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ABSTRACT: This research aimed at assessing the efficacy of non-parametric procedures 17 

to improve the classification of the ejaculates in the artificial insemination (AI) centers 18 

according to their fertility rank predicted from characteristics of the AI doses. A total of 19 

753 ejaculates from 193 bucks were evaluated at 3 different times from 5 to 9 mo of age 20 

for 21 seminal variables (related to ejaculate pH and volume, sperm concentration, 21 

viability, morphology and acrosome reaction traits, and dose characteristic) and their 22 

corresponding fertility score after AI over crossbred females. Fertility rate was 23 

categorized into 5 classes of equal length. Linear Regression (LR), Ordinal Logistic 24 

Regression (OLR), Support Vector Regression (SVR), Support Vector Ordinal 25 
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Regression (SVOR), and Non-deterministic Ordinal Regression (NDOR) were compared 26 

in terms of their predictive ability with two base line algorithms: MEAN and MODE 27 

which always predict the mean and mode value of the classes observed in the data set, 28 

respectively. Predicting ability was measured in terms of rate of erroneous classifications, 29 

linear loss (average of the distance between the predicted and the observed classes), the 30 

number of predicted classes and the F1 statistic (which allows comparing procedures 31 

taking into account that they can predict different number of classes). The seminal traits 32 

with a bigger influence on fertility were established using stepwise regression and a 33 

nondeterministic classifier. MEAN, LR and SVR produced a higher percentage of wrong 34 

classified cases than MODE (taken as reference for this statistic), whereas it was 6 %, 13 35 

% and 39 % smaller for SVOR, OLR and NDOR, respectively. However, NDOR 36 

predicted an average of 2.04 classes instead of 1 class predicted by the other procedures. 37 

All the procedures except MODE showed a similar smaller linear loss than the reference 38 

one (MEAN) being SVOR the one with the best performance. The NDOR showed the 39 

highest value of the F1 statistic. Values of linear loss and F1 statistics were far from their 40 

best value indicating that possibly, the variation in fertility explained by this group of 41 

semen characteristics is very low. From the total amount of traits included in the full 42 

model, 11, 16, 15, 18 and 3 features were kept after performing variable selection with 43 

the LR, OLR, SVR, SVOR and NDOR methods, respectively. For all methods, the 44 

reduced models showed almost an irrelevant decrease in their predictive abilities 45 

compared to the corresponding values obtained with the full models. 46 

Key words: fertility, non parametric methods, prediction, rabbit, seminal traits 47 

48 
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INTRODUCTION 49 

 50 

Artificial insemination (AI) in rabbit commercial farms is performed with 51 

pooled semen from several bucks at a high sperm dosage in order to overcome the 52 

negative effects on fertility of semen with suboptimal characteristics. This practice 53 

reduces the output of AI centers and impedes making right decisions regarding male 54 

replacement and management in AI centers. Obtaining an accurate prediction of the 55 

fertilizing potential of ejaculates would alleviate those limitations increasing the 56 

economical benefits of AI centers.  57 

 58 

However, the relationship between the seminal traits and the result of 59 

insemination is still not clearly established. Most of the studies have shown that the 60 

proportion of the observed variance that is explained by models including the set of 61 

traits usually recorded in the AI centers is very low (Brun et al., 2002, Gadea et al., 62 

2004, García-Tomás et al., 2006a). This could be due to: i) The experimental design. 63 

Thus, when AI is performed with semen obtained after a strong pre-selection of the 64 

ejaculates, the observed variability is reduced. ii) The variables used as fertility markers, 65 

the way how they are measured and the time when they are recorded with respect to AI 66 

time could not be adequate. iii) The methods used for variable selection and prediction 67 

could be too rigid for modeling some kind of relationships. iv) The use of variables with 68 

not relevant or redundant information may mislead the classifiers, leading to dismiss 69 

their performance. Finally, v) It could be possible that, actually, the part of the observed 70 

variance of this trait (i.e. fertility at kindling) due to the variation of the characteristics 71 

of the ejaculates accepted for AI is very low, being much more important features of the 72 

doe and environmental factors. In this case the search of a method, based on features of 73 
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the ejaculate, to explain a large part of the variation of the AI, would be necessarily 74 

unsuccessful. 75 

 76 

Objectives of this work were to answer the following: 1) Is it possible to improve 77 

the accuracy of fertility prediction by using more flexible procedures?; 2) How much the 78 

information provided by seminal variables can improve fertility prediction?; 3) Among 79 

them, which are the ones with highest influence on male fertility?  80 

 81 

MATERIAL AND METHODS 82 

 83 

Animals and data 84 

 85 

The research protocol was approved by the animal care and use committee of the 86 

Institut de Recerca i Tecnologia Agroalimentàries (IRTA).  87 

  88 

Animals 89 

Males belonged to the Caldes line selected for growth rate during the fattening 90 

period (Caldes line: Gómez et al., 2002a). Bucks were bred and reared in an experimental 91 

farm in Caldes de Montbui (Barcelona, Spain). This farm has insulated walls and roof 92 

and the proper cooling equipment to avoid animal exposure to extreme temperatures. 93 

After weaning at 32 d, males were housed in collective cages of 8 individuals with a 94 

photoperiod of 16 h light/day. Animals were fed a commercial diet of rabbit pellets ad 95 

libitum (15.5% crude protein, 2.3% fat, 17.2% fiber) until 60 d. Subsequently, they were 96 

housed on the farm of the AI centre under the same environmental conditions as the 97 

experimental farm and placed beside it, and they were restricted to 180 g/d of another 98 
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commercial diet (16% crude protein, 4.3% fat, 17% fiber). Fresh water was always 99 

available.  100 

 101 

Semen collection 102 

All males began training to use an artificial vagina at 4.5 mo of age. A homemade 103 

polyvinyl chloride artificial vagina containing water at a temperature of 50 ºC was used. 104 

One ejaculate was collected per male each week for the first two weeks. After this period, 105 

2 ejaculates per male were collected each week, with an interval of 30 min between 106 

collections. From 5 to 9 mo of age, all males were evaluated at three different times for 107 

seminal quality traits and their corresponding fertility score after AI over crossbred 108 

females in a commercial farm.  109 

 110 

Evaluation of the seminal traits and AI  111 

Ejaculates were stored in a dry bath at 35ºC until evaluation for no more than 15 112 

min after collection. Ejaculates containing urine and calcium carbonate deposits were 113 

discarded, and gel plugs were removed. The ejaculate volume was assessed with a 114 

micropipette and the pH of the semen was determined using a 507 Crison pH-meter 115 

(Crison Instruments, SA, Alella, Barcelona, Spain). Aliquots (25µl) of ejaculate were 116 

diluted 1:4 (vol/ vol) in a commercial extender (Galap, IMV Technologies, Saint Ouen 117 

sur Iton, France) to assess the individual motility under a microscope with a phase-118 

contrast optic (Nikon, Lewisville, TX) at 400X magnification, according to a subjective 119 

scale from 0 to 5 corresponding to a percentage of sperm showing progressive movement 120 

of: 0 to 10, 11 to 25, 26 to 50, 51 to 70, 71 to 90, or 91 to 100%,  respectively (Roca et 121 

al., 2000). 122 

 123 
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To prepare the AI doses, a small pre-selection of ejaculates was performed, 124 

discarding for AI only those with individual motility lower than 2 and a percentage of 125 

dead spermatozoa higher than 50%. Semen suitable for AI was immediately prediluted 126 

1:1 (vol/ vol) with a commercial semisolid extender (Cunigel, IMV Technologies, Saint 127 

Ouen sur Iton, France). After evaluation, the ejaculates obtained per male each day were 128 

pooled and cell sperm concentration (Conc; millions of spermatozoa per mL) was 129 

measured by using a sperm cell counter (NucleoCounter SP-100, Chemometec A/S, 130 

Allerød, Denmark). The resultant pool of ejaculates was divided into two parts which 131 

were diluted until 10 x 106 spermatozoa/ mL and 40 x 106 spermatozoa/ mL, respectively, 132 

to obtain AI doses at two different sperm concentrations (DC). The dilution rate (Dilu) 133 

was also recorded. Semen doses were stored in straws of 0.5 mL at 18ºC for 24 h until 134 

their use. 135 

 136 

After 24 h, an AI dose (at each dose concentration) of each male dose was 137 

processed to artificially induce the acrosome reaction. The AI dose was tempered at 37 138 

ºC for 30 min to allow the liquefaction of the semisolid extender. After tempering, 139 

samples were centrifuged and supernatants aspirated. The pellets were then resuspended 140 

to 200 µL with  Hepes–Tyrode’s Lactate (Hepes-TL). An aliquot of 50 µL was incubated 141 

at 37.5 ºC in 5%CO2 in air for 3 h. 142 

 143 

To induce acrosome reaction, Calcium Ionophore (A23187, Sigma Chemical., St 144 

Louis, MO, USA) was used at a final concentration of 10 µM, according to Januskauskas 145 

et al. (2000). Sperm samples with the ionophore were incubated 30-45 min at 37ºC. After 146 

incubation, samples were centrifuged and the pellets washed and resuspended to 60 µL 147 

with TALP medium.  148 
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 149 

The evaluation of sperm quality traits, sperm storage capacity and the ability of 150 

the sperm to undergo the acrosome reaction, was performed from aliquots (10µL) of 151 

semen samples collected at three different stages. In each of them, the aliquots were 152 

placed and fixed on slides using a vital nigrosin-eosin staining (Bamba, 1988). Under a 153 

light microscope (Nikon, Lewisville, TX) at 400X magnification, 200 spermatozoa were 154 

evaluated from each slide to determine the following sets of sperm quality traits: 1) Sperm 155 

characteristics obtained from aliquots of semen samples collected immediately after 156 

pooling the ejaculate (0 h): percentages of viable spermatozoa (VI0), spermatozoa with 157 

normal apical ridge (NAR0), morphological abnormalities of head (HAP), neck-midpiece 158 

(NAP) and tail (TAP) and spermatozoa with presence of cytoplasmic droplet (TD), and 159 

proximal (PD) and distal (DD) cytoplasmic droplet. 2) Sperm characteristics obtained 160 

after 24 h of the storage period of the AI doses (around the insemination time): 161 

percentages of viable spermatozoa (VI24), spermatozoa with normal apical ridge 162 

(NAR24). 3) Sperm characteristics obtained after the induction of the acrosome reaction: 163 

percentage of acrosome reacted spermatozoa (AR). 164 

 165 

The stability of the sperm during the storage period was evaluated as difference 166 

in sperm viability (DVI) and in percentage of spermatozoa with normal apical ridge 167 

(DNAR) between 0 h and 24 h after ejaculate extraction. These parameters were 168 

computed as DVI = VI0 - VI24 and DNAR = NAR0 - NAR24, respectively. The ability of 169 

the sperm sample to undergo acrosome reaction was evaluated as the percentage of 170 

reacted acrosome spermatozoa after artificial induction of the acrosome reaction (DAR). 171 

This parameter was obtained as DAR = AR - (100 - NAR24). The percentage of total 172 
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reacted spermatozoa from 0h to the end of the process of acrosome reaction induction 173 

(DAR0) was obtained as: DAR0 = AR - (100 - NAR0) 174 

 175 

The total volume of the ejaculate per male and day of collection (Vol; mL) was 176 

calculated as the sum of the volumes of the 1st and 2nd suitable for AI ejaculates of each 177 

male and day. The total individual motility of the sperm per male and day of collection 178 

(IM), was calculated as  , where IM1 and 179 

Vol1 and IM2 and Vol2 are the individual sperm motility and volume measures for the 1st 180 

and the 2nd ejaculate of the pool of each male, if present, respectively. The pH was also 181 

measured separately in each ejaculate before pooling. In cases where there were two 182 

ejaculates suitable for AI per male and per day, the resultant pH of the pool (pH) was 183 

calculated as follows:  184 

. Where pH1 and pH2 are 185 

the pH measures for the 1st and 2nd ejaculate of the pool of each male, if present, 186 

respectively. 187 

 188 

The AI doses were applied in a commercial farm (Montmajor, Barcelona, Spain) 189 

over crossbred does (P x V) (V line: Estany et al., 1989; Prat line; Gómez et al., 2002b). 190 

Females followed a semi-intensive reproductive rhythm: first mating at about 4.5 mo old, 191 

with subsequent 42 d reproductive cycles. All females were treated 48 h before AI with 192 

15 IU eCG (subcutaneously; Foligon, Intervet International B.V., Booxmeer, Holland) 193 

and ovulation was induced immediately after AI with 0.02 mg of Gonadorelin (im; 194 

Fertagyl, Intervet internacional B.V. Booxmeer, Holland).  195 

 196 

( ) ( ) 11 1 2 2 1 2IM IM Vol IM Vol Vol Vol −
= × + × × +

( ) ( )1 2
1

10 1 2 1 2log 10 10pH pHpH Vol Vol Vol Vol −− −⎡ ⎤= − × + × × +⎣ ⎦
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Diagnosis of pregnancy was made by palpation, 14 d after AI, and the result was 197 

confirmed at parity. A total of 6,613 AI results were obtained. Fertility (Fert) was defined 198 

as percentage of kindling rate by male, dose sperm concentration and AI day. In order to 199 

have a representative value of male fertility, Fert records computed with less than 4 200 

inseminations per day and dose concentration were discarded from the analysis 201 

(representing the 11.4 % of the whole Fert data). These discarded Fert values were 202 

originated from two sources: i) from AI which results were not recovered in the farm (e.g. 203 

death or culled females, lost data records sheets, etc), and ii) from AI with doses from 204 

males that did not produce enough amount of total sperm in the day. Removing the second 205 

group of Fert data in the analyses, could lead to a possible bias in the estimation of the 206 

male fertility prediction and in the seminal traits used as explanatory variables of this 207 

prediction, especially in Vol and Conc (as the Vol x Conc leads the total amount of sperm 208 

produced per male each day). In order to check that, the ratio between the mean, median 209 

and 1st and 2nd quartiles of each seminal trait obtained from the whole data set and from 210 

the data set after removing the Fert values without less than 4 IA was calculated. Ratios 211 

were all close to 1 for all seminal parameters (ranging from 0.98 to 1.05). Therefore, it 212 

was confirmed that no bias in the parameters existed after performing this data edition. A 213 

total of 752 records of Fert were obtained from 193 males.  214 

 215 

Table 1 shows a brief description of the seminal variables used in the analyses as 216 

predictors of fertility and Figure 1 shows their corresponding box plots.  217 

 218 

Statistical analyses 219 

 220 
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Taking into account the continuous nature of fertility, defined as percentage of kindling 221 

rate, regression is the most straightforward approach susceptible to be applied when a 222 

fertility prediction model needs to be defined. Classical regression methods require the 223 

assumption of a specific parametric function (e.g., linear, quadratic, etc.) to model the 224 

data, which could be too rigid for modeling some kind of relationships. An alternative 225 

approach for the analysis of this kind of traits could be the use of non parametric methods 226 

(Wasserman, 2006), such as machine learning algorithms, since they do not require prior 227 

knowledge of a parametric function and can accommodate complex relationships between 228 

dependent and independent variables and intricate dependencies among explanatory 229 

variables. Besides, they are very flexible and can learn arbitrarily complex patterns when 230 

enough data are available. 231 

 232 

Moreover, given that the objective is to get a classification of the ejaculates rather 233 

than an exact value of its potential fertility rate, models for classification (i.e. interval 234 

prediction, which is more reliable because the targets are broader) could be used. For this 235 

purpose, fertility rates are grouped into intervals. Furthermore, it is also possible to 236 

consider the ordinal nature of the intervals converting the learning process in an ordinal 237 

regression task. The power of these classifiers can be additionally improved using the so-238 

called nondeterministic classifiers (Alonso et al., 2008 and del Coz et al., 2009), whose 239 

aim is to predict a set of classes (consecutive in case of ordinal regression) as small as 240 

possible, but (presumably) still containing the true class. 241 

 242 

Loss functions 243 

Classification procedures were compared in terms of 3 loss functions: 244 
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1) Linear loss or absolute deviation, which computes the absolute value of the 245 

difference between the observed and the predicted data.  246 

2) Error rate, which computes the number or rate of erroneous classifications.  247 

3) The complementary of the  statistic, which measures the goodness of a 248 

nondeterministic classification and can be defined as: 249 

 
250 

Where, y is the true value, h(y) is the prediction, |h(x)| stands for the number 251 

of classes included in the prediction for an entry x, P (Precision) is the 252 

proportion of predicted classes that are relevant (which it is only one) and R 253 

(Recall) is an indicator of
 
whether the real class is in the set of the classes 254 

predicted. Thus, F is the harmonic average of P and R, where  indicates the 255 

number of times that R is considered much important than P. A typical choice 256 

of this parameter is , which means assigning equal importance to R and 257 

P (F1). For a test set F1 is computed as the average of this parameter for each 258 

individual entry.  is an informative measure in order to compare different 259 

classifiers, but sometimes it is not easy to infer the quality of the solution. On 260 

the contrary, P and R are able to provide a better understand of the behavior 261 

of the classifier. The latter shows us the accuracy of the prediction, and, the 262 

former indicates the number of ranks in the prediction (in fact, it involves the 263 

inverse of such number). 264 

Note that in deterministic classification the number of classes included in the 265 

prediction is always 1, and then, F1 = P = R = (1 – error rate).    266 

 267 

Data in training and validation sets 268 
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The initial data set (S) contains n = 752 semen samples described by the 21 traits 269 

shown in Table 1 and the class to be learned (Y) is Fert (the percentage of kindling rate). 270 

Despite AI was performed with homospermic doses, the buck was deliberately omitted 271 

in the set of variables used for prediction because the objective of this research was to 272 

assess the ability of the characteristics usually measured in an ejaculate (pooled or not 273 

from several males) to predict fertility after AI. In other words, the objective was to 274 

assess the value of those measurements by themselves as fertility markers, 275 

irrespectively of the buck. 276 

This data set was used for regression tasks. However for ordinal regression task or 277 

nondeterministic ordinal regression task, it was rewritten discretizing those ordered 278 

values in a set of 5 qualitative ranks (classes) of equal length for Fert: very low, low, 279 

medium, high, very high (refer to Table 2 for the intervals of fertility rate used in this 280 

study for semen classification). 281 

 282 

Learning algorithms 283 

To analyze these data, several methods were employed:  284 

1) Linear Regression (LR)  285 

2) Ordinal Logistic Regression (OLR) 286 

3) Support Vector Regression (SVR; Vapnik, 1995). This algorithm uses the ε-287 

insensitive loss function that ignores errors smaller than a certain threshold ε > 0. 288 

Another characteristic of the support vector algorithms is the existence of a 289 

parameter (C) that is a trade-off between the flatness of the learned function and 290 

the amount up to which deviations larger than ε are tolerated (Smola and 291 

Scholkopf, 2004). Smola and Scholkopf also show that SVR works well in 292 

environments with noise and outliers, as it is usually the case of seminal traits. 293 
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4) Support vector algorithm for ordinal regression tasks (SVOR; Chu and Keerthi, 294 

2005) using the classes shown in Table 2. 295 

5) A nondeterministic ordinal regression algorithm (NDOR) proposed by Alonso et 296 

al. (2008). This algorithm is able to control the number of classes to predict and 297 

the error rate by means of a trade-off parameter (β). When the number of classes 298 

in the prediction is more than one, then the classes must be consecutive. 299 

 300 

Two base line algorithms are employed in order to test the performance of the 301 

more sophisticated ones.  302 

6) The MEAN, is used to compare with regression algorithms. MEAN always 303 

returns the mean value of the classes observed in the examples of the data set. The 304 

translation from percentages of kindling rate to classes is shown in Table 2.  305 

7) The MODE, can be employed to compare with ordinal regression algorithms. 306 

MODE always returns the mode value of the classes observed. This method can 307 

be also adapted to work as a nondeterministic algorithm. The idea is to force it to 308 

make predictions with a fixed number of the most frequently and consecutive 309 

classes. Thus, MODE_i will predict the i most frequent and consecutive classes. 310 

 311 

Variable selection 312 

 313 

Finally, the seminal traits with a bigger influence on fertility were established 314 

using a traditional feature selection method (stepwise regression) and machine learning 315 

oriented one. There are no specific feature (i.e. variable) selection methods for 316 

nondeterministic algorithms; however, multi-class classification feature selection 317 

algorithms can be adapted for this task. For this purpose, variables were ranked in order 318 
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to select the best variables subset. The score proposed for obtaining the ranking is the 319 

pairwise ranking error (PRE), an extension of the area under the ROC curve (AUC) able 320 

to cope with more than two ordered classes (Hanley and McNeil, 1982). Then, it is used 321 

a method based in the Recursive Feature Elimination (RFE) algorithm proposed by 322 

Guyon et al. (2012) that produces an attribute ranking. To select the best feature subset a 323 

wrapper is applied in conjunction with OLR, SVR, SVOR and NDOR. 324 

 325 

Experimental setup 326 

A 5-fold cross-validation was repeated twice. The same Support Vector Machine 327 

(SVM) (Vapnik, 1995) implementation was used to learn a regressor (SVR) and to obtain 328 

the posterior probabilities needed in the nondeterministic classifier (NDOR): LibSVM 329 

(Chang and Lin, 2001) with linear kernel. The ordinal regression classifier (SVOR) is that 330 

described in (Chu and Keerthi, 2005). To adjust the C parameter for these algorithms we 331 

performed an internal grid search (a 2-fold cross-validation repeated 5 times) with 332 

 and . 333 

 334 

 335 

RESULTS AND DISCUSSION 336 

 337 

Figure 1 shows the Boxplots for the seminal characteristics used to predict Fert. 338 

All of them showed values close to the ones obtained in other studies in the same paternal 339 

line of rabbits (García-Tomás et al., 2006b; García-Tomás et al., 2008). The variables 340 

describing different morphological abnormalities had small values of the median 341 

(especially for HAP and DD) and they showed an asymmetric distribution of the data. 342 

Classical linear regression does not seem to be the most adequate procedure for analyses 343 

€ 

C =10k k ∈ −5,2[ ]
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with this type of variables and with complex relations among them because the 344 

distribution of the data is not known beforehand and the assumption of any distribution 345 

may lead to misclassify the data. 346 

 347 

The predictive performance of all the procedures is shown in Table 3. Regarding 348 

the error rate, the procedure that considers the mode of the data distribution in the training 349 

set as the prediction for all the data in the validation set (MODE) can be considered the 350 

simplest method that could be used for classification. Thus, the result obtained with 351 

MODE was taken as a reference or maximum value to not be overcome for some other 352 

procedure in order to improve the quality of the classification. Results indicate that 353 

MEAN, LR and SVR produced a bigger percentage of wrong classified cases than 354 

MODE, whereas this percentage was 6%, 13%, and 39% smaller for SVOR, OLR and 355 

NDOR, respectively.  356 

 357 

However, NDOR predicted an average of 2.04 classes instead of 1 class predicted 358 

by the other procedures. The average of the distance between the predicted and the 359 

observed classes (linear loss) was 1.36 for the procedure which considered the mean of 360 

the data in the training set as the predicted value for all the data in the validation set. The 361 

result obtained with this procedure was considered the maximum value that other 362 

procedures should not overcome. All the procedures except MODE showed a smaller 363 

linear loss than the reference one. Although differences between procedures for this 364 

statistic were small, SVOR showed the best performance. In the case of NDOR, this 365 

statistic was obtained as the average of the difference between the observed class and the 366 

average of the predicted classes. 367 

 368 
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The F1 statistic allows comparing procedures taking into account that they can 369 

predict different number of classes. The maximum value for this statistic is 1.0, which 370 

corresponds to the situation where all cases are correctly predicted with just one class.  371 

The procedure with the highest value of this statistic was NDOR. However, as it occurred 372 

with the error rate, this value was far from its best value indicating that, probably, the 373 

percentage of variation in fertility explained by this group of semen characteristics is very 374 

low (Brun et al., 2002; Gadea et al., 2004; García-Tomás et al., 2006a) and it may be 375 

necessary to find other semen quality markers, or to evaluate some of the currently used 376 

ones in a more precise manner or closer to the AI time. 377 

Predictive ability obtained with the MODE and NDOR are shown in Table 4. The 378 

NDOR was able to correctly classify 2 out of 3 semen samples predicting an average of 379 

2 consecutive classes. The error rate of this procedure was compared with the reference 380 

procedure (MODE) modified to perform as a nondeterministic procedure (Table 4). The 381 

modified MODE would require predicting 4 out of the 5 possible classes in order to 382 

correctly classify more semen samples than the NDOR procedure. Regarding the error 383 

rate, MODE_4 had a better value than NDOR but it predicted 4 classes instead of 2.04. 384 

Regarding the other parameters the MODE has always a worse performance than NDOR, 385 

independently of the number of classes that it predicted. NDOR predicted just one class 386 

in the 35% of the semen samples, 2 classes in 47% of the semen samples, 3 classes in 8% 387 

of the samples, never predicted 4 classes, and in 10% of the samples it predicted all the 388 

classes (given that there was no information supporting any possible classification).  389 

As a general comment of the previous results, non-parametric methods for 390 

predicting the rank of the ejaculates according to their potential fertility rate from seminal 391 

characteristics, seems to improve the quality of the prediction with respect to the obtained 392 

using the classical regression procedure. However the improvement is not high enough 393 
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to make decisions concerning the bucks or the ejaculates. One of the main problems could 394 

be that the trait that we are trying to predict (fertility at kindling) is due to the male and 395 

to the female in a different rate. Fertility at kindling is greatly conditioned by prenatal 396 

survival, which is uniquely determined by the doe and other environmental factors. Then 397 

the effects of the male are masked, and it is very difficult to establish a relationship 398 

between seminal characteristics and this trait. On the other hand, fertility rate, as it is 399 

defined here, is calculated as the rate of positive matings which does not allow 400 

differentiate for each insemination between ejaculates that fertilize most of the oocytes 401 

and those that fertilize only a part of them.  402 

Based on all these considerations, Piles et al. (2012) propose using embryonic 403 

survival and number of implanted embryos instead of fertility at kindling, in order to 404 

improve the quality of the evaluation of the ejaculates by their characteristics involved in 405 

fertilization and the subsequent embryogenesis processes, which are the reproductive 406 

processes which probably have an important male contribution. This could be important 407 

when the objective is to improve the quality of the doses produced in the AI centers or to 408 

make decisions regarding buck replacement. 409 

Table 5 shows which of the 22 features (21 seminal traits and Age) were kept in 410 

each one of the methods after performing the feature selection. Except the NDOR, the 411 

number of variables kept with the other methods after performing variable selection was 412 

high. From the total amount of features included in the full model, 11, 16, 15, 18 and 3 413 

features were kept after performing variable selection with the LR, OLR, SVR, SVOR 414 

and NDOR methods, respectively. 415 

 416 

The predictive ability of the resultant reduced models with the selected features is 417 

also shown in Table 5. For all methods, the reduced models showed almost an irrelevant 418 
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decrease in their predictive abilities -in terms of error rate, linear loss and F1 statistic- 419 

with respect to their corresponding values obtained with the full model (Table 3).  It is 420 

highly surprising that NDOR almost did not get worse predictive ability in the reduced 421 

model compared to the full one (only a slight increase in the linear loss was observed) by 422 

using only 3 of the whole 22 features. From a practical point of view, this is a very 423 

interesting result because it implies that fertility could be equally predicted using a very 424 

small number of seminal variables without diminishing the predictive ability of the 425 

method. 426 

 427 

Only pH and TD were always selected by the five procedures. The Age, DC, Vol, 428 

IM, NAR0, AR and DAR were selected in four of the five models presented. Average and 429 

standard error of Age and the most relevant seminal traits for each fertility class are shown 430 

in Figure 2.  431 

 432 

The semen pH is related to the concentration and motility of spermatozoids in the 433 

ejaculate (Hulet and Ercanbrack, 1962; Coffey, 1988; Bencheikh, 1995; Brun et al., 2002; 434 

Garcia-Tomás et al., 2006b). In rabbits, several studies have found negative correlations 435 

between pH of ejaculate and fertility (Coffey, 1988; Brun et al., 2002; Tusell et al., 2011) 436 

or litter size (More O'Ferrall and Meacham, 1968) in accordance with our results (Figure 437 

2, panel D).  438 

 439 

Migration of the cytoplasmatic droplet occurs in the epididymus (Pérez-Sánchez 440 

et al., 1997), but cytoplasmic droplets can be present in the ejaculated spermatozoa 441 

(Cooper and Yeung, 2003). Our results (Figure 2, panel D) are in accordance with the 442 

ones obtained with boars where the high presence of ejaculated spermatozoids with distal 443 
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droplets led to obtain reduced fertility and litter size (Waberski et al., 1994). Relationship 444 

between infertility and droplet retention has also been denoted in mice (Yeung et al., 445 

2000) and human (reviewed by: Cooper, 2005).  446 

 447 

Rabbit bucks reach sexual maturity at approximately 5 months and semen quality 448 

generally decreases in older rabbit bucks (> 2 years; Boiti et al., 2005). García-Tomás et 449 

al. (2009) found that, between 4.6 and 7.5 mo of age, males from the Caldes line still had 450 

an important increase in ejaculate volume and individual motility of the spermatozoa 451 

suggesting that they could have not totally reached sexual maturity according to their 452 

testis size and the percentage of seminiferous tubules with presence of lumen during that 453 

period. However, according to the fertility results of the current study, it seems that 454 

fertility of males decreases with Age because the average male age of the ejaculates with 455 

the lowest fertility is higher than the average male age of those with the highest fertility 456 

(Figure 2, Panel A). Further research is needed in order to clarify the effect of male age 457 

on fertility.  458 

 459 

Several works in rabbits have denoted the effect of sperm concentration of the AI 460 

doses on fertility (Farrell et al., 1993; Alvariño et al., 1996; Viudes-de-Castro and 461 

Vicente, 1997). Although it is not very clear, it seems that ejaculates with higher Vol have 462 

lower fertility than the ones with lower Vol (Figure 2, Panel B). As semen is composed 463 

by seminal plasma and spermatozoa, Vol is determined by the amount of these two 464 

components. Ejaculates are diluted to prepare the AI dose considering only the 465 

spermatozoa concentration of the ejaculate and the desired amount of sperm in the AI 466 

dose. Among all the methods, feature Dilu was kept only in the stepwise LR whereas Vol 467 

and Conc were kept in two and three of the methods, respectively (Table 5). Killian et al. 468 
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(1993) suggested that the effect of dilution on the potential fertility of the doses is male 469 

specific because of individual variation in the composition of plasma and sperm quality. 470 

 471 

Even though that a small preselection was performed discarding for AI those 472 

ejaculates with the worst scores of IM, it was possible to observe the positive effect of 473 

high IM scores on fertility (Figure 2, Panel C). Spermatozoa require good motility in 474 

order to cross the female genital tract, reach the oocytes and perform a successful 475 

fertilization.  Moreover, sperm motility is a good indicator of the status and functionality 476 

of the sperm membrane (Gadea, 2005). Several authors have denoted that sperm motility 477 

is a good indicator of poor fertility; however, high values do not guarantee good fertility 478 

(Flowers, 1997; Braundmeier and Miller, 2001). Brun et al. (2002) found that mass 479 

motility score was the most influential trait on kindling rate among several quantitative 480 

and qualitative seminal traits analyzed whereas Garcia-Tomás et al. (2006a) found no 481 

clear relationship between fertility and individual sperm motility evaluated according to 482 

a subjective scale. Both studies rejected higher amount of ejaculates than in the current 483 

study using, among other variables, sperm motility scores. This could contribute to 484 

diminish the amount of variation for this trait and possibly to reduce its correlation with 485 

fertility.  486 

 487 

NAR0, AR and DAR features are related to the acrosomal status of the sperm 488 

(Figure 2, Panel E, G and H, respectively). Regarding NAR0, which reflects the 489 

proportion of spermatozoa with a normal apical ridge in an untreated semen sample, is 490 

indicative of its fertilizing ability because acrosome reacted spermatozoa or abnormal 491 

acrosome spermatozoa have a short longevity and are not able to fertilize (Saake and 492 

White, 1972). Our results indicate the positive relationship between NAR0 and fertility 493 
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(Figure 2, Panel E). Also in rabbits, a negative and moderate correlation was found 494 

between fertility and percentage of abnormal acrosomes (Courtens et al., 1994). However, 495 

the percentage of sperm with acrosomal integrity was found to be non significant when it 496 

was included in a multiple regression analysis of fertility in two paternal lines of rabbits 497 

(being one of them the Caldes line; Garcia-Tomás et al., 2006a). In that study, NAP was 498 

the feature with the most relevant effect on fertility. Conversely to NAR0, that only 499 

evaluates the morphological acrosome status of the sperm at the time of collection, other 500 

laboratorial tests could better assess the functionality of the sperm acrosome. The NAR0 501 

and DAR features seem to be more informative with regards to the fertilizing capacity of 502 

fresh semen than the morphological evaluation of the sperm acrosome status, but its 503 

relation with fertility is not clear (Colenbrander et al., 2003) although there is some 504 

evidence of it in bovine (Whitfield and Parkinson, 1995). The DAR gives the proportion 505 

of spermatozoa that, after artificial induction, have undergone acrosome reaction (because 506 

the final figure of reacted spermatozoa is corrected by the initial amount of spermatozoa 507 

already reacted before the acrosome reaction induction) whereas AR only refers to the 508 

final amount of reacted acrosome spermatozoa present in the semen sample once the 509 

acrosome reaction has been artificially induced. As expected, NAR0 and DAR are two 510 

seminal traits highly correlated (0.73). In addition, NAR0 and AR (Figure 2, panel E and 511 

G, respectively) showed a very similar profile indicating that samples with higher 512 

percentage of normal acrosome at collection are more susceptible to satisfactory develop 513 

acrosome reaction after artificial induction. 514 

 515 

 516 

IMPLICATIONS 517 

 518 
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Non-parametric methods for prediction such as Support Vector Ordinal 519 

Regression and Non-Deterministic Ordinal Regression seem to improve the success in 520 

the classification of the ejaculates according to their potential fertility rank predicted 521 

from characteristics of the artificial insemination doses, with respect to the obtained 522 

using the classical regression procedure. Moreover, Non-Deterministic Ordinal 523 

Regression could use the relevant information in a more efficient manner, because it is 524 

able to get the same predictive ability than other methods using a very small number of 525 

seminal traits. However, the predictive ability of male fertility from seminal 526 

characteristics used in this research (many of which are commonly used in the AI 527 

centers for ejaculate selection) is not very different of that obtained with no seminal 528 

information. 529 

 530 

The pH, the rate of spermatozoa with presence of cytoplasmic droplet, and the 531 

rate of reacted spermatozoa during the process of acrosome reaction induction could be 532 

good markers for field AI buck fertility. 533 
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FIGURE CAPTIONS 623 

 624 

Figure 1. Boxplots of the seminal traits used to predict male fertility data. Refer to Table 1 for the description of the seminal traits. 625 

 626 

Figure 2.  Average and standard error of age of the male at collection (Age), semen volume (Vol), individual motility of the sperm 627 

(IM, from 0 to 5: 0 to 10, < 10 to 25, < 25 to 50, < 50 to 70, < 70 to 90, or < 90 to 100, respectively, of the motile spermatozoa showing 628 

progressive movement), pH of the semen, percentage of spermatozoa with normal apical ridge (NAR0), percentage of spermatozoa 629 

with presence of cytoplasmic droplet (TD), percentage of acrosome reacted spermatozoa after the induction of the acrosome reaction 630 

(AR) and percentage of reacted spermatozoa during the process of acrosome reaction induction (DAR) for each fertility class (from 1 631 

to 5: 0 to 20, > 20 to 40, > 40 to 60, > 60 to 80 and > 80 to 100%, respectively).  632 

 633 

Table 1.  Description of the features used to predict male fertility 634 

Variable Description 

Age 

Conc 

Age of the male at ejaculate collection (mo) 

Sperm concentration of the ejaculate per male and day (x106spermatozoa/ mL) 
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Vol Total volume of the ejaculate per male and day (mL) 

IM Individual sperm motility (subjective scale 1-5) 

pH -log hydrogen-ion concentration of the semen (units of pH) 

VI0 % of viable spermatozoa at 0 h (fresh semen) 

NAR0 % of spermatozoa with normal apical ridge 

HAP % of spermatozoa with morphological abnormality of head 

NAP % of spermatozoa with morphological abnormality of neck-midpiece 

TAP % of spermatozoa with morphological abnormality of tail 

PD % of spermatozoa with presence of proximal cytoplasmic droplet 

DD % of spermatozoa with presence of distal cytoplasmic droplet 

TD % of spermatozoa with presence of cytoplasmic droplet 

VI24 % of viable spermatozoa at 24 h (after the storage period of the doses) 

NAR24 % of spermatozoa with normal apical ridge at 24 h (after the storage period of the doses) 

AR % of acrosome reacted spermatozoa after the induction of the acrosome reaction 

DVI Differences in % in sperm viability between 0h and 24 h after the storage period (VI0- VI24) 

DNAR Differences in % in sperm with normal apical ridge between 0h and 24 h after the storage period (NAR0- NAR24) 

DAR % of reacted spermatozoa during the process of acrosome reaction induction [AR-(100-NAR24)] 

DAR0 % of total reacted spermatozoa from 0h to the end of the process of acrosome reaction induction [AR-(100-NAR0)] 
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DC Dose concentration (x106spermatozoa/ mL) 

Dilu Dilution rate 

 635 

 636 

 637 

Table 2. Intervals of fertility rate used for semen classification 638 

Class 
Interval of 

fertility rate 

Number of 

cases 

Percentage 

of total 

1. Very low [0.0, 0.2) 200 26.60 

2. Low [0.2, 0.4) 68 9.04 

3. Intermediate [0.4, 0.6) 112 14.89 

4. High [0.6, 0.8) 191 25.40 

5. Very high [0.8,1.0) 180 24.07 

 Total 752 100.00 

 639 

 640 
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 641 

 642 

 643 

Table 3. Predictive ability obtained with the different classification procedures. Results are the mean and the standard deviation obtained using a 644 

5-fold cross-validation repeated 2 times. Best performances for each one of the statistics are marked in bold face. F1 is the harmonic average of 645 

Precision and Recall. 646 

Method Error rate Linear loss F1 N. of classes 

MEAN 0.85 ± 0.0012 1.36 ± 0.0014 0.15 ± 0.0012 1 ± 0 

MODE 0.73 ± 0.0003 2.11 ± 0.0013 0.27 ± 0.0003 1 ± 0 

LR1 0.76 ± 0.0109 1.09 ± 0.0241 0.25 ± 0.0109 1 ± 0 

OLR2 0.60 ± 0.0099 1.15 ± 0.0309 0.40 ± 0.0099 1 ± 0 

SVR3 0.74 ± 0.0106 1.09 ± 0.0202 0.26 ± 0.0106 1 ± 0 

SVOR4 0.67 ± 0.0127 1.05 ± 0.0328 0.33 ± 0.0127 1 ± 0 
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NDOR5 0.34 ± 0.0237 1.14 ± 0.0318 0.45 ± 0.0072 2.04 ± 0.0978 

1 LR = Linear regression  647 

2 OLR = Ordinal Logistic Regression  648 

3 SVR = Support Vector Regression  649 

4 SVOR = Support Vector Ordinal Regression   650 

5 NDOR = Nondeterministic Ordinal Regression. 651 

 652 
 653 

 654 

 655 

Table 4. Predictive ability obtained with the Mode and nondeterministic ordinal regression (NDOR). Results are the mean and the standard 656 

deviation obtained using a 5-fold cross validation repeated 2 times. Best performances for each one of the statistics are marked in bold face. MODE 657 

X is the method MODE predicting X classes. 658 

Method Error rate Linear loss F1 N. of classes 
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MODE 1 0.73 ± 0.0003 2.11 ± 0.0013 0.27 ± 0.0003 1 ± 0 

MODE 2 0.51 ± 0.0005 1.63 ± 0.0010 0.33 ± 0.0004 2 ± 0 

MODE 3 0.36 ± 0.0009 1.37 ± 0.0011 0.32 ± 0.0004 3 ± 0 

MODE 4 0.24 ± 0.0008 1.50 ± 0.0009 0.30 ± 0.0003 4 ± 0 

MODE 5 0 ± 0 1.36 ± 0.0014 0.33 ± 0 5 ± 0 

NDOR 0.34 ± 0.0237 1.14 ± 0.0318 0.45 ± 0.0072 2.04 ± 0.0978 

 659 

 660 

 661 

 662 

Table 5. Features kept in each one of the procedures used to predict male fertility are marked with X. Linear regression (LR), Ordinal Logistic 663 

Regression (OLR), Support Vector Regression (SVR), Support Vector Ordinal Regression (SVOR), Nondeterministic Ordinal Regression (NDOR). 664 

Results are the mean and the standard deviation obtained using a 5-fold cross validation repeated 2 times 665 
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LR X  X X X  X   X   X   X X    X X 

Error rate: 0.76 ± 0.0118 
Linear Loss: 1.09 ± 0.0216 
F1:0.24 ± 0.0118 
N. classes: 1 ± 0 

OLR                       

Error rate: 0.59 ± 0.0133 
Linear Loss: 1.11 ± 0.0355 
F1:0.41 ± 0.0133 
N. classes: 1 ± 0 

SVR X X X X X  X    X  X X X X  X X X X  

Error rate: 0.74 ± 0.0070 
Linear Loss: 1.10 ± 0.0164 
F1:0.26 ± 0.0070 
N. classes: 1 ± 0 

SVOR X X X X X  X X X  X  X X X X X X X X X  

Error rate: 0.66 ± 0.0092 
Linear Loss: 1.04 ± 0.0289 
F1:0.34 ± 0.0092 
N. classes: 1 ± 0 

NDOR     X        X      X    

Error rate: 0.35 ± 0.0271 
Linear Loss: 1.20 ± 0.0343 
F1:0.44 ± 0.0076 
N. classes: 2.09 ± 0.1410 

1Refer to Table 1 for the description of the features used in to predict male fertility.   666 

 667 



 
 

37 
 

 


