyna-
mics and determine the outputs (8). This requires, therefore,
having into account this dynamical behaviour in the model.
To implement the virtual sensor, a nonlinear autorregresive
with exogenous variable (NARX) model was considered:

y(k) = f(y(~k-1),…,y(~k-n),u(~k-d),…,u(~k-~m-d) ) [3]

where n and m are the autorregresive and exogenous model
orders and d is the pure delay. Vector y(k) is a 3 element vec-
tor containing the upper, lower and mean Zn coating thick-
ness:

y = (Z(up)
n, Z(lo)

n, Z(me)
n)T [4]

and u(k) is a vector containing the 11 related process variables
obtained after the feature selection process, that are the inputs

to the virtual sensor:

u = (Z*
n, Ao, Am, do, dm, σ, P1, Pf, Pr, e, v)T [5]

The NARX model described in (3) involves a nonlinear rela-
tionship between the current output y(k), and delayed ver-
sions of the outputs (autorregresive part) and the inputs
(exogenous part). Artificial neural networks and particularly
multilayer perceptrons have been extensively used for nonli-
near function approximation. There exists a broad amount of
literature related to the problem of function approximation
and learning from examples and, particularly in the field of
neural networks (NN). Neural networks (1, 4) can learn a
function mapping y = f(x,W) relating a set of points xi in a
given input space to a set of corresponding points yi of an out-
put space in a rather simple way.

Most widely used neural networks for function approxima-
tion are multilayer perceptrons (MLP) and radial basis func-
tions (RBF). Both types of neural networks are classes of
functions of the type f(x,W) with the property of universal
function approximation, i.e. provided a sufficiently high num-
ber of parameters W is used they can approximate any func-
tion with arbitrary low error. Another key factor in the success
of neural networks in the process industry is that there exist
methods (backpropagation, conjugate gradient, Newton and
quasi-Newton methods such as Levenberg-Marquardt, and
many others variants of these (1, 4, 9) which allow determi-
ning an optimal, in a least square sense, set of weights W
which minimizes the cost function J from a set of input-out-
put examples. In other words, neural networks allow perfor-
ming nonlinear regression over a set of examples to estimate
the coating thickness in the strip given a set of available data
which have a proven relationship.

While both MLP and RBF neural networks are universal
approximators, MLP neural networks have the advantage of
making global approximations and require substantially less
parameters to achieve a similar accuracy. Also, despite MLP's
with one hidden layer already have universal approximation
ability, those with two or more hidden layers require fewer
parameters for a similar accuracy. On the other hand, MLP
architectures with three or more layers however, do not sup-
pose a substantial gain in efficiency. Thus, an MLP with two
hidden layers was chosen (fig. 7).

A crucial part in the design of the virtual sensor is the training
procedure as well as the model order determination. We pro-
ceeded through a systematic training-validation-test procedu-
re that integrates both tasks whose pseudo-code is presented
in figure 8:

First, we fix the parameters of the model that will be changed
on each individual training. These may be (we may choose all
or some of them) model order parameters (m,n,d) and the
MLP parameters (N1,N2).

Then we fix a set of values for each parameter that will defi-
ne all the training-validation iterations to be carried out for all
possible combinations.

Train N times for each combination of the parameters (becau-
se the MLP training algorithm starts with random weights)
and save the model with the smallest validation error (mean

Fig. 6 - SOM planes of the main variables.

Fig. 6 - Projections planes SOM des variables principales.
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absolute error, MAE, or root mean squared error, RMSE, can
be used) from the N trainings for each combination. An opti-
mized backpropagation algorithm [7] was used for training.

Finally, test the saved models against one or more test sets and
take the best performing model according to a predefined per-
formance index (MAE or RMSE).

Despite all this process takes time (since it may require many
training runs) it is done from time to time (in a fixed periodi-
cal schedule or when the process is suspected to have chan-
ged) offline in a fully automated way, and does not require to
be supervised.

■ VIRTUAL SENSOR IMPLEMENTATION

The virtual sensor was installed on a modern and fully auto-
mated galvanizing plant, where measurements of all the
required variables coming from different automation-level-1
computers, PLC's, and acquisition systems, are sent to level 2
alpha stations where a comprehensive database integrates all
the information.

Learning of the models

The learning of the models is performed off-line. All the pro-
cess data (input and output variables) are obtained from the
level-2 database. This database is easily accessible by stan-
dard queries from different terminal computers to retrieve the
required variables for training of the virtual sensor, such as
different knives position parameters given by high resolution
encoders, strip temperature, zinc pot temperature, strip speed,
coating thickness measurements at hundreds of points along
the strip width given by a X-ray scan system as well as many
other related process variables.

The systematic iterative training-validation-test process des-
cribed in the previous section is done off-line over the data
retrieved from the database using specialized numerical soft-
ware (a toolbox of functions developed under MATLAB envi-
ronment). Once this process is finished, the resulting best

performance model can then be saved for future use or
converted into a configuration file, which contains the para-
meters and structure of the model, and loaded into the real
time application that runs in the process computer.

Execution of the virtual sensor

The virtual sensor, which runs in real time on the process
computer, proceeds in the following steps (fig. 9, fig. 10):

1- Reads the configuration file stored in the process compu-
ter. This file contains the virtual sensor parameters such as
weights, numbers of neurons in both hidden layers (N1,N2),
model order parameters and delays (m,n,d), etc. required to
completely define the model.

2- Then, a C++ function is called on regular intervals by the
operating system of the process computer and performs the
following actions:

a. It reads the process parameters from the so called com-
mon memory space (a memory space in the process
computer where the process variables are stored as they
come from the automation level) stored as a typical C
structure.

b. Performs all needed calculations from the process data
obtained from the fields of the C structure reserved for
the input variables.

c. Stores the results on the fields of the C structure reser-
ved for the output variables (estimations).

d. Stores also the required information (e.g. inputs and
estimations of the virtual sensors) as a row on a log file
for debugging purposes.

3- Finally, the level-2 database is updated so that the estima-
tions are made available through standard queries from
plant-wide terminal computers for being displayed or to be
used as an aid for manual control in case of X-ray gauge
malfunction.

Fig. 7 - MLP architecture for the NARX model.

Fig. 7 - Architecture MLP du modèle NARX.

Fig. 8 - Pseudo-code summarizing the training procedure.

Fig. 8 - Pseudo code résumant la procédure d’apprentissage.
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■ RESULTS

For comparison purposes, apart from the previously described
MLP-based NARX model, an ARX model (linear version of
the NARX model), and a SOM-based regression model were
implemented:

ARX model

The ARX model is a particular case of NARX model [3]
where f() is restricted to be linear:

y(k) = a1 y(~k-1)+…+an y(~k-n) + b0 u(~k-d) + … + bmu(~k-~m-d)

Parameters ai and bi, were obtained using standard least
squares.

SOM based regression

A 42x42 SOM was trained using the standard batch algorithm
(5, 6), on vectors containing both the input and output values,
(u(k), y(k)) resulting in 42x42 prototypes m(i)=(mu,my)
where mu and my are the coordinates that represent the input
and output data respectively. The best matching unit is obtai-
ned by comparing the input coordinates to the actual input
vector u:

bmu = argmini |u-mu(i)|

and the estimation is readily obtained from the output coordi-
nates of the winner prototype

yest = my(bmu)

The comparative results using RMSE (Root mean squared
error), MAE (mean average error) and % error (a percent
mean average error) for the three approaches are summarized
in table II.

MAE

RMSE

E [%]

As seen, the MLP-based NARX model gives the best global
results, being especially good in the RMSE. Since RMSE
error is more susceptible to large errors than MAE, the much
better behaviour of MLP-NARX method with respect to
RMSE reveals better prediction ability especially in cases
where coatings deviate substantially from nominal values,
typically in abrupt changes of thickness (peaks). The results
are encouraging with mean absolute errors (MAE) lower than
5 g/m2 for the best predictor (MLP-NARX).

The performance of MLP is exemplified in figure 11. The plot
displays several different coils with different coating target
and the response of the virtual sensor. Dotted line, represen-
ting model results, follows very precisely the continuous line,
representing the X-Ray gauge measurement. Also, two zoom
zones are shown for better representation.

Figure 12 shows a screenshot of the information that is avai-
lable on site for the technical staff. Both measured and esti-
mated coating thicknesses for upper and lower side of the
strip are plotted showing, a good approximation of the virtual
sensor to the measured coatings. The estimators show up a
good dynamical performance upon changes on the coatings,
with a good tracking of the measured values.

■ CONCLUSIONS

In this work a nonlinear dynamical model (MLP based
NARX) has been used to implement a virtual sensor of the
zinc coating thickness on a galvanizing line from a set of avai-
lable process variables that are known to be related. A highly
flexible approach based on a virtual sensor function program-
med in C++ in the process computer that loads the parameters
obtained from a MATLAB based design process and imple-
ments the proposed model is presented. The estimations pro-
vided by the implemented virtual sensor have given
encouraging results up to the moment and are currently being

Fig. 9 - Flow grams of the virtual sensor implementation.

Fig. 9 - Architecture de l’installation du capteur virtuel.

Fig. 10 - Schematic flow gram of the computer
implementation of the algorithm.

Fig. 10 - Schéma de l’implantation de l’algorithme.

0606-006 Rendueles  7/06/06  10:25  Page 231



232 La Revue de Métallurgie-CIT Mai 2006

monitored at plant terminals. This brings the following bene-
fits. First, the estimation of the coating thickness as well as
preset values can be obtained even when the X-ray gauge is
damaged or inoperative, allowing the technical staff to impro-
ve the production quality in this situation. Second, the redun-
dant measurements provided by the virtual sensor give a
mechanism to quickly detect possible X-ray gauge malfunc-
tion by observing the differences (residuals) between the
measured and estimated coatings.

Finally, an estimation of the coating thickness is obtained in
the same place where the control actions are taking place.
This might allow in the future the design of control algorithms
that use the estimation provided by the virtual sensor to take
immediate corrective actions on the process parameters thus
improving the coating thickness control system performance.
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TABLE II: Comparative results for three different
algorithms of the virtual sensor: SOM, ARX, NARX

(MLP).

TABLEAU II: Comparaison des résultats des trois différents
algorithmes du capteur virtuel : SOM, ARX, NARX (MLP).

MAE RMSE E (%)

SOM Z(up) 5.37 g/m2 16.30 g/m2 10.02 %

Z(lo) 4.18 g/m2 8.64 g/m2 5.27 %

Z(me) 3.45 g/m2 7.58 g/m2 7.35 %

ARX Z(up) 4.77 g/m2 15.76 g/m2 10.03 %

Z(lo) 4.42 g/m2 15.12 g/m2 3.97 %

Z(me) 3.68 g/m2 15.02 g/m2 6.78 %

MLP-NARX Z(up) 4.28 g/m2 6.45 g/m2 7.87 %

Z(lo) 4.46 g/m2 7.10 g/m2 5.04 %

Z(me) 3.68 g/m2 5.81 g/m2 5.35 %

Fig. 11 - Example of performance of virtual sensor with
MLP.

Fig. 11 - Exemple de performance du capteur virtuel avec MLP.,

Fig. 12 - Screenshot of the information available on site;
measured and estimated coatings for the upper and lower

side of the strip are shown.

Fig. 12 - Vue d’écran des informations affichées en ligne ; les
revêtements mesurés et estimés des faces supérieure et

inférieure de la bande sont présentés.
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