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Abstract 28 

The role of the structure of three isoreticular metal-organic frameworks (IRMOFs) on their 29 

adsorption behavior has been studied in this work, selecting different kinds of volatile organic 30 

compounds (VOCs) as adsorbates (alkanes, alkenes, cycloalkanes, aromatics and chlorinated). 31 

For this purpose, three samples (IRMOF-1, IRMOF-8 and IRMOF-10) with cubic structure and 32 

without functionalities on the organic linkers were synthesized. Adsorption capacities at 33 

infinite dilution were derived from the adsorption isotherms, whereas thermodynamic 34 

properties have been determined from chromatographic retention datavolume. A great 35 

influence of the molecule size on both the The capacity and the strength of adsorption was 36 

were strongly influenced by the adsorbate size. This effect is especially relevant observed for 37 

n-alkanes adsorption, indicating the relevancekey role of the cavity size on this phenomenon, 38 

and hence the importance of the IRMOF structural properties. A dDifferent behavior has been 39 

observed for the polar compounds, where an enhancement on the specificity of the adsorption 40 

with the -electron rich regions being was observed. This fact suggests the specific interaction 41 

of these molecules with the organic linkers of the IRMOFs. 42 

 43 
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 53 

1. Introduction 54 

Isoreticular metal-organic frameworks (IRMOFs) are coordination polymers constituting 55 

an important family of porous crystalline materials [1,2]. These materials are constituted by 56 

two major components: a metal ion or metal oxide and an organic linker. The metal ions are 57 

situated in vertices joined by the organic linker molecules to form the IRMOF structure [3,4]. 58 

The structures formed by these materials are diverse, since many different combinations of 59 

metal-containing ions and the organic linkers can be made. The main features of these 60 

materials are the high surface area (500 to 4 500 m2/g) [5], and high pore volume [6,7], as well 61 

as the easiness for tuning their structure [3,8] by selecting the two IRMOF constituents [3,8]. 62 

 63 

Due to these properties, these materials are attractive candidates for a variety of 64 

applications such as: storage and separation of gases (N2, Ar, CO2, CH4, and H2) [2,9-13], 65 

catalysis [13-16], sensors for different molecules [13,14], and semiconductors [17]. In this way, 66 

there are many published works dealing with the synthesis, characterization and gas storage 67 

applications for MOFs. However, the research on the adsorption of organic molecules on this 68 

type of materials is relatively scarce, in spite of their potential for this application (similar to 69 

zeolites), as well as its possibility to tune both the structure and the organic linkers in order to 70 

enhance the interactions between the adsorbates and the pore wall. In this way, there are just 71 

few works dealing with experimental [18-21] and simulated [20,22] studies related to the 72 

adsorption of organic molecules on MOFs. Furthermore, the scope of these works makes 73 

difficult to compare the different results among them, since there are works focused on the 74 

vapor-phase separation processes of several compounds [23], the understanding of organic 75 

compounds adsorption on a selected MOF [21,24], or the adsorption of selected compounds 76 

on different MOFs, with different structures and metal ions [20]. Taking into account the large 77 

number of applications of adsorption processes for the separation and removal of the harmful 78 

vapors of these compounds, a systematic study on the adsorption behavior of organic 79 

molecules on this type of structures is of high scientific interest. 80 

 81 

In this work, we report the adsorption of several compounds representative of volatile 82 

organic compounds (VOCs) on three different IRMOFs: IRMOF-1, IRMOF-8 and IRMOF-10. The 83 

IRMOF structure is made of Zn4O tetranuclear clusters connected by rigid dicarboxylic linkers 84 

to create a cubic framework, with square channels which are connected in the three 85 
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dimensions [6]. These structures are very open and the crystal density is very low [25]. The 86 

linkers, terephthalic acid (IRMOF-1), 2,6-napthalene dicarboxylic acid (IRMOF-8) and 4,4’-87 

diphenyl dicarboxylic acid (IRMOF-10) confer the structured materials different open windows. 88 

The IRMOFs here chosen have no functional groups in the linkers, thus the resulting materials 89 

only differ on the sizes of the created cages. The inverse gas chromatography (IGC) was chosen 90 

as technique to study the interaction of organic compounds of selected families (n-alkanes, 91 

alkenes, cyclic, aromatic and chlorinated compounds) on these three IRMOFs. This technique  92 

provides thermodynamic information about the adsorption, which can be used to estimate 93 

and compare the relative strengths of intermolecular forces between the adsorbent and 94 

different adsorbates, and to study the interactions between the adsorbate and the adsorbent 95 

[26,27,28].  IGC is a chromatographic technique that differs from the gas-solid chromatography 96 

in its goal: the characterization of the stationary phase, instead of the separation of solutes in 97 

the mobile phase. Furthermore, IGC offers an alternative to the conventional gravimetric or 98 

volumetric methods for determining adsorption equilibrium isotherms, due to its simplicity, 99 

the shorter measurement time and a wider range of experimental possibilities. IGC 100 

measurements can provide information on thermodynamic, surface energy, reaction kinetics, 101 

and textural parameters (such as surface area and porosity). 102 

 103 

Thus, the scope of this work is to evaluate the interaction of selected organic compounds 104 

–representative of different families of VOCs– on three IRMOFs without functionalization of 105 

the organic linkers (IRMOF-1, IRMOF-8 and IRMOF-10) in order to evaluate adsorption 106 

behavior and correlate it to the morphologic structure of the network. IGC adsorption studies 107 

have been used for evaluating different thermodynamic parameters (adsorption capacity, 108 

adsorption enthalpy, entropy and free energy; as well as dispersive and specific contributions 109 

to these terms), useful for gaining further understanding on the adsorption features of these 110 

materials. To the best of our knowledge, there is only one work [24] dealing with the 111 

determination of thermodynamic properties (enthalpies of adsorption, free energies of 112 

adsorption and the dispersive and specific components of the surface free energy) 113 

systematically for different adsorbates on IRMOFs by IGC, specifically this work was devoted to 114 

the influence of synthesis procedure of IRMOF-1 on the adsorption of several organic 115 

compounds. 116 

117 
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 118 

2. Experimental 119 

2.1. Synthesis of IRMOFs 120 

IRMOFs were synthesized at room temperature according to the method described in the 121 

literature [2629], the main features of the procedures being summarised below.   122 

 123 

For the synthesis of the IRMOF-1, 120 mmol of zinc acetate, Zn(OAc)2·2H2O (>98%, Sigma-124 

Aldrich), were dissolved in 774 mL of N,N’-dimethylformamide, DMF (99.8%, Panreac). 125 

Likewise, 47.2 mmol of terephthalic acid (98%, Sigma-Aldrich) and 13 mL of triethylamine 126 

(99%, Sigma Aldrich) were dissolved in 619 mL of DMF, where the molar ratio between 127 

terephthalic acid and zinc acetate was 0.4. The zinc salt solution was added to the organic 128 

solution with stirring during 15 min, and then the solution was stirred at 325 rpm for 2.5 h. The 129 

precipitate was centrifuged at 6 500 rpm for 15 min to 293 K and immersed in 387 mL of DMF 130 

overnight. Afterwards, it was centrifuged again and immersed in 542 mL of trichloromethane, 131 

CHCl3 (99%, Panreac). The solvent was exchanged 3 times over 7 days. The solution was 132 

centrifuged and the white solid was dried in oven at 373 K for 48 h. The resulting solid was 133 

activated at different temperatures (393, 473, 523 and 573 K) for 6 h, at a heating rate of 1 134 

K/min under a helium atmosphere at a flow rate of 0.6 L/min. The IRMOF-1 was kept in a 135 

desiccator to avoid its further contact with moisture and air. 136 

 137 

IRMOF-8 and IRMOF-10 were synthesized following the same method and molar ratio as 138 

the IRMOF-1, using 2,6-napthalene dicarboxylic acid (95%, Sigma-Aldrich) and 4,4’-diphenil 139 

dicarboxylic acid (97%, Sigma-Aldrich) as organic compounds, respectively. The activation 140 

temperature of materials was optimize following the BET surface area, in this way, 573 K was 141 

chosen for IRMOF-1 and 8, whereas 523 K for IRMOF-10. 142 

 143 

2.2. Apparatus and procedure 144 

The crystallographic structures of the IRMOFs were determined by XRD using a Philips 145 

X’Pert Pro powder diffractometer, working with the Cu-Kα line (λ = 0.154 nm) in the range 2θ 146 

between at a scanning rate of 0.02 /s. The X-ray tube voltage and current were set 147 

at 45 kV and 40 mA, respectively. 148 

 149 
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Specific surface area, pore diameter and volume were estimated by nitrogen adsorption 150 

at 77 K in a Micromeritics ASAP 2020 surface area and porosity analyzer. The surface area (SBET) 151 

was calculated according to the Brunauer-Emmett-Teller (BET) method, whereas the 152 

micropore volume (Vmicropores) was obtained using the Harkins and Jura t method. The average 153 

pore diameter (Dp) and mesopore volume (Vmesopores), were determined from the desorption 154 

branch using the Barrett-Joyner-Halenda (BJH) method. 155 

 156 

The thermal decomposition of IRMOFs were characterised by thermogravimetric analysis 157 

in a TG-DSC (Setaram, Sensys). A sample of material (20 mg) - and -alumina as inert reference 158 

material- was treated in Pt crucibles at a heating rate of 5 K/min from 298 to 973 K in N2 159 

atmosphere at a flow rate of 20 mL/min. 160 

 161 

Adsorption measurements were carried out in a conventional gas chromatograph (Varian 162 

model 3800) with a thermal conductivity detector (TCD). About 0.25 g of each IRMOF was 163 

placed into a 25 cm length of Supelco Premium grade 304 stainless steel column (about 4 cm 164 

of IRMOF packed), with passivated inner walls and inside diameter of 5.3 mm. Pyrex glass, 165 

between 250-355 µm, was used as inert material to fill the column and at the ends of itself was 166 

used silanized glass wool to prevent any loss of the adsorbent. The columns were stabilized in 167 

the GC system at 573 K (IRMOF-1 and IRMOF-8) and at 523 K (IRMOF-10) overnight under a 168 

helium flow rate of 30 mL/min.  169 

 170 

Measurements were performed in the temperature range of 393 – 423 K. Helium 171 

(99.999%, Praxair) was used as carrier gas, for all experiments, at a flow rate of 30 mL/min, 172 

which was measured using a calibrated soap bubble flowmeter. Samples injected consists of  173 

0.1 µL of adsorbate, inIn order to satisfy the requirement of adsorption at infinite dilution, 174 

corresponding to zero coverage and GC linearity, the samples injected wereand 0.1 µL of 175 

adsorbate and the same amount of air, to meet the time-outin order to estimate the dead 176 

time of the column. The validity of this the zero coverage hypothesis was confirmed by the 177 

symmetry of the elution peaks and by the constancy of the retention times measured over the 178 

range of the sample sizes studied. The specific retention volume, Vg, in cm3/g, was calculated 179 

using the equation:  180 

 181 

 182 

 183 
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 184 

 185 

where F is the volumetric flow rate of carrier gas, j the James-Martin compressibility factor, tR 186 

the retention time, tM the retention time of a non-adsorbing marker (air), m the mass of the 187 

adsorbent, p0 the outlet column pressure, pw the vapour pressure of water at the flowmeter 188 

temperature, Tmeter the ambient temperature and pi the inlet column pressure. The meaning of 189 

the symbols is indicated in the list of symbols. For each measurement, the adsorbent 190 

adsorbate was injected three times, obtaining reproducible results (±5% retention volume). 191 

Chromatographic measurements of a given compound (n-hexane) were randomly repeated 192 

during the use of each column in order to ensure the stability of the material. The procedures 193 

used for the calculation of adsorption parameters (capacitiesHenry constants, enthalpies, free 194 

energies, entropies and the surface free energy, both the specific and the dispersive 195 

components) from IGC experiments are described in detail in a previous work [2730].  196 

 197 

The selected adsorbates, representative of different families of volatile organic 198 

compounds are: n-pentane(99%, Panreac), n-hexane (99%, Sigma-Aldrich), n-heptane (99%, 199 

Sigma-Aldrich), n-octane (99.5%, Sigma-Aldrich), 1-hexene (97%, Sigma-Aldrich), cyclohexane 200 

(98%, Panreac), methylcyclohexane (99%, Fluka), benzene (99%, Panreac), toluene (99.5%, 201 

Panreac), chlorocyclohexane (98%, Fluka), trichloroethylene and tetrachloroethylene (99%, 202 

Panreac). 203 

 204 

 205 

3. Results and discussions 206 

3.1. Textural and morphologic characterization of adsorbents 207 

XRD patterns of synthesized IRMOFs samples are shown in Fig. 1. For IRMOF-1, it is 208 

observed that the main peaks at 2θ = 6.5 and 9.5° are dismissed in comparison to simulated 209 

diffractograms [24]. The decrease in the size of the main peaks is related to the influence of 210 

guest molecules in the structure [2831]. Likewise, a dominating peak at 2θ = 8.7° is observed, 211 

being attributed this peak to the presence of a nonporous phase resulting from water induced 212 

structural degradation [2932]. The IRMOF-8 shows two main peaks at 2θ = 6.0 and 8.5°, 213 

consistent with data observed in the literature [3033]. However, three small peaks at 214 

2θ = 11.8-13.3° are also observed, that could indicate the presence of lattice defects such as 215 
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metal cluster in the pores or lattice interpenetration [3134]. For IRMOF-10, thee peaks are 216 

observed: the main one at 2θ = 6.4°, and two minor ones at 2θ = 5.2 and 10.4°, although the 217 

relative order of the intensities dos not follow the trend reported for simulated diffractograms 218 

[3235]. This fact is also related, as in the case of IRMOF-1,  to the presence of guest molecules 219 

in the structure.  220 

 221 

The morphology of these structures was determined by nitrogen sorption analysis at 77 K, 222 

Fig. 2 showing the adsorption-desorption isotherms. All of materials characterized clearly 223 

corresponded to type I (microporous solids), according to the IUPAC classification. The textural 224 

properties of the samples are summarized in Table 1. The BET surface areas of IRMOFs studied 225 

decrease from 1 to 10. For IRMOF-1, the BET area is similar to that reported in the literature 226 

for these materials: 2900 m2/g by Eddaoudi et al. [3336] and 3362 m2/g by Rowell et al. [10]. 227 

Also similar values have been found for IRMOF-8, Wang et al. [3437] reporting an area of 228 

1 343 m2/g. It should be pointed out that in all cases the IRMOFs were synthesised by the 229 

solvothermal method, and there are not evidences about the decomposition of the material 230 

during the chromatographic experiments. At this point, samples prepared through microwave-231 

assisted methods exhibit higher surface areas, but these structures are not stable at the 232 

operation conditions. However, in good agreement with the XRD findings, the greatest 233 

differences are observed for IRMOF-10: the surface area (265 m2/ g) of this material is one 234 

order of magnitude lower than the BET area reported by Bae et al. [3538], although in this case 235 

the surface area was not experimental but calculated using simple geometrical techniques. 236 

Pore volume, both microporous and mesoporous, and pore diameter are consistent with the 237 

surface area data. 238 

 239 

The thermal evolution of the IRMOFs is a key point because these materials will be used 240 

as adsorbents and desorption will be carried out by increasing temperatures. The typical 241 

thermogravimetric-differential thermogravimetric (TG-DTG) profile of the IRMOFs treatment is 242 

shown in Fig. 3. Thermal behavior is nearly the same in all cases. A first region, associated to a 243 

DTG peak around 350 K, is observed, attributed to N,N’-dimethylformamide loss [3639]. A 244 

sharp weight loss occurs from 650 K, indicating the collapse of the structure. This phenomenon 245 

was reported to occur between 573 and 773 K [3639,3740]. According to these results, IRMOFs 246 

structures seem to be an interesting alternative to more conventional adsorbents, since 247 

thermal treatment produces the selective decomposition of the oxygenated groups of 248 

activated carbons, even at lower temperatures [3841], and in the case of zeolites, the 249 

thermolysis of the template could begin at 573 K [3942]. 250 
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 251 

 252 

3.2. Adsorption parameters 253 

According to the procedure outlined in the previous papers [2730,4043], adsorption 254 

isotherms were determined in the region of infinite dilution, the so-called Henry’s law region, 255 

using the elution by characteristic point (ECP) method, neglecting the 10 % lower part of the 256 

elution peaks, and correcting them by the Betchold method. Henry’s constant values, at 423 K 257 

(<1% of variation between successive measurements), for an n-alkane compound (n-hexane), 258 

an alkene (1-hexene), cyclic (cyclohexane and methylcyclohexane), aromatic (benzene and 259 

toluene) and chlorinated compounds (trichloroethylene and tetrachloroethylene), are shown 260 

in Fig. 4. These constants are measured at the linear portion of the isotherm, where the 261 

interactions between adsorbed molecules can be neglected. For all the compounds, the 262 

Henry’s constant increases in the order: IRMOF-1 < IRMOF-8 < IRMOF-10. Luebbers et al. [24], 263 

in a study about the adsorption of VOCs on three different IRMOF-1 by IGC, reported also 264 

higher values of the Henry’s constant for materials with the lowest surface area, attributing 265 

this result to the structural degradation of the sample, due to changes in pore geometry., 266 

increasing the surface area accessible for nitrogen molecules but not the available for the 267 

adsorption of larger VOCs. However, these authors are comparing the same IRMOF, prepared 268 

under different conditions. The same explanation could be plausible here, and consistent with 269 

XRD data. Furthermore, the aromatic compounds, as well as trichloroethylene and 270 

tetrachloroethylene are, in general terms, the compounds with the highest adsorption 271 

capacity, whereas the linear and cyclic compounds exhibit markedly lower values for the 272 

Henry’s constant. These data suggest that the -bonds are determinant in the capacity of 273 

adsorption, and more important than the molecular sizes or the dipolar moment reported for 274 

carbon materialsas it was already shown for the adsorption of hydrocarbons on ZIF-8 [4144].  275 

 276 

A positive linear relationship between the Henry’s constant for the n-alkanes and their 277 

molecular cross-sectional area (i.e. the area of the projection of a molecule where a spherical 278 

molecular shape in a hexagonal close-packed configuration is accepted [452]) was observed, 279 

Fig. 5. This phenomenon, which is not observed for the other compounds, implies that the 280 

interaction between the surface of IRMOFs and the adsorbates increases with the size of the 281 

molecule. Furthermore, it is notorious that whereas differences are scarce for IRMOF-8 and 282 

IRMOF-10 for n-pentane to n-heptane, larger differences are observed for n-octane, and also 283 

lower slope is observed for IRMOF-1. This behavior can be understood taking into account that 284 
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whereas two of the three dimensions of n-alkanes are very similar (molecular x axisone of 285 

them is equalthe same for all n-alkanes and the variation of the other one between n-pentane 286 

and n-octane is about just 0.015 Å between n-pentane and n-octane for y axis was measured), 287 

whereas the third oneaxis presents variations from the 9.1 Å for n-pentane to 12.8 Å for n-288 

octane [436]. Taking into account the pore openings of Table 1, n-pentane is the only n-alkane 289 

which is not limited by the diameter of the entrance cavity in any IRMOF, thus this justifies the 290 

lowest slope for IRMOF-1. Concerning the different behavior of n-octane for IRMOF-8 and 291 

IRMOF-10, it is remarked that it could still cross freely the IRMOF-10 pores but not the IRMOF-292 

8. 293 

 294 

The strength of the interaction of each compound with the surface of the adsorbent is 295 

represented by the enthalpy of adsorption,-ΔHads, given by Eq. (3): 296 

 297 

 298 
 299 
Adsorption enthalpies were achieved from the slope of plots of ln Vg vs. 1/T, where this 300 

linear dependence implies a constant value of the enthalpy of adsorption in the range of 301 

studied temperatures (393 - 423 K). Results of adsorption enthalpies are showed in Table 2, 302 

whereas the parent plots, recorded at four different temperatures are provided as 303 

Supplementary Information. The heats of liquefaction ( Hliq) [474] are also reported in this 304 

table, . observing that the dDifferential heats of adsorption over the three IRMOFs are higher 305 

than the heats of liquefaction, thus adsorbate-adsorbent interactions are stronger than 306 

adsorbate-adsorbate ones. In general, the strength of the adsorption increases with the size of 307 

the cage of IRMOF, in agreement with Henry’s constants. This fact could seem contradictory, 308 

since usually at a given loading, the adsorbate-framework strength of interaction increases 309 

with the lower pore diameter as the molecules are forced to be closer together in the small 310 

pores. At this point, it is necessary to point out that the surface area of the IRMOFs under 311 

study decreases with the increasing cavity size (Table 1), due to the presence of a nonporous 312 

phase. This hypothesis is confirmed by comparison of the measured enthalpies of adsorption 313 

for IRMOF-1 with the equivalents reported by Luebbers et al. [24] over three different samples 314 

of IRMOFs-1. For all common adsorbates analysed, Luebbers et al. [24] reported values of 315 

enthalpy of adsorption higher than the reported in this work, which is justified attending to the 316 

lower SBET reported: 1161, 781 and 208 m2/g. Likewise, since the adsorption of organic 317 

molecules is considered, they would have higher affinity for organic compounds, thus this also 318 
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justifies that the strength to adsorption increases with the number of carbon atoms in the 319 

linker molecule: - Hads,IRMOF-1< - Hads,IRMOF-8 < - Hads,IRMOF-10. This appreciation is in good 320 

agreement with molecular simulations of n-butane adsorption on IRMOFs [25], where it was 321 

observed that n-butane isosteric heat of adsorption was higher for IRMOF-14 than for IRMOF-322 

8. Comparing the enthalpies of adsorption of IRMOFs with more conventional adsorbents such 323 

as alumina, zeolites or activated carbons [4043], it is observed that differences among 324 

different materials are even lower than between the three IRMOFs here studied; and, in all 325 

cases higher than for non microporous carbons such as carbon nanotubes, carbon nanofibers 326 

or high-surface-area graphites [4048]. 327 

 328 

From chromatographic data, the standard free energy of adsorption at infinite dilution,     329 

- Gads(kJ/mol), and the entropy of adsorption, - Sads(J/mol K), were also calculated according 330 

to the procedure outlined in a previous work [485]. Briefly, the standard free energy of 331 

adsorption at infinite dilution, - Gads(kJ/mol), can be expressed by Eq. (4): 332 

)4(
A

Vp
lnRTG

0

g0

ads  333 

 334 

Where A is the specific surface area of the adsorbent, and 0 is the spreading pressure of 335 

the adsorbed gas in the De Boer standard state, which was taken as 338 N/m. The other 336 

symbols were already indicated in the text.  337 

The meaning of the symbols is indicated in the list of symbols. Subsequently, the entropy 338 

of adsorption is calculated straightforwardly according to Eq. (5):  339 

)5(
T

GH
S  340 

 341 

Results obtained are summarized in Table 2. The trend observed for all the IRMOFs was 342 

consistent over the whole temperature interval studied, although being only shown the data 343 

obtained at 423 K for simplicity. Fig.6 shows the existence of a so-called “thermodynamic 344 

compensation effect”, i.e., a linear dependence of S on H. This effect for n-alkanes indicates 345 

that the stronger adsorption of longer n-alkanes is accompanied by a greater loss of mobility of 346 

the molecules (this means stronger interaction between the molecule and the surface). This 347 

type of plot allows highlighting differences in adsorbate–adsorbent interactions. A good fit of 348 

the compensation effect data to a straight line indicates the non specific nature of the 349 

adsorbate–adsorbent interactions. In the case of Fig. 6, just one straight line is depicted. Thus, 350 
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the lattice defects or the differences on the organic linkers do not affect the interaction of n-351 

alkanes on these IRMOFs, suggesting that the surface of the studied materials is chemically 352 

analogous. In fact, as the organic linkers of the studied IRMOFs have not any functionality, the 353 

nature of the interaction does not vary with the size of the cage. 354 

 355 

The interaction of n-alkanes with the surface has been also studied attending to the 356 

dispersive component of the surface free energy of the adsorbent. The dispersive component, 357 

, is attributed to London forces and it is unspecific for all molecules. Comparing to the 358 

enthalpy of adsorption,  this parameter is slightly more sensitive to surface changes. The 359 

formula of Dorris and Gray has been used to calculate the values of this parameter [4496]: 360 

                                                                         361 

                                                                                        (6) 362 

 363 

 364 

where  is the difference between the free energy of adsorption of two n-alkanes with 365 

succeeding values of carbon atoms, N is the Avogadro number,  is the area occupied by a -366 

CH2 group (0.06 nm2),  and  (mJ/m2) is the surface tension of a surface consisting of CH2367 

 368 

The meaning of the symbols is indicated in the list of symbols.  The surface tension of a surface 369 

consisting of CH2 groups,  (mJ/m2),  370 

 371 

                                            (7) 372 

 373 

Values of the dispersive component for the range of temperature studied are shown in 374 

Fig.7. The values of the dispersive component are very similar for the three tested adsorbents, 375 

indicating that the nature of the interaction is very similar as it was previously deduced from 376 

the thermodynamic compensation effect. In any case, it may be noteworthy that IRMOF-1 377 

exhibits values of slightly higher than the others IRMOFs. This difference was attributed to 378 

the increase in the interaction potential in the smallest pores. In fact, according to the textural 379 

characterization, due to the structural damage, IRMOF-1 has the lowest pore diameter and the 380 

highest surface area. In all cases, the dispersive component of the surface free energy 381 

decreases with the temperature, due to the entropic contribution to the surface energy. This 382 

difference is slightly more marked for IRMOF-10, in agreement with the highest values of the 383 
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entropy. Comparing the values of the  here reported with those of the literature, they are 384 

very similar to those obtained by Luebbers et al. [24] for IRMOF-1, and much lower than those 385 

obtained, also by IGC, for microporous materials such as zeolites or activated carbons [4043]. 386 

 387 

Adsorption of n-alkanes takes place through dispersive interactions, yielding information 388 

related to carbon structure, polar probes are needed to determine the acid–base character of 389 

the surfaces. The adsorption of these molecules on the stationary phase involves, in addition 390 

to the dispersive interactions, specific contributions. One of the most useful methods is the 391 

“parameter of specific interaction”, Isp, which is determined from the difference in free energy 392 

of adsorption between a polar solute and the real or hypothetical n-alkane with the same 393 

surface area [4507]: 394 

                         (8) 395 

 396 

Where a is the probe surface area. Although this parameter has several sources of errors, it is 397 

satisfactory for those adsorbents without functional groups, and with values of  lower than 398 

100 mJ/m2 [5148]. The specific interaction parameters for the IRMOFs as well as the area of 399 

the projection of the molecule probe (nm2), the dipolar moment (D) and the polarizability 400 

deformation (Cm2 V−1) of the molecules are summarized in Fig. 8. It is worth noting that 401 

cyclohexane and methylcyclohexane show the lowest values of the Isp. Contrary, aromatic 402 

compounds and trichloroethylene as well as tetrachloroethylene exhibit the largest specific 403 

interaction. As can be seen from Fig. 8, this behavior cannot be exclusively explained attending 404 

to the surface area of the molecules, thus, add to the structure effects detected by the n-405 

alkanes adsorption dependence on the cavity size, other effects are also present. It is also 406 

remarkable, that the dipolar moment (a parameter that could be expected to be relevant in 407 

the specific interaction) is especially relevant for chlorocyclohexane, compound with a quite 408 

moderate specific interaction. Finally, the molecular polarizability of the different polar 409 

adsorbates could be, with some exceptions, an indicative of the specificity of this interaction. 410 

Thus, in order to assess the degree of importance of each of these parameters on the 411 

specificity of the interaction of these compounds, all of them have been adjusted according to 412 

the following expression: 413 

litypolarizabi·momentdipolar·moleculeofareasurface·Isp    (9) 414 

 415 
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The fitting parameters ( ) were obtained for three different families of compounds, 416 

for the three IRMOFs under study. The goodness of the fit is shown in Fig. 9. It was found that 417 

for cyclohexane and methylcyclohexane, the most important parameters were the dipolar 418 

moment of the adsorbates ( =14.3), and in lower extent, their polarizability ( =1.6). However, 419 

for the aromatic and the chlorinated compounds, the polarizability ( =4.1 and 3.2, 420 

respectively) of the molecules seems to be the most important parameter (     0). 421 

Furthermore, it is remarkable that the compounds with  bonds (trichloroethylene, 422 

tetrachloroethylene and aromatic compounds) are those with the largest values of Isp, thus the 423 

specific interactions between the electron rich regions of the organic linkers and the double 424 

bonds of the molecules enhanced the adsorption. This observation is in agreement with 425 

molecular simulations of methane and butane on IRMOFs, showing that interaction energy 426 

was stronger as the number of carbon atoms in the linker molecule increases and the cavity 427 

size decreases [25]. 428 

 429 

 430 

 431 

4. Conclusions 432 

Inverse gas chromatography has been used as technique to determine the adsorption 433 

properties of several organic compounds on three different IRMOFs, with cubic structure and 434 

without functionalities on the organic linkers: IRMOF-1, IRMOF-8 and IRMOF-10. It is shown 435 

that the capacity of adsorption at infinite dilution and the enthalpy of adsorption increase with 436 

the cavity diameter of the structures. For n-alkanes it is deduced a size dependence related to 437 

the pore opening of the IRMOFs. As general trend, it is observed that the strength of the 438 

interaction increases in the order IRMOF-1 < IRMOF-8 < IRMOF-10 because of two 439 

complementary effects: the presence of the lattice defects and the increase in the number of 440 

carbon atoms of the organic linkers. Likewise, from the thermodynamic compensation effect 441 

and the dispersive component of the surface free energy is deduced that the n-alkanes present 442 

the same centres of adsorption on the three IRMOFs. Concerning the specific interaction 443 

component, it was observed that the presence of -electron rich zones (aromatic rings or 444 

double bonds) enhanced the specificity of the interaction by the favoured interaction with the 445 

aromatic rings of the organic linker molecules. Therefore, the specificity of the interactions is 446 

more related to the chemistry of the organic linkers than the structure of the IRMOFs. 447 

 448 
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Nomenclature 455 

Latin symbols 456 
a   probe surface area 457 
A  surface area of the adsorbent 458 

   area occupied by a -CH2 group (0.06 nm2) 459 

F  volumetric flow rate of carrier gas  460 
Isp   specific interaction parameter 461 
j  James-Martin compressibility factor 462 
m  mass of the adsorbent 463 
N   is the Avogadro number 464 
pi  inlet column pressure. 465 

p0  outlet column pressure 466 
pw  vapour pressure of water at the flowmeter temperature 467 
tM  the retention time of a non-adsorbing marker (air) 468 
tR  retention time 469 
R  ideal gas constant 470 
T  operation temperature 471 
Tmeter   ambient temperature 472 
Vg  specific retention volume 473 
 474 
Greek symbols 475 

Gads  free energy of adsorption 476 
   difference between the free energy of adsorption of two n-alkanes with 477 

succeeding values of carbon atoms 478 
ΔHads  enthalpy of adsorption  479 
ΔHliq  heat of liquefaction 480 

Sads  entropy of adsorption 481 
   surface tension of a surface consisting of CH2 groups 482 

  dispersive component of the surface free energy of the adsorbent  483 

0   spreading pressure of the adsorbed gas in the De Boer standard state, 338 484 

N/m 485 

486 
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 564 

 565 

 566 

Table 1.Textural properties of IRMOFs studied in this work. 567 

IRMOF 
SBET       

m2/g 

V micropores 

cm3/g  

V mesopores 

cm3/g 

Dp 

Å 

Pore opening 

Å [25] 

IRMOF-1 3046 1.103 0.115 24.9 10.9 

IRMOF-8 1362 0.545 0.041 41.8 12.5 

IRMOF-10 265 0.106 0.023 132.6 16.7 

 568 

 569 

 570 
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Table 2.Enthalpies of adsorption, standard free energies, entropies of adsorption and enthalpies of liquefaction of all adsorbates over the studied IRMOFs 

(free energies and entropies at 423 K). 

Adsorbate 
−ΔH liq 

(kJ/mol) 

−ΔHads(kJ/mol) −ΔGads(kJ/mol) −ΔSads(J/mol K) 

IRMOF-1 IRMOF-8 IRMOF-10 IRMOF-1 IRMOF-8 IRMOF-10 IRMOF-1 IRMOF-8 IRMOF-10 

n-Pentane 26.4 31.5 38.0 46.2 5.9 9.9 11.3 60.5 66.5 82.3 

n-Hexane 31.6 34.1 49.2 50.8 8.6 14.1 12.8 60.5 83.0 89.6 

n-Heptane 36.6 41.1 57.0 58.7 11.8 18.2 17.1 69.2 91.8 98.3 

n-Octane 41.5 51.9 68.0 66.7 14.9 21.0 20.3 87.4 111.2 109.5 

1-Hexene 30.6 32.7 45.7 41.1 8.5 14.2 13.3 57.3 74.5 65.9 

Cyclohexane 33.0 34.1 35.9 37.6 8.0 13.7 10.3 61.9 52.5 64.4 

Methylcyclohexane 35.4 38.2 48.0 47.5 10.2 16.7 12.2 66.2 74.0 83.4 

Benzene 33.8 35.1 43.9 52.3 7.2 13.8 14.3 66.0 71.2 89.9 

Toluene 38.0 42.1 59.6 64.3 9.9 18.3 19.5 76.0 97.5 105.7 

Chlorocyclohexane 42.7 48.4 64.8 56.9 12.2 18.7 15.6 85.7 109.0 97.6 

Trichloroethylene 34.5 41.3 52.9 58.0 7.9 14.9 15.9 79.0 89.8 99.7 

Tetrachloroethylene 39.7 48.5 57.3 53.0 10.5 19.7 17.8 90.0 89.0 83.3 
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Figure. 8 69 
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 83 

Figure captions 84 

 85 

Figure 1. XRD patterns for IRMOF-1, IRMOF-8 and IRMOF-10. 86 

Figure 2. N2 adsorption-desorption isotherms at 77 K for IRMOF-1 (), IRMOF-8 (▲) and 87 

IRMOF-10 (■). Filled symbols: adsorption and open symbols: desorption. 88 

Figure 3. TG and DTG curves of: (a) IRMOF-1, (b) IRMOF-8 and (c) IRMOF-10.Solid line: TG and 89 

broken line: DTG. 90 

Figure 4. Henry’s constant at 423 K for n-hexane (HEX), 1-hexene (1-HEX), cyclohexane (CHX), 91 

methylcyclohexane (MCHX), benzene (BEN), toluene (TOL), trichloroethylene (TCE) 92 

and tetrachloroetylene (TTCE) over: IRMOF-1 (rectanglelight grey), IRMOF-8 93 

(conedark grey) and IRMOF-10 (cylinderblack). 94 

Figure 5. Relationship between Henry's constants and the molecular area for the n-alkanes 95 

(IRMOF-1 (), IRMOF-8 (▲) and IRMOF-10 (■)). 96 

Figure 6. The thermodynamic compensation effect for: IRMOF-1 (), IRMOF-8 (▲) and 97 

IRMOF-10 (■). 98 

Figure 7. Dispersive component of the surface free energy of the IRMOFs at several 99 

temperatures: 393 K (rectanglewhite), 403 K (conelight grey), 413 K (cylinderdark 100 

grey) and 423 K (pyramidblack). 101 

Figure 8. Influence of surface area (SA), dipolar moment (DM) and molecular polarizability 102 

(MP) of selected adsorbates on the Isp parameter at 423 K. Follow left axis for Isp and 103 

right axis for the other three parameters. 104 

Figure 9. Predicted versus experimental Isp parameter at 423 K for selected compounds, for the 105 

three studied adsorbents: IRMOF-1 (), IRMOF-8 (▲) and IRMOF-10 (■). 106 
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