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Abstract

Stochastic dominance, which is based on the comparison of distribution func-
tions, is one of the most popular preference measures. However, its use is limited
to the case where the goal is to compare pairs of distribution functions, whereas
in many cases it is interesting to compare sets of distribution functions: this
may be the case for instance when the available information does not allow to
fully elicitate the probability distributions of the random variables. To deal with
these situations, a number of generalisations of the notion of stochastic domi-
nance are proposed; their connection with an equivalent p-box representation of
the sets of distribution functions is studied; a number of particular cases, such
as sets of distributions associated to possibility measures, are investigated; and
an application to the comparison of the Lorenz curves of countries within the
same region is presented.

Keywords: Distribution function, stochastic dominance, probability boxes,
possibility measures, Lorenz curves.

1. Introduction

The comparison of random variables is a natural problem that arises in
many �elds, and for this reason there are many di�erent proposals in stochas-
tic ordering. One of the most popular is stochastic dominance. First degree
stochastic dominance considers one random variable greater than another one
when the �rst one is more likely to take greater values. Although this notion
has been employed since the 1930s, it has been in the last decades when it has
witnessed increasing popularity; this is testi�ed by the applications of stochas-
tic dominance many di�erent areas, such as economics [7], social welfare [4],
agriculture [26], operational research [37], etc.

It is not uncommon, however, to encounter situations where there is uncer-
tainty about the probability distributions underlying the random variables of
interest; we may for instance have vague or con�icting information, or errors
in the transmission of the available data. This results in the impossibility of
eliciting the probability distribution with certain guarantees. Instead, we may
consider more realistic to work with sets of probability distributions which are
sure to include the `true' one. In other situations, we may be able to work with
precise probability measures, but we may be interested in comparing the sets of
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probability distributions induced by random variables that share some common
features.

Our goal in this paper is to extend the notion of stochastic dominance to
the comparison of sets of distribution functions, following the steps made by
Denoeux for the particular case of belief and plausibility measures [13]. After
giving some preliminary concepts in Section 2, we overview in Section 3 the work
by Denoeux and generalise his work to arbitrary sets of probability measures.
We investigate the relationships between the di�erent de�nitions and study their
main properties, detailing their connection with the notions proposed in [13].

In Section 4, we investigate a number of particular cases which are of interest
in relation to other works, such as the comparison of possibility measures by
means of stochastic dominance or the comparison of two sets of distribution
functions with the same lower and upper bounds. Our work is illustrated in
Section 5 with an application to the comparison of sets of Lorenz curves. Finally,
in Section 6 we discuss the main implications of our results and future lines of
research. We have gathered a number of examples in an appendix.

We shall restrict our work to random variables taking values on the unit
interval; since this is homeomorphic to any closed interval on the real line, the
results extend immediately to distribution functions taking values on any in-
terval [a, b], where a < b ∈ R. In fact, our work can be easily generalised to
any totally ordered space, simply by adding a smallest and greatest value. On
the other hand, we shall work with sets of σ-additive probability measures, to
be closer to the usual works on stochastic dominance. This gives rise, how-
ever, to a number of additional complications with respect to the usual works
with non-additive measures, which are based on sets of �nitely additive prob-
ability measures. To which extent this assumption makes a di�erence in the
corresponding results shall be discussed in Section 3.

2. Preliminary concepts

2.1. Stochastic dominance

The notion of stochastic dominance between random variables is based on
the comparison of their corresponding distribution functions. In this paper, we
are going to work with random variables taking values on [0,1]. The distribution
function is thus de�ned in the following way:

De�nition 1. A cumulative distribution function (cdf) is a function F : [0, 1] →
[0, 1] satisfying the following properties:

• x ≤ y ⇒ F (x) ≤ F (y) ∀x, y [Monotonicity].

• F (1) = 1 [Normalisation].

• F (x) = limϵ↓0 F (x+ ϵ) ∀x < 1 [Right-continuity].

When F satis�es the properties of monotonicity and normalisation, it is
associated to a �nite additive probability distribution, and we shall call it a
�nitely additive distribution function.

One of the most popular methods for the comparison of cdf is stochastic
dominance [30, 36, 44]:
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De�nition 2. Given two cumulative distribution functions F and G, we say that
F stochastically dominates G, and denote it F ≽FSD G, if

F (t) ≤ G(t) for every t ∈ [0, 1]. (1)

This de�nition produces a partial order in the space of cumulative distribu-
tion functions, from which we can derive the notions of strict stochastic domi-
nance, indi�erence and incomparability:

• We say that F strictly stochastically dominates G, and denote it by
F ≻FSD G, if F ≽FSD G but G ̸≽FSD F . This holds if and only if
F ≤ G and there is some t ∈ [0, 1] such that F (t) < G(t).

• F and G are stochastically indi�erent if F ≽FSD G and G ≽FSD F , or
equivalently, if F = G.

• F and G are stochastically incomparable if F ̸≽FSD G and G ̸≽FSD F .

Stochastic dominance is commonly used in economics and �nance [14, 24]
and can be given the following interpretation: F ≽FSD G means that the choice
of F over G is rational, in the sense that we prefer the alternative that provides
greater probability of having a greater pro�t. The notion has also been used
in other frameworks such as reliability theory, statistical physics, epidemiology,
etc (see [30, 36, 44] for more information).

2.2. P-boxes

Our goal in this paper is to extend the notion of stochastic dominance to
the case where we consider sets of probability measures instead of a single one.
As a consequence, we shall work within the theory of imprecise probabilities.
The term imprecise probability [48] refers to uncertainty models applicable in
situations where the available information does not allow us to single out a
unique probability measure for all random variables involved. Examples of such
models include 2- and n-monotone capacities [11], lower and upper previsions
[48], belief functions [1, 43], credal sets [29], possibility and necessity measures
[16], interval probabilities [49], and coherent risk measures [3].

One such model is considered in this paper: pairs of lower and upper distribu-
tion functions, also called probability boxes, or brie�y, p-boxes [18, 19]. P-boxes
are often used in risk or safety studies, in which cumulative distributions play
an essential role. Many theoretical properties and practical aspects of p-boxes
have already been studied in the literature. They have been connected to other
uncertainty models, such as random sets [28] and possibility measures [47], and
have been applied in di�erent contexts [21, 38].

De�nition 3. A probability box, or p-box for short, (F , F ) is the set of cumu-
lative distribution functions bounded between two �nitely additive distribution
functions F ≤ F . We shall refer to F as the lower distribution function and to
F as the upper distribution function of the p-box.

Note that F , F need not be cumulative distribution functions, and as such
they need not belong to the set (F , F ); they are only required to be �nitely
additive distribution functions.
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If we let F be a set of cumulative distribution functions, its associated p-box
(F , F ) is determined by

F (x) := inf
F∈F

F (x), F (x) := sup
F∈F

F (x) ∀x ∈ [0, 1]. (2)

We shall determine later to which extent the preferences between two sets of
cumulative distribution functions coincide with the preferences between their
associated p-boxes, and if furthermore these preferences can be summarised by
the lower and upper distribution functions they induce.

Note that F need not coincide with the set of distribution functions associ-
ated to the p-box (F , F ) (it may be a proper subset) and on the other hand F
and F need not belong to (F , F ): although the in�mum F of a set of cumulative
distribution functions is again a cumulative distribution function, their supre-
mum may be only a �nitely additive distribution function (i.e., it need not be
right-continuous), and as a consequence it need not belong to the p-box (F , F ).
That p-boxes are usually less informative than sets of probability measures,
and may thus increase the imprecision, is already well-known (see for instance
[5, 15, 28] for comments on this in the context of random set theory).

3. Imprecise stochastic dominance

A �rst approach to the extension of stochastic dominance to an imprecise
framework was made by Denoeux in [13].

3.1. Stochastic dominance for belief and plausibility measures

Consider two random variables U and V such that P (U ≤ V ) = 1. They
can be equivalently represented as a random interval [U, V ], which in turn [12]
induces the following belief and plausibility functions:

bel(A) = P ([U, V ] ⊆ A) and pl(A) = P ([U, V ] ∩A ̸= ∅),

for every element A in the Borel sigma-algebra B(R). This implies that

bel((−∞, x]) = FV (x) and pl((−∞, x]) = FU (x) ∀x ∈ R.

The associated set of probability measures P is given by:

P = {P probability : bel(A) ≤ P (A) ≤ pl(A) for every A ∈ B(R)}.

Now, if we consider two random closed intervals [U, V ] and [U ′, V ′], one pos-
sible way of comparing them is to compare their associated sets of probabilities:

P = {P probability : bel(A) ≤ P (A) ≤ pl(A) for every A ∈ B(R)}.
P ′ = {P probability : bel′(A) ≤ P (A) ≤ pl′(A) for every A ∈ B(R)},

where bel′ and pl′ are the belief and plausibility functions induced by [U ′, V ′],
respectively.

Based on the usual ordering between real intervals (see [20]), Denoeux [13]
proposed the following notions:

• P ≫ P ′ ⇔ pl′((x,∞)) ≤ bel((x,∞)) for every x ∈ R.
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• P 1 P ′ ⇔ pl′((x,∞)) ≤ pl((x,∞)) for every x ∈ R.

• P > P ′ ⇔ bel′((x,∞)) ≤ bel((x,∞)) for every x ∈ R.

• P & P ′ ⇔ bel′((x,∞)) ≤ pl((x,∞)) for every x ∈ R.

The above notions can be characterised in terms of the stochastic dominance
between the lower and upper limits of the random intervals:

Proposition 1. [13, Proposition 3] Let [U, V ] and [U ′, V ′] be two random closed
intervals, and let P and P ′ their associated sets of probability measures. The
following equivalences hold:

• P ≫ P ′ ⇔ U ≽FSD V ′.

• P 1 P ′ ⇔ U ≽FSD U ′.

• P > P ′ ⇔ V ≽FSD V ′.

• P & P ′ ⇔ V ≽FSD U ′.

Moreover, they can also be represented in an equivalent way by means of
p-boxes: if we consider the set of distribution functions induced by P, we obtain

{F : FV ≤ F ≤ FU},

i.e., the p-box determined by FV and FU . Similarly, the set P ′ induces the
p-box (FV ′ , FU ′), and Denoeux's de�nitions are equivalent to comparing the
lower and upper distribution functions of these p-boxes, as we can see from
Proposition 1. Note moreover that the same result holds if we consider �nitely
additive probability measures instead of σ-additive ones, because both of them
determine the same p-box and the lower and upper distribution functions are
included in both cases.

3.2. Extension to pairs of sets of distribution functions

One important property of the sets P,P ′ considered above is that the sets of
distribution functions they induce include their lower and upper distributions.
As we shall see, this is not necessarily the case when we start from arbitrary
sets of probability measures, and as a consequence their comparison by means
of the lower and upper distribution functions may produce a loss of information.

In this section, we propose a number of de�nitions that extend Denoeux' ones
to arbitrary sets of probability measures. Given a set of probability measures P
on [0, 1], we shall denote by F = {FP : P ∈ P} its associated set of cumulative
distribution functions.

De�nition 4. Let P1,P2 be two sets of probability measures on [0, 1], and let
F1,F2 be their associated sets of distribution functions. We say that P1:

• (FSD1) stochastically dominates P2, and denote it by F1 ≽FSD1 F2 if and
only if for every F1 ∈ F1, F2 ∈ F2 it holds that F1 ≤ F2.

• (FSD2) stochastically dominates P2, and denote it by F1 ≽FSD2 F2 if and
only if there is some F1 ∈ F1 such that F1 ≤ F2 for every F2 ∈ F2.

• (FSD3) stochastically dominates P2 and denote it by F1 ≽FSD3 F2 if and
only if for every F2 ∈ F2 there is some F1 ∈ F1 such that F1 ≤ F2.
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• (FSD4) stochastically dominates P2, and denote it by F1 ≽FSD4 F2 if and
only if there are F1 ∈ F1, F2 ∈ F2 such that F1 ≤ F2.

• (FSD5) stochastically dominates P2, and denote it by F1 ≽FSD5 F2 if and
only if there is F2 ∈ F2 such that F1 ≤ F2 for every F1 ∈ F1.

• (FSD6) stochastically dominates P2, and denote it by F1 ≽FSD6 F2 if and
only if for every F1 ∈ F1 there is F2 ∈ F2 such that F1 ≤ F2.

Figure 1: Examples of the several de�nitions of imprecise stochastic dominance.

An illustration of the above de�nitions is given in Figure 1, where we com-
pare the set of distribution functions represented by a continuous line (that we
shall call continuous distributions in this paragraph) with the set of distribution
functions represented by a dotted line (that we shall call dotted distributions).

On the one hand, in the left picture the set of continuous distributions
(FSD1)-stochastically dominates the set of dotted distributions. In the right
picture, there is a continuous distribution that dominates all dotted distribu-
tions, and a dotted distribution which is dominated by all continuous distribu-
tions. This means that the set of continuous distributions stochastically domi-
nates the set of dotted distributions with respect to second to sixth de�nitions.
Since there is also a dotted distribution that is dominated by a continuous distri-
bution, we deduce that the set of continuous distributions and the set of dotted
distributions are equivalent with respect to the fourth de�nition.

The conditions in De�nition 4 can be given the following interpretation.
(FSD1) means that any distribution function in F1 stochastically dominates
any distribution function in F2, and as such it is related to the idea of interval
dominance from decision making with sets of probabilities [50]. Conditions
(FSD2) and (FSD3) mean that the `best' case in F1 is better than the `best'
case in F2. The di�erence between them lies in whether there is a maximal
element in F1 ∪ F2 in the partial order determined by stochastic dominance.
These two conditions are related to the Γ-maximax criteria considered in [42].
On the other hand, conditions (FSD5) and (FSD6) mean that the `worst' case
in F1 is better than the `worst' one in F2, and are related to the Γ-maximin
criteria in [8, 22]. Again, the di�erence between them lies in whether there is
a minimum element in the order determined by stochastic dominance or not.
Finally, (FSD4) is a weakened version of (FSD1), in the sense that it only
requires that some element in F1 is preferred to some other element in F2,
instead of requiring it for any pair in F1,F2.
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Remark 1. None of the above de�nitions induces an order, in the sense that
none of the relationships ≽FSDi we can de�ne on the sets of distribution func-
tions satis�es simultaneously the properties of re�exivity, antisymmetry and
transitivity. Speci�cally, it is not di�cult to show that:

• ≽FSD1 is transitive and antisymmetric, but not re�exive.

• ≽FSD2 and ≽FSD5 are transitive, but they are neither re�exive nor anti-
symmetric.

• ≽FSD3 and ≽FSD6 are transitive and re�exive but they are not antisym-
metric.

• ≽FSD4 is re�exive, but it is neither transitive nor antisymmetric.

Moreover, even if (FSD1) induces the only antisymmetric relation, it can never
be applied in the imprecise case: F1 ≽FSD1 F2 and F2 ≽FSD1 F1 imply that
F1 = F2 = {F}. �

From any of these de�nitions we can infer immediately a relation of strict
stochastic dominance and another one of stochastic indi�erence: we have

F1 ≻FSDi F2 ⇔ F1 ≽FSDi F2 and F2 �FSDi F1

and
F1 ≡FSDi F2 ⇔ F1 ≽FSDi F2 and F2 ≽FSDi F1,

and this for any i = 1, . . . , 6. Moreover, we shall say that F1 and F2 are
incomparable with respect to (FSDi) when F1 �FSDi F2 and F2 �FSDi F1.

The relationships between these de�nitions are depicted in the following
proposition.

Proposition 2. Let F1,F2 be two sets of cdfs on [0, 1].

a) The implications between the conditions of stochastic dominance are given
by Figure 2.

Figure 2: Relationships between the di�erent de�nitions.

b) Concerning strict stochastic dominance,

� (FSD2) strict stochastic dominance implies (FSD3) strict stochastic
dominance.
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� (FSD5) strict stochastic dominance implies (FSD6) strict stochastic
dominance.

Proof. The �rst part follows immediately from the de�nitions, so we only prove
the statement about strict stochastic dominance. To see that ≻FSD2⇒≻FSD3 ,
note that from the �rst part, if F1 ≻FSD2 F2 then F1 ≽FSD3 F2. To see that
there is strict preference, assume that F1 ≡FSD3 F2. Then given the F1 ∈ F1

such that F1 ≤ F2 ∀F2 ∈ F2, there should be some F
′

2 ∈ F2 such that F
′

2 ≤ F1,
whence F1 = F

′

2 and therefore F1 ≡FSD2 F2, a contradiction.
The proof of the implication ≻FSD5⇒≻FSD6 is similar.

Example 1 in the Appendix shows that there is no additional implication
between the notions of stochastic dominance or strict stochastic dominance. It
is not di�cult to see that the same implications represented in Figure 2 also
hold for the derived relationships of stochastic indi�erence, and that there is no
additional implication.

Remark 2. In some cases, it may be interesting to combine some of these de�ni-
tions, for instance to consider F1 preferred to F2 when it is preferred according
to de�nitions (FSD2) and (FSD5). Taking into account the implications de-
picted in Proposition 2, the combinations that produce new conditions are those
where we take one condition out of {FSD2, FSD3} together with one out of
{FSD5, FSD6}.

If we combine for instance (FSD2) with (FSD5), so that

F1 ≽ F2 ⇔ F1 ≽FSD2 F2 and F1 ≽FSD5 F2,

we would be requiring that F1 has a best-case scenario which is better than
any situation in F2 and that F2 has a worst-case scenario which is worse than
any situation in F1. This turns out to be an intermediate condition between
(FSD1) and each of (FSD2), (FSD5), and it is not di�cult to show that it is
not equivalent to any of them.

Related results can be found in [13, Proposition 2] and in Section 4.1 later
on; however, note that in both cases we consider we consider a situation of
increase of the imprecision, which, in the context of [13], ends up producing the
relationships F1 ≽FSD2 F2 and F2 ≽FSD5 F1. �

Stochastic dominance between sets of probabilities can be studied by means
of a p-box representation. Given any set of probability measures P, its associ-
ated set of distribution functions F induces a p-box (F , F ) by means of Eq. (2).
Our next result relates the di�erent de�nitions of stochastic dominance for sets
of probabilities to their associated p-box representation:

Proposition 3. Let F1,F2 be two sets of cumulative distribution functions, and
denote by (F 1, F 1) and (F 2, F 2) the p-boxes they induce.

1. F1 ≽FSD1 F2 ⇔ F 1 ≤ F 2.

2. F1 ≽FSD2 F2 ⇒ F 1 ≤ F 2.

3. F1 ≽FSD3 F2 ⇒ F 1 ≤ F 2.

4. F1 ≽FSD4 F2 ⇒ F 1 ≤ F 2.

5. F1 ≽FSD5 F2 ⇒ F 1 ≤ F 2.

6. F1 ≽FSD6
F2 ⇒ F 1 ≤ F 2.
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Proof. (1) Note that F1 ≽FSD1 F2 if and only if F1 ≤ F2 for every F1 ∈
F1, F2 ∈ F2, and this is equivalent to F 1 = sup

F1∈F1

F1 ≤ inf
F2∈F2

F2 = F 2.

(3) By hypothesis, for every F2 ∈ F2 there is some F1 ∈ F1 such that F1 ≤ F2.
As a consequence, F 1 ≤ F2 ∀F2 ∈ F2 ⇒ F 1 ≤ infF2∈F2 F2 = F 2.

(4) If there are F1 ∈ F1 and F2 ∈ F2 s.t. F1 ≤ F2, then F 1 ≤ F1 ≤ F2 ≤ F 2.

(6) If for every F1 ∈ F1 there is some F2 ∈ F2 such that F1 ≤ F2, then
F 1 = supF1∈F1

F1 ≤ supF2∈F2
F2 = F 2.

(2,5) The second (resp. �fth) statement follows from the third (resp., sixth)
and Proposition 2.

To see that the converse implications in the second to sixth statements do
not hold in general, we refer to Example 2 in the Appendix.

As we mentioned after De�nition 4, the di�erence between (FSD2) and
(FSD3) lies on whether the set of distribution functions F1 has a `best case',
i.e., a smallest distribution function; similarly, the di�erence between (FSD5)
and (FSD6) lies on whether F2 has a greatest distribution function. Taking this
into account, we can easily prove the equivalence between the above conditions
when the lower or the upper distribution functions of the associated p-box belong
to the set:

Proposition 4. Let us consider two sets of cumulative distribution functions
F1 and F2.

1. F 1 ∈ F1 ⇒
[
F1 ≽FSD2 F2 ⇔ F1 ≽FSD3 F2

]
.

2. F 2 ∈ F2 ⇒
[
F1 ≽FSD5 F2 ⇔ F1 ≽FSD6 F2

]
.

Proof. To see the �rst statement, use that by Proposition 2 F1 ≽FSD2 F2 ⇒
F1 ≽FSD3 F2. Moreover, F1 ≽FSD3 F2 if and only if for every F2 ∈ F2 there is
F1 ∈ F1 such that F1 ≤ F2. In particular, since F 1 ≤ F1 for every F1 ∈ F1,
it holds that F 1 ≤ F2 for every F2 ∈ F2, and consequently, as F 1 ∈ F1, that
F1 ≽FSD2 F2.

The proof of the second statement is similar.

When the lower and upper distributions of the p-box belong to our sets of
distributions, they can be used to characterise our preferences between them.
In that case, the stochastic dominance between two sets of cumulative distribu-
tion functions can be characterised by means of the relationships of stochastic
dominance between their lower and upper distribution functions.

Corollary 1. Let F1,F2 be two sets of cumulative distribution functions, and
let (F 1, F 1) and (F 2, F 2) denote their associated p-boxes. If F 1, F 1 ∈ F1 and
F 2, F 2 ∈ F2, then

1. F1 ≽FSD1 F2 ⇔ F 1 ≤ F 2.

2. F1 ≽FSD2 F2 ⇔ F1 ≽FSD3 F2 ⇔ F 1 ≤ F 2.

3. F1 ≽FSD4 F2 ⇔ F 1 ≤ F 2.

4. F1 ≽FSD5 F2 ⇔ F1 ≽FSD6 F2 ⇔ F 1 ≤ F 2.

Proof. • If F 2 ≥ F 1 ∈ F1, there is some F1 ∈ F1 such that F1 ≤ F2 for all
F2 ∈ F2, and as a consequence F1 ≽FSD2 F2.
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• If F 1 ∈ F1, F 2 ∈ F2 and F 1 ≤ F 2, then there exist F1 ∈ F1 and F2 ∈ F2

such that F1 ≤ F2, whence F1 ≽FSD4 F2.

• If F 1 ≤ F 2, then since F 2 ∈ F2 then there is some F2 ∈ F2 such that
F1 ≤ F2 for every F1 ∈ F1, because F1 ≤ F 1 for any F1 ∈ F1.

The remaining implications follow from Propositions 3 and 4.

Remark 3. The above corollary allows us to see more clearly the connection be-
tween the scenario proposed by Denoeux ([13]) and our proposal. Let [U, V ] and
[U ′, V ′] be two random closed intervals, whose associated belief and plausibility
functions determine the sets of probability measures P,P ′.

Applying Proposition 1 and Corollary 1, we obtain the following equiva-
lences:

• P ≽FSD1 P ′ ⇔ FU (t) ≤ FV ′(t) for every t ∈ R ⇔ P ≫ P ′.

• P ≽FSD2 P ′ ⇔ P ≽FSD3 P ′ ⇔ FV (t) ≤ FV ′(t) for every t ∈ R ⇔ P > P ′.

• P ≽FSD4 P ′ ⇔ FV (t) ≤ FU ′(t) for every t ∈ R ⇔ P & P ′.

• P ≽FSD5 P ′ ⇔ P ≽FSD6 P ′ ⇔ FU (t) ≤ FU ′(t) for every t ∈ R ⇔ P 1 P ′.

Hence, condition 1 gives rise to (FSD2) (when P has a smallest distribution
function) and (FSD3) (when it does not have it); similarly, condition> produces
(FSD5) (if P ′ has a greatest distribution function) and (FSD6) (otherwise).

This also shows that our proposal is more general in the sense that it can be
applied to arbitrary sets of probability measures, and not only those associated
to a random closed interval. On the other hand, our work is more particular
in the sense that we are assuming that our referential space is [0,1], instead of
the real line. As we mentioned in the introduction, our results are immediately
extendable to distribution functions taking values in any closed interval [a, b],
where a < b are real numbers. The restriction to bounded intervals is made so
that the lower envelope of a set of cumulative distribution functions is a �nitely
additive distribution function, which may not be the case if we consider the
whole real line as our referential space. One solution to this problem is to add
to our space a smallest and a greatest value 0Ω, 1Ω, so that we always have
F (0Ω) = 0 and F (1Ω) = 1. �

Although in this paper we are focusing on sets of distribution functions
associated to σ-additive probability measures, it is not uncommon to encounter
situations where our imprecise information is given by means of sets of �nitely
additive probabilities: this is the case of the models of coherent lower and upper
previsions in [48], and in particular of almost all models of non-additive measures
considered in the literature [32]; in this sense they are easier to handle than sets
of σ-additive probability measures, which do not have an easy characterisation
in terms of their lower and upper envelopes, as showed in [27].

A �nitely additive probability measure induces a �nitely additive distribu-
tion function, and conversely, any �nitely additive distribution function can be
induced by a �nitely additive probability measure [34]. As a consequence, given
a p-box (F , F ), the set of �nitely additive probabilities compatible with this
p-box induces the class of �nitely additive distribution functions

F
′
:= {F �nitely additive distribution function : F ≤ F ≤ F}. (3)
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In particular, both F , F belong to F ′
. Taking this into account, if we de-

�ne conditions of stochastic dominance for sets of �nitely additive distribution
functions analogous to those in De�nition 4, it is not di�cult to establish a
characterisation similar to Corollary 1, whose analogous proof we omit:

Lemma 1. Let F ′

1,F
′

2 be two sets of �nitely additive distribution functions with
associated p-boxes (F 1, F 1), (F 2, F 2). Assume F 1, F 1 ∈ F ′

1 and F 2, F 2 ∈ F ′

2.

1. F ′
1 ≽FSD1

F ′
2 ⇔ F 1 ≤ F 2.

2. F ′
1 ≽FSD2 F ′

2 ⇔ F 1 ≤ F 2.
3. F ′

1 ≽FSD3 F ′
2 ⇔ F 1 ≤ F 2.

4. F ′
1 ≽FSD4 F ′

2 ⇔ F 1 ≤ F 2.
5. F ′

1 ≽FSD5 F ′
2 ⇔ F 1 ≤ F 2.

6. F ′
1 ≽FSD6 F ′

2 ⇔ F 1 ≤ F 2.

Let P1,P2 be two sets of σ-additive probability measures, with associated
p-boxes (F 1, F 1), (F 2, F 2). Let F ′

1,F
′

2 be two sets of �nitely additive distri-
bution functions associated to the p-boxes (F 1, F 1), (F 2, F 2). When the lower
and upper distribution functions of the associated p-box belong to our set of
cumulative distribution functions, we immediately deduce from Corollary 1 and
Lemma 1 that stochastic dominance holds under the same conditions regardless
of whether we work with �nitely or σ-additive probability measures:

Proposition 5. Let us consider two sets of cumulative distribution functions
F1 and F2 with associated p-boxes (F 1, F 1), (F 2, F 2), and let F ′

1,F
′

2 be the
sets of �nitely additive distribution functions associated to these p-boxes. If
F 1, F 1 ∈ F1 and F 2, F 2 ∈ F2, it holds that :

F1 ≽FSDi F2 ⇔ F ′
1 ≽FSDi F ′

2,

for i = 1, . . . , 6.

On the other hand, any �nitely additive cdf F can be approximated by a
σ-additive cdf F̃ : its right-continuous approximation, given by

F̃ (x) = inf
y>x

F (y) ∀x < 1, F̃ (1) = 1. (4)

Hence, to any set F of �nitely additive cdfs we can associate a set F̃ of σ-
additive cdfs, by considering F̃ := {F̃ : F ∈ F}, and where F̃ is given by
Eq. (4). However, both sets do not model the same preferences:

Proposition 6. Let F be a set of �nitely additive cdfs, and let F̃ be the set
of their σ-additive approximations. The possible relationships between F and F̃
are summarised in the following table:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F ≻FSDi F̃ • • • • • •
F̃ ≻FSDi F
F ≡FSDi F̃ • • • • • •

F , F̃ incomparable • • •

Proof. From Eq. (4), F ≤ F̃ for any F ∈ F , whence F ≽FSD3,FSD4,FSD6 F̃ .

We deduce from Proposition 2 that we cannot have F̃ ≻FSDi F for any i =
1, . . . , 6. To see that the other scenarios are possible, we refer to Example 3 in
the Appendix.
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4. Particular cases

In this section, we investigate the stochastic dominance between sets of prob-
ability distributions in a number of particular cases of their associated p-boxes.

4.1. Increasing imprecision

We begin by studying the behaviour of the di�erent notions of stochastic
dominance for sets of distributions when we use them to compare two sets of
distribution functions, one of which is more imprecise than the other. This may
be useful in some situations: for instance, p-boxes can be seen as con�dence
bands [10, 39], which model our imprecise information about a distribution
function taking into account a given sample and a �xed con�dence level. Then
if we apply two di�erent con�dence levels to the same data, we obtain two
con�dence bands, one included in the other, and we may study which of the two
is preferred according to the di�erent criteria we have proposed. In this sense,
we may also study our preferences between a set of portfolios, that we represent
by means of a set of distribution functions, and a greater set, where we include
more distribution functions, but where also the associated risk may increase.

We are going to consider two di�erent situations: the �rst one is when our
information is given by a set of distribution functions. Hence, we consider two
sets F1 ⊆ F2 and investigate our preferences between them:

Proposition 7. Let us consider two sets of cumulative distribution functions
F1 and F2 such that F1 ⊆ F2. It holds that:

1. If F1 has only one distribution function, then all the possibilities are valid
for (FSD1). Otherwise, if F1 is made by more than one distribution
function, F1 and F2 are incomparable with respect to (FSD1).

2. With respect to (FSD2), . . . , (FSD6), the possible scenarios are summarised
in the following table:

FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • •
F2 ≻FSDi F1 • •
F1 ≡FSDi

F2 • • • • •
F1,F2 incomparable • •

Proof. • On the one hand, if F1 has more than one cumulative distribution
function, we deduce that F1 is incomparable with itself with respect to
(FSD1), and as a consequence it is also incomparable with respect to the
greater set F2.

• Since F1 ⊆ F2, for any F1 ∈ F1 there exists F2 ∈ F2 such that F1 = F2.
Hence, we always have F2 ≽FSD3 F1 and F1 ≽FSD6 F2. Thus, we obtain
that F1 ̸≻FSD3 F2, F2 ̸≻FSD6 F1, and both sets cannot be incompara-
ble with respect to (FSD3) and (FSD6). Moreover, using Proposition 2
F1 ≻FSD2 F2 and F2 ≻FSD5 F1 are not possible. This also shows that
F1 ≡FSD4 F2, because any F ∈ F1 ⊆ F2 is equivalent to itself.

To see that all the other scenarios are indeed possible, we refer to Example 4
in the Appendix.
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Remark 4. A particular case of the above result would be when we compare a
set of distribution functions F1 with itself, i.e., when F2 = F1. In that case,
F1 ≡FSDi F1 for i = 3, 4, 6, as we have already noted in Remark 1.

With respect to (FSD1), (FSD2) and (FSD5), we may have either incom-
parability (for instance with F1 = F2 = {id, I[0.5,1]}) or indi�erence (with
F1 = F2 = {id}), but never strict preference. �

The second scenario corresponds to the case where our information about
the set of distribution functions is given by means of a p-box. A more imprecise
p-box means that either the lower distribution function is smaller, the upper
distribution function is greater, or both. We begin by considering the latter
case.

Proposition 8. Let us consider two sets of cumulative distribution functions F1

and F2, and let (F 1, F 1) and (F 2, F 2) denote their associated p-boxes. Assume
that F 2 < F 1 < F 1 < F 2. Then the possible scenarios of stochastic dominance
are summarised in the following table:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • • •
F2 ≻FSDi F1 • • •
F1 ≡FSDi F2 •

F1,F2 incomparable • • • • • •

Proof. Using Proposition 2, we know that F1 ≽FSD1
F2 if and only if F 1 ≤

F 2, which is incompatible with the assumptions. Similarly, we can see that
F2 �FSD1 F1 and as a consequence they are incomparable.

On the other hand, if F1 ≽FSDi F2, for i = 2, 3, using Proposition 2 we
would have that F 1 ≤ F 2, a contradiction with the hypothesis.

Similarly, if F2 ≽FSDi F1, for i = 5, 6, we deduce from Proposition 2 that
F 2 ≤ F 1, again a contradiction.

To see that the scenarios included in the table are possible see Example 5 in
the Appendix.

Although the inclusion F1 ⊆ F2 implies that F 2 ≤ F 1 ≤ F 1 ≤ F 2, we
may have F 2 < F 1 < F 1 < F 2 even if F1 and F2 are disjoint, for instance
when these lower and upper distribution functions are σ-additive and we take
F1 = {F 1, F 1} and F2 = {F 2, F 2}. This is the reason why in Proposition 7
we cannot have F1 ≻FSD4 F2 nor F2 ≻FSD4 F1 and under the conditions of
Proposition 8 we can.

Proposition 9. Under the conditions of Proposition 8, if in addition F 1, F 1 ∈
F1 and F 2, F 2 ∈ F2, the possible scenarios are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • •
F2 ≻FSDi F1 • •
F1 ≡FSDi F2 •

F1,F2 incomparable •

Proof. • It is obvious that F1 and F2 are incomparable with respect to
De�nition (FSD1).
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• It holds that F 2 < F 1 ≤ F1 for every F1 ∈ F1, and consequently F2 ≻FSD2

F1. Moreover, using Corollary 1 (FSD2) and (FSD3) are equivalent, and
consequently F2 ≻FSD3 F1.

• Since F 2 < F 1, it holds that F2 ≽FSD4 F1, and moreover F 1 < F 2 implies
that F1 ≽FSD4 F2. Thus, F1 ≡FSD4 F2.

• It holds that F1 ≤ F 1 < F 2 for every F1 ∈ F1, and consequently F1 ≻FSD5

F2. Furthermore, using Corollary 1, (FSD5) and (FSD6) are equivalent,
and consequently F1 ≻FSD6 F2.

In particular, the above result is applicable when F1 = (F 1, F 1) and F2 =
(F 2, F 2), with F 1, F 1 ∈ F1 and F 2, F 2 ∈ F2.

To conclude this section, we consider the case where only one of the bounds
becomes more imprecise in the second p-box.

Proposition 10. Let us consider two sets of cumulative distribution functions
F1 and F2, and let (F 1, F 1) and (F 2, F 2) denote their associated p-boxes.

a) Assume that F 2 < F 1 < F 1 = F 2. Then the possible scenarios are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • • •
F2 ≻FSDi F1 • • • • •
F1 ≡FSDi F2 • • •

F1,F2 incomparable • • • • • •

b) Assume that F 2 = F 1 < F 1 < F 2. Then the possible situations are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • • •
F2 ≻FSDi F1 • • • • •
F1 ≡FSDi F2 • • •

F1,F2 incomparable • • • • • •

Proof. Let us prove the �rst statement; the proof of the second is analogous
to this one. On the one hand, since F 1 > F 2 and F 2 > F 1, we deduce from
Proposition 3 that F1 and F2 are incomparable with respect to (FSD1).

With respect to (FSD2), (FSD3), note that if F 2 < F 1, then there is some
x0 ∈ [0, 1] such that F 2(x0) = infF2∈F2 F2(x0) < F 1(x0), whence there exists
F ∗
2 ∈ F2 such that F ∗

2 (x0) < F 1(x0) ≤ F1(x0) for all F1 ∈ F1. Thus, F1 ̸≤ F ∗
2

for any F1 ∈ F1 and F1 ̸≽FSD3 F2. Applying Proposition 2, F1 ̸≽FSD2 F2.

In Example 6 of the Appendix we give examples showing that when the lower
distribution function is smaller in the second p-box and the upper distribution
functions coincide, all the possibilities not ruled out in the �rst table of the
previous proposition can arise. Similar examples can be constructed for the
case where F 1 = F 2 and F 1 < F 2.

4.2. Sets of distribution functions associated to the same p-box

Next we investigate the relationships between the preferences on two sets of
distribution functions associated to the same p-box. We consider just the case
of non-trivial p-boxes (that is, those where the lower and the upper distribution
functions are di�erent), since otherwise we obviously have indi�erence.
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Proposition 11. Let us consider two sets of cumulative distribution functions
F1 and F2 such that F 1 = F 2, F 1 = F 2 and F 1 < F 1. Then:

1. F1 and F2 are incomparable with respect to (FSD1).

2. With respect to (FSDi), i = 2, . . . , 6, we may have incomparability, strict
stochastic dominance or indi�erence between F1 and F2.

Proof. First of all, let us study the case of (FSD1). By Proposition 3, F1 ≽FSD1

F2 if and only if F 1 ≤ F 2, which in this case holds if and only if F 1 = F 1, a
contradiction with our hypotheses.

With respect to conditions (FSD2), . . . , (FSD6), it is easy to �nd examples
of indi�erence by taking F1 = F2 including the lower and upper distribution
functions. To see that may also have strict dominance or incomparability, we
refer to Example 7 in the Appendix.

When the lower and upper distribution functions belong to our set of distri-
butions, Corollary 1 implies the following:

Corollary 2. Let us consider two sets of cumulative distribution functions F1

and F2 such that F 1 = F 2, F 1 = F 2 and F 1 < F 1, and where F 1, F 1 ∈ F1∩F2.
Then F1 ≡FSDi F2 for i = 2, . . . , 6, and they are incomparable with respect to
(FSD1).

Next we investigate the case when we compare these two sets of distribution
functions with a third one, and study if they produce the same preferences:

Proposition 12. Let F1, F∗
1 and F2 be three sets of cumulative distribution

functions such that F 1 = F ∗
1 and F

∗
1 = F 1. In that case:

1. F1 ≽FSD1 F2 ⇔ F∗
1 ≽FSD1 F2, and F2 ≽FSD1 F1 ⇔ F2 ≽FSD1 F∗

1 .

2. Concerning de�nitions (FSD2), . . . , (FSD6), if we assume that F1 ≻FSDi

F2, then the possible scenarios for the relationship between F∗
1 and F2 are:

FSD2 FSD3 FSD4 FSD5 FSD6

F∗
1 ≻FSDi F2 • • • • •

F2 ≻FSDi F∗
1 • • •

F∗
1 ≡FSDi F2 • • • •

F∗
1 ,F2 incomparable • • • •

Proof. Concerning de�nition (FSD1), it follows from Proposition 3 that F1 ≽FSD1

F2 if and only if F
∗
1 = F 1 ≤ F 2, and using the same result this is equivalent

to F∗
1 ≽FSD1 F2. The same result shows that F2 ≽FSD1 F1 if and only if

F 2 ≤ F 1 = F ∗
1, and this is again equivalent to F2 ≽FSD F∗

1 .
Let us prove that F1 ≻FSD2

F2 is not compatible with F2 ≽FSD2
F∗

1 . If
F1 ≻FSD2 F2, then F2 ̸≽FSD2 F1. This means that for every F2 ∈ F2 there
exist F1 ∈ F1 and x0 such that F1(x0) < F2(x0). As a consequence,

inf
F∗

1 ∈F∗
1

F ∗
1 (x0) = F ∗

1(x0) = F 1(x0) ≤ F1(x0) < F2(x0),

whence for every F2 ∈ F2 there is some F ∗
1 ∈ F∗

1 such that F ∗
1 (x0) < F2(x0),

and consequently F2 ̸≤ F ∗
1 . This means that F2 ̸≽FSD2 F∗

1 , and therefore we
cannot have F2 ≻FSD2 F∗

1 .
Let us show next that F1 ≻FSD5 F2 implies that F∗

1 ≽FSD5 F2. If F1 ≻FSD5

F2, there is F2 ∈ F2 such that F1 ≤ F2 for every F1 ∈ F1. Hence, F 1 ≤ F2,
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and therefore F
∗
1 ≤ F2, which implies that also F ∗

1 ≤ F2 for every F ∗
1 ∈ F∗

1 . We
conclude that F∗

1 ≽FSD5 F2.
To see that the other scenarios are possible, see Example 8 in the Appendix.

Remark 5. Note that, under the conditions of the previous proposition, if we
assume in addition that F 1, F 1 ∈ F1∩F∗

1 and that F 2, F 2 ∈ F2, then we deduce
from Corollary 1 that F1 ≽FSDi F2 ⇔ F∗

1 ≽FSDi F2, for i = 1, . . . , 6. �

4.3. Convergence of p-boxes

It is well-known that a distribution function can be seen as the limit of the
empirical distribution function that we derive from a sample, as we increase the
sample size. Something similar applies when we consider a set of distribution
functions: it was proven in [35] that any p-box on the unit interval is the limit
of a sequence of p-boxes (Fn, Fn)n that are discrete, in the sense that for every
n both Fn and Fn have a �nite number of discontinuity points.

If for two given p-boxes (F 1, F 1), (F 2, F 2) we consider respective approxi-
mating sequences (F 1,n, F 1,n)n, (F 2,n, F 2,n)n, in the sense that

lim
n

F 1,n = F 1, lim
n

F 1,n = F 1, lim
n

F 2,n = F 2, lim
n

F 2,n = F 2,

we may wonder if by comparing for each n the discrete p-boxes (F 1,n, F 1,n) and

(F 2,n, F 2,n) we can say something about the preferences between (F 1, F 1) and

(F 2, F 2). This is what we set out to do in this section. We shall be even more
general, by considering sets of distribution functions whose associated p-boxes
converge to some limit.

Proposition 13. Let (F1,n)n, (F2,n)n be two sequences of sets of distribution
functions and let us denote their associated sequences of p-boxes by (F 1,n, F 1,n)

and (F 2,n, F 2,n) for n ∈ N. Let F1,F2 be two sets of cumulative distribution

functions with associated p-boxes (F 1, F 1) and (F 2, F 2). Assume that:

F 1,n
n→ F 1, F 1,n

n→ F 1, F 2,n
n→ F 2 and F 2,n

n→ F 2,

and that F 1, F 1 ∈ F1 and F 2, F 2 ∈ F2. Then, F1,n ≽FSDi F2,n ∀n, implies that
F1 ≽FSDi F2, for i = 1, . . . , 6.

Proof. The result follows from Proposition 3 and Corollary 1.

The assumption that the upper and lower distribution functions belong to
the corresponding sets of distributions is not necessary for the implication with
respect to (FSD1), but it is necessary for the other de�nitions.

4.4. Stochastic dominance between possibility measures

So far, we have explored the extension of the notion of stochastic dominance
towards sets of probability measures, and we have showed that in some cases it
is equivalent to compare the p-boxes they determine. There are some particular
cases of sets of probability measures that can be summarised by means of a non-
additive measure, and in this way the work we have carried out connects with the
theory of imprecise probabilities. Hence, we could use our results to compare two
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models of non-additive measures by comparing the sets of probability measures
which are compatible with them. In this section, we consider the particular
case where the sets of probability measures are those bounded by some given
possibility measures.

De�nition 5. [16] A possibility measure on [0,1] is a supremum preserving set
function Π : P([0, 1]) → [0, 1]. It is characterised by its restriction to events
π, which is called its possibility distribution. The conjugate function N of a
possibility measure is called a necessity measure.

Because of their computational simplicity, possibility measures are widely
applied in many �elds, including data analysis [46], diagnosis [9], cased-based
reasoning [25], and psychology [40]. See [17] for an overview.

The connection between possibility measures and p-boxes was already ex-
plored in [47], and it was proven that almost any possibility measure can be
seen as the natural extension of a corresponding p-box. However, the de�nition
of this p-box implies de�ning some particular order on our referential space,
which could be di�erent to the one we already have there (for instance if the
possibility measure is de�ned on [0,1] it may seem counterintuitive to consider
anything di�erent from the natural order), and moreover two di�erent possi-
bility measures may produce two di�erent orders on the same space, making it
impossible to compare them.

Instead, we shall consider two possibility measures Π1 and Π2 on Ω =
[0, 1], their associated sets of probability measures M(Π1) := {P probability :
P (A) ≤ Π1(A) ∀A}, and M(Π2) := {P probability : P (A) ≤ Π2(A) ∀A} and
the corresponding sets of distribution functions F1 and F2. Let (F 1, F 1) and
(F 2, F 2) be their associated p-boxes.

Since any possibility measure on [0,1] can be obtained as the upper proba-
bility of a random set [23], and moreover in that case [33] the upper probability
of the random set is the maximum of the probability distributions of the mea-
surable selections, we deduce that the p-boxes associated to F1 and F2 are
determined by the following lower and upper distribution functions:

F 1(x) = sup
P≤Π1

P ([0, x]) = Π1([0, x]) = sup
y≤x

π1(y),

F 1(x) = inf
P≤Π1

P ([0, x]) = 1−Π1((x, 1]) = 1− sup
y>x

π1(y) = N1[0, x],

and similarly

F 2(x) = sup
y≤x

π2(y) = Π2[0, x] and F 2(x) = 1− sup
y>x

π2(y) = N2[0, x].

Note however, that these lower and upper distribution functions need not
belong to F1,F2: if for instance we consider the possibility measure associ-
ated to the possibility distribution π = I(0.5,1], we obtain F = π, which is not
right-continuous, and consequently cannot belong to the set F of distribution
functions associated to M(Π).

In this section, we are going to use stochastic dominance to compare possibil-
ity measures associated to continuous distribution functions. In that case, both
the lower and the upper distribution functions belong to the set of distribution
functions associated to the possibility measures:
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Lemma 2. Let Π be a possibility measure associated to a continuous possibility
distribution on [0,1]. Then, there exist probability measures P1, P2 ∈ M(Π)
whose associated distribution functions are F1 = F , F2 = F .

Proof. Let us consider the probability space ([0, 1], β[0,1], λ[0,1]), where β[0,1] de-
notes the Borel σ-�eld and λ[0,1] the Lebesgue measure, and let Γ : [0, 1] →
P([0, 1]) be the random set given by Γ(α) = {x : π(x) ≥ α} = π−1([α, 1]). It
was proved in [23] that Π is the upper probability of Γ.

Let us consider the mappings U1, U2 : [0, 1] → [0, 1] given by U1(α) =
minΓ(α), U2(α) = maxΓ(α). Since we are assuming that π is a continuous
mapping, the set π−1([α, 1]) = Γ(α) has a maximum and a minimum value for
every α ∈ [0, 1], so U1, U2 are well-de�ned. It also follows that U1, U2 are mea-
surable mappings, and as a consequence the probability measures they induce
PU1 , PU2 belong to the set M(Π). Their associated distribution functions are:

FU1(x) = PU1([0, x]) = λ[0,1](U
−1
1 ([0, x])) = λ[0,1]({α : min Γ(α) ≤ x})

= λ[0,1]({α : ∃y ≤ x : π(y) ≥ α}) = λ[0,1]({α : Π[0, x] ≥ α})
= Π([0, x]) = F (x),

where the fourth equality follows from the continuity of λ[0,1], and similarly

FU2(x) = PU2([0, x]) = λ[0,1](U
−1
2 ([0, x])) = λ[0,1]({α : maxΓ(α) ≤ x})

= λ[0,1]({α : π(y) < α ∀y > x}) = λ[0,1]({α : Π(x, 1] ≤ α})
= 1−Π((x, 1]) = F (x),

again using the continuity of λ[0,1]. Hence, F , F belong to the set of distribution
functions induced by M(Π).

As a consequence, if we consider two possibility measures Π1,Π2 with con-
tinuous possibility distributions π1, π2, the lower and upper distribution func-
tions of their respective p-boxes belong to the sets F1,F2. Hence, we can
apply Proposition 4 and conclude that F1 ≽FSD2 F2 ⇔ F1 ≽FSD3 F2 and
F1 ≽FSD5 F2 ⇔ F1 ≽FSD6 F2. Moreover, we can use Corollary 1 and conclude
that:

F1 ≽FSD1 F2 ⇔ F 1 ≤ F 2 ⇔ Π1[0, x] ≤ N2[0, x] ∀x.
F1 ≽FSD2 F2 ⇔ F 1 ≤ F 2 ⇔ N1[0, x] ≤ N2[0, x] ∀x ⇔ Π1(x, 1] ≥ Π2(x, 1] ∀x.
F1 ≽FSD4 F2 ⇔ F 1 ≤ F 2 ⇔ N1[0, x] ≤ Π2[0, x] ∀x.
F1 ≽FSD5 F2 ⇔ F 1 ≤ F 2 ⇔ Π1[0, x] ≤ Π2[0, x] ∀x ⇔ N2(x, 1] ≤ N1(x, 1] ∀x.

From this we derive immediately the following result:

Proposition 14. Let F1,F2 be the sets of distribution functions associated to
respective possibility measures Π1,Π2 with continuous possibility distributions.

1. Π1 ≤ N2 ⇒ F1 ≽FSD1
F2.

2. Π2 ≤ Π1 ⇒ F1 ≽FSD2 F2,F1 ≽FSD3 F2

3. N1 ≤ Π2 ⇒ F1 ≽FSD4 F2.

4. N2 ≤ N1 ⇒ F1 ≽FSD5 F2,F1 ≽FSD6 F2.

It is not di�cult to show that none of the above su�cient conditions is
necessary.
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4.5. P-boxes where one of the bounds is trivial

Let us investigate next the case of p-boxes where one of the bounds is trivial.
These have been related to possibility and maxitive measures in [47], when
working with �nitely additive cdfs. It is not di�cult to show that when the lower
distribution function is trivial, the probability measures determined by the p-
box are those dominated by the possibility measure that has F as a possibility
distribution; however, a similar result does not hold for the case of (F , 1) in
general, because we need F to be right-continuous.

Let us show that when the lower distribution function is trivial, then the
second and third conditions, which are based on the comparison of this bound,
always produce indi�erence.

Proposition 15. Let us consider the p-boxes F1 = (F 1, F 1) and F2 = (F 2, F 2).
Let us assume that F 1 = F 2 = I{1}, F 1 ̸= F 1 and F 2 ̸= F 2. Then the possible
relationships between F1 and F2 are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • •
F2 ≻FSDi

F1 • •
F1 ≡FSDi F2 • • • • •

F1,F2 incomparable • • •

Proof. • Using Proposition 3 we know that F1 ≽FSD1 F2 ⇔ F 1 ≤ F 2,
and this condition cannot hold because F 2 = I{1} and the p-boxes are not
trivial. Consequently, both sets are incomparable with respect to (FSD1).

• Since F 1 = F 2 ∈ F1 ∩F2, we deduce from Corollary 1 that F1 ≡FSD2 F2.
Applying Proposition 2, we deduce that F1 ≡FSD3 F2 and F1 ≡FSD4 F2.

• On the other hand, it is easy to see that anything can happen for de�ni-
tions (FSD5) and (FSD6), since these depend on the upper cumulative
distribution functions of the p-boxes, on which no assumptions are made.

Similarly, when the upper distribution function is trivial, then the �fth and
sixth conditions, which are based on the comparison of these bounds, always
produce indi�erence. The proof is similar and therefore omitted.

Proposition 16. Let us consider the p-boxes F1 = (F 1, F 1) and F2 = (F 2, F 2).
Let us assume that F 1 = F 2 = 1, F 1 < F 1 and F 2 < F 2. Then the possible
relationships between F1 and F2 are:

FSD1 FSD2 FSD3 FSD4 FSD5 FSD6

F1 ≻FSDi F2 • •
F2 ≻FSDi F1 • •
F1 ≡FSDi F2 • • • • •

F1,F2 incomparable • • •

4.6. 0-1-valued p-boxes

To conclude this section, let us focus on 0-1-valued p-boxes, by which we
mean p-boxes where both the lower and upper cumulative distribution functions
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F , F are 0-1-valued. They have also been related to possibility measures in [47].
Given a 0-1-valued distribution function F , we denote

xF = inf{x | F (x) = 1}.

Note that this in�mum is a minimum when we consider distribution functions
associated to σ-additive probability measures, but not necessarily for those as-
sociated to �nitely additive probability measures.

Given a p-box (F , F ), where both F , F are 0-1-valued, these two functions
determine an interval S such that (xF , xF ) ⊆ S ⊆ [xF , xF ]; the limit xF is

included in S depending on whether F (xF ) = 1 or not (and similarly for xF ). It

is not di�cult to show that the p-box (F , F ) is equivalent to the set of probability
measures that satisfy P (S) = 1. Now, using the relationships between the
conditions (FSD1), . . . , (FSD6) and the orderings between the interval of the
real line, we can establish the following result:

Proposition 17. Let F1 and F2 be two sets of cumulative distribution func-
tions, with associated p-boxes (F 1, F 1), (F 2, F 2).

a) If F 1, F 1, F 2 and F 2 are 0-1-valued functions, then

1. F1 ≽FSD1 F2 ⇔ xF 1
≥ xF 2

.
2. F1 ≽FSD2 F2 ⇒ xF 1

≥ xF 2
.

3. F1 ≽FSD3 F2 ⇒ xF 1
≥ xF 2

.
4. F1 ≽FSD4 F2 ⇒ xF 1

≥ xF 2
.

5. F1 ≽FSD5 F2 ⇒ xF 1
≥ xF 2

.
6. F1 ≽FSD6 F2 ⇒ xF 1

≥ xF 2
.

Moreover, if F 1, F 1 ∈ F1 and F 2, F 2 ∈ F2, the converses also hold.

b) If in particular F1 and F2 are two sets of 0-1 cumulative distribution
functions it also holds that

2. xF 1
> xF 2

⇒ F1 ≽FSD2 F2.
3. xF 1

> xF 2
⇒ F1 ≽FSD3

F2.
4. xF 1

> xF 2
⇒ F1 ≽FSD4 F2.

5. xF 1
> xF 2

⇒ F1 ≽FSD5 F2.
6. xF 1

> xF 2
⇒ F1 ≽FSD6 F2.

Proof. In order to prove the �rst item of this result it is enough to consider
Proposition 3, and to note that, if F and G are two 0-1 �nitely additive dis-
tribution functions then F ≤ G implies that xF ≥ xG. In particular, if G is a
cumulative distribution function, F ≤ G if and only if xF ≥ xG, from which
we deduce that xF 1

≥ xF 2
⇒ F1 ≽FSD1 F2. Moreover, if F 1, F 1 ∈ F1 and

F 2, F 2 ∈ F2, these are cumulative distribution functions, and we can use that
F ≤ G if and only if xF ≥ xG. Applying Corollary 1 we deduce that in that
case the converse implications also hold.

Let us consider the second part.

(2) If xF 1
> xF 2

, ∃x0 such that xF 1
> x0 > xF 2

. Then, since x0 > xF 2
,

F 2(x0) = 1 and therefore F2(x0) = 1,∀F2 ∈ F2. Since xF 1
> x0, F 1(x0) =

0 and as we are considering only 0− 1 valued cdf, there is some F1 ∈ F1

such that F1(x0) = 0. Thus, there is some F1 ∈ F1 s.t. F1 ≤ F2 ∀F2 ∈
F2.
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(4) If xF 1
> xF 2

, ∃x0 such that xF 1
> x0 > xF 2

. Then, F 2(x0) = 1, and
since all the cdf are 0-1 valued, ∃F2 ∈ F2 such that F2(x0) = 1. On
the other hand, F 1(x0) = 0, and since all the cdf are 0-1 valued, there
is some F1 ∈ F1 such that F1(x0) = 0. Hence, F1 ≤ F2 and therefore
F1 ≽FSD4 F2.

(5) If xF 1
> xF 2

, there is some x0 such that xF 1
> x0 > xF 2

. Hence,

F 2(x0) = 1. Since all the cumulative distribution functions are 0 − 1
valued, ∃F2 ∈ F2 such that F2(x0) = 1. On the other hand, F 1(x0) = 0,
whence F1(x0) = 0 for all F1 ∈ F1. Hence, F2 ≥ F1 for all F1 ∈ F1.

(3),(6) These follow from items (2),(5), respectively, and Proposition 2.

In Example 9 in the Appendix we show that the converse implications do
not hold in general.

5. Illustrative example: comparison of Lorenz curves

As we mentioned in the introduction, the notion of stochastic dominance
has been applied in many di�erent contexts. One of the most interesting is in
the �eld of social welfare [2, 31, 45], for comparing Lorenz curves. They are a
graphical representation of the cumulative distribution function of the wealth:
the elements of the population are ordered according to it, and the curve shows,
for the bottom x% elements, what percentage y% of the total wealth they have.
Hence, the Lorenz curve can be used as a measure of equality: the closest the
curve is to the straight line, the more equal the associated society is.

If we have the Lorenz curves of two di�erent countries, we can compare them
by means of stochastic dominance: if one of them is dominated by the other,
the closest to the straight line will be associated to a more equal society, and
will therefore be considered preferable. In this section, we are going to use our
extensions of stochastic dominance to compare sets of Lorenz curves associated
to countries in di�erent areas of the world. We shall consider the Lorenz curves
associated to the quintiles of the empirical distribution functions. The following
table provides the wealth in each of the quintiles (Source data: World Bank
database. http://timetric.com/dataset/worldbank):

Country-year 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1
Australia-1994 5.9 12.01 17.2 23.57 41.32
Canada-2000 7.2 12.73 17.18 22.95 39.94
China-2005 5.73 9.8 14.66 22 47.81
Finland-2000 9.62 14.07 17.47 22.14 36.7

FYR Macedonia-2000 9.02 13.45 17.49 22.61 37.43
Greece-2000 6.74 11.89 16.84 23.04 41.49
India-2005 8.08 11.27 14.94 20.37 45.34
Japan-1993 10.58 14.21 17.58 21.98 35.65

Maldives-2004 6.51 10.88 15.71 22.66 44.24
Norway-2000 9.59 13.96 17.24 21.98 37.23
Sweden-2000 9.12 13.98 17.57 22.7 36.63
USA-2000 5.44 10.68 15.66 22.4 45.82
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To make the comparison by means of the extensions of stochastic dominance
clearer, we are going to consider the cumulative distribution from the richest to
the poorest group: in this way, we will always obtain a curve which is above
the straight line, and it will comply with our idea of considering preferable the
smallest distribution function. If we apply this to the data in the above table,
we obtain the following:

Country-year F(0.2) F(0.4) F(0.6) F(0.8) F(1)
Australia-1994 41.32 64.89 82.09 94.1 100
Canada-2000 39.94 62.89 80.07 92.8 100
China-2005 47.81 69.81 84.47 94.27 100
Finland-2000 36.7 58.84 76.31 90.38 100

FYR Macedonia-2000 37.43 60.04 77.53 90.98 100
Greece-2000 41.49 64.53 81.37 93.26 100
India-2005 45.34 65.71 80.65 91.92 100
Japan-1993 35.65 57.63 75.21 89.42 100

Maldives-2004 44.24 66.9 82.61 93.49 100
Norway-2000 37.23 59.21 76.45 90.41 100
Sweden-2000 36.63 59.33 76.9 90.88 100
USA-2000 45.82 68.22 83.88 94.56 100

We are going to group these countries by continents/regions:

• Group 1: China, Japan, India.

• Group 2: Finland, Norway, Sweden.

• Group 3: Canada, USA.

• Group 4: FYR Macedonia, Greece.

• Group 5: Australia, Maldives.

The relationships between these groups are summarised in the following
table:

Group 1 Group 2 Group 3 Group 4 Group 5
Group 1 ≡FSD2,5 ≻FSD2 ≻FSD2 ≻FSD2 ≻FSD2

Group 2 ≻FSD5 ≡FSD3,6 ≻FSD1 ≻FSD1 ≻FSD1

Group 3 ≡FSD4 ≡FSD2,5 ≻FSD2 ≻FSD2

Group 4 ≻FSD5 ≻FSD5 ≡FSD3,6 ≻FSD3,6

Group 5 ≻FSD5 ≻FSD5 ≡FSD3,6

This means for instance that the set of distribution functions in the �rst
group strictly dominate those in the second group according to de�nition (FSD2),
and those in the second group strictly dominate those in the �rst group accord-
ing to de�nition (FSD5). This is because the best country in the �rst group
(Japan) stochastically dominates all the countries in the second group, but the
worst (China) is stochastically dominated by all countries in the second group.
This, together with Proposition 2, implies that the �rst group strictly dominates
the second according to (FSD3), is strictly dominated by the second according
to (FSD6), that they are indi�erent according to (FSD4) and incomparable
according to (FSD1).
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Similar considerations hold for the other pairwise comparisons. For instance,
group 4 strictly dominates group 5 according to (FSD3), (FSD6), but it does
not dominate it according to (FSD2), (FSD5). This also shows that condi-
tions (FSD2) and (FSD3) are not equivalent (and similarly for (FSD5) and
(FSD6)).

The cells where we have left a blank space mean that no dominance rela-
tionship is satis�ed: for instance, group 3 does not dominate group 2 according
to any of the de�nitions.

Since all the groups have more than one element, they will not satisfy
(FSD1) when comparing them to themselves. It follows from Remark 4 that
they are always indi�erent to themselves according to (FSD3), (FSD4) and
(FSD6); they are indi�erent to themselves according to (FSD2) when they
have a best-case-scenario (as it is the case for groups 1 and 3), and indi�erent
according to (FSD5) when they have a worst-case scenario (as it is the case
again for groups 1 and 3), and incomparable according to these de�nitions in
the other cases.

Note that we can also use the above data to illustrate some of the results in
this paper: for instance, we saw in Remark 1 that condition (FSD2) is transitive,
and in the table above we see that group 1 is preferred to group 3 according to
(FSD2) and group 3 is preferred to group 4 according to (FSD2): this allows
us to infer immediately that group 1 is preferred to group 4 according to this
condition. The comparison of the �rst two groups is an instance of Proposition 8,
because the p-box induced by the �rst group is strictly more imprecise (i.e., it
has a smaller lower cdf and a greater upper cdf) than that of the second group.

6. Conclusions

In this paper we have extended the notion of stochastic dominance to the
case where we compare pairs of sets of probability measures. We have proposed a
number of de�nitions, related to the possible orderings we can establish between
two intervals, and we have studied their properties in a number of scenarios, such
as when we compare a set of probability measures with a more imprecise one
or when we consider two sets of probability measures with the same lower and
upper bounds.

We see that it is useful to represent our sets of probability measures by
means of p-boxes, and that in some cases we can easily derive the relationship
between the sets by looking at the lower and upper distribution functions of
the associated p-box. This representation is useful when our set of distribution
functions include the lower and upper distribution functions, as we can see by
comparing Proposition 3 with Corollary 1 and Propositions 8 and 9. Although
the situation is simpler when these limits are included, because our de�nitions
reduce to Denoeux' ones based on orderings in the real line, this condition is
not always satis�ed, as we can see from Section 5 and the Appendix.

We have applied our results to the case where we want to compare two
possibility measures by means of their associated sets of probabilities; an open
problem would be to generalise this to the comparison of other models of non-
additive measures, such as n-monotone capacities and coherent lower previsions.
For this, we have to deal carefully with the distinction between the �nitely
additive and the σ-additive probabilities subjacent to an imprecise model, since,
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as we have showed in Section 3, they may have di�erent implications. Another
open problem would be the generalisation of our results to other referential
spaces.

Finally, an important generalisation of our work could be done towards the
notion of 2- and, more generally, n-stochastic dominance, which also play an
important role in the context of social welfare [2, 6, 41].
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Appendix. Examples

We have gathered in this section a number of counterexamples showing that
the propositions established in this paper cannot be improved, in the sense
that the implications we have not established do not hold in general. In the
examples, we shall work for the most part with distribution functions associated
to probability measures with �nite support. Given a⃗ = (a1, . . . , an) such that
a1 + . . . + an = 1, and t⃗ = (t1, . . . , tn) with t1 ≤ . . . ≤ tn, the function Fa⃗,⃗t

corresponds to the cumulative distribution function of the probability measure
Pa⃗,⃗t satisfying Pa⃗,⃗t(ti) = ai for i = 1, . . . , n. The only continuous distribution
function we shall consider is the identity F = id, de�ned by F (x) = id(x) =
x ∀x ∈ [0, 1].

Example 1. [The converse implications of Proposition 2 do not hold]
By considering F1 = {F1,0, F1,1},F2 = {F1,0.5}, we can show that:

• ≻FSD2 ̸⇒≽FSD1 ,≽FSD5 ,≽FSD6 .

• ≻FSD3 ̸⇒≽FSD1 ,≽FSD5 ,≽FSD6 .

• ≻FSD5 ̸⇒≽FSD1 ,≽FSD2 ,≽FSD3 .

• ≻FSD6 ̸⇒≽FSD1 ,≽FSD2 ,≽FSD3 .

• ≽FSD4 ̸⇒≽FSDi , for i = 1, 2, 3, 5, 6.

To see that ≽FSD3;≽FSD2 and ≽FSD6;≽FSD5 , take F1 = F2 = {F1,t |
t ∈ (0, 1)}.

Let us turn now to strict stochastic dominance.

• With F1 = {F1,1},F2 = {F1,0, F1,1}, we can show that

≻FSD1 ,≻FSD5 ,≻FSD6 ̸⇒≻FSD2 ,≻FSD3 ,≻FSD4 .
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• If we consider F1 = {F1,0, F1,1},F2 = {F1,0}, we deduce that

≻FSD1 ̸⇒≻FSD5 ,≻FSD6

≻FSD2 ,≻FSD3 ̸⇒≻FSD4 .

• If we take F1 = {F, F(0.6,0.4),(0,1)},F2 = {F1,0.5, F(0.4,0.6),(0,1), we deduce
that ≻FSD4

̸⇒≻FSD1
,≻FSD2

,≻FSD3
,≻FSD5

,≻FSD6
.

• To see that ≻FSD3;≻FSD2 and ≻FSD6;≻FSD5 , consider the sets F1 =
{F( 1

n ,1− 2
n , 1

n ),(0,0.5,1) | n ≥ 3} and F2 = F1 ∪ {F1,0.5}.

Example 2. [The converse implications in Proposition 3 do not hold]
Take F1 = {F(0.3,0.7),(0,1), F(0.2,0.8),(0.2,0.3)},F2 = {F}. They are incomparable

under any of the de�nitions but F 1 ≤ F 2 = F = F 2 ≤ F 1, from which we
deduce that the converse implications in Proposition 3 do not hold.

Example 3. [Possible scenarios under Proposition 6]

• For ≡FSDi , i = 1, . . . , 6, take F = {I[0.5,1]}.

• For F ≻FSDi F̃ for i = 1, . . . , 6, take F = {I(0.5,1]}.

• For FSDi-incomparability, i = 1, 2, 5, take F = {I[x,1] : x ∈ (0, 1)}.

Example 4. [Possible scenarios under Proposition 7]

• For F1 ≻FSDi F2, i = 1, 5, 6, take F1 = {F} and F2 = {F, F1,0}.

• For F2 ≻FSDi F1, i = 1, 2, 3, take F1 = {F} and F2 = {F, F1,1}.

• For F1 ≡FSDi F2, i = 1, . . . , 6, take F1 = F2 = {F}.

• Finally, if F1 = F2 = {F, F1,0.5} then F1 and F2 are FSDi-incomparable
for i = 1, 2, 5.

Example 5. [Possible scenarios under Proposition 8]

• For FSDi-incomparability, i = 1, . . . , 6, take F1 = {F, F ∗}, where F ∗ =
max{F, F1,0.7}, and F2 = {F1,0.5, F{(0.5,0.5),(0,1)}}.

• With F1 = {F, F ∗} and F2 = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)}, we obtain
F2 ≻FSDi F1 for i = 2, 3, F1 ≻FSDi F2 for i = 5, 6 and F1 ≡FSD4 F2.

• With F1 = {F, F ∗},F2 = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0,0.5)}, we get
F1 ≻FSD4

F2. If instead F2 = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0.5,1)}, then
F2 ≻FSD4 F1.

Example 6. [Possible scenarios under Proposition 10]

• For FSDi-incomparability, i = 1, . . . , 6, take F1 = {F(0.5− 1
n ,0.5, 1

n ),(0,0.5,1) |
n ≥ 3},F2 = {F1,0.5, F(0.5,0.5),(0,1)}.

• For F1 ≡FSDi F2, i = 4, 5, 6, take F1 = {F1,0.5, F(0.5,0.5),(0,0.5)},F2 =
{F(0.5,0.5),(0,0.5), F1,1}.

• For F1 ≻FSD5,FSD6 F2, F1 = {F(1− 1
n , 1

n ),(0,1) : n ≥ 3},F2 = {F1,0, F1,1}.
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• For F2 ≻FSD5,FSD6 F1, consider the sets F1 = {F1,0, F(0.75,0.25),(0,1)} and
F2 = {F(1− 1

n , 1
n ),(0,1) : n ≥ 3}.

• For F1 ≻FSD4 F2, take F1 = {F(0.6,0.4),(0.5,1), F(0.5− 1
n ,0.5, 1

n ),(0,0.5,1) : n ≥
3},F2 = {F1,0.5, F(0.5,0.5),(0,1)}.

• Finally, for F2 ≻FSD2,FSD3,FSD4 F1, take F1 = {F(0.5− 1
n ,0.5, 1

n ),(0,0.5,1) :

n ≥ 3},F2 = {F1,0.5, F(0.5,0.5),(0,1), F(0.5,0.5),(0.5,1)}.

Example 7. [Possible scenarios under Proposition 11]

• For F1 ≻FSDi F2, i = 2, 3 and F2 ≻FSDi F1, i = 5, 6, take

F1 = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)},F2 = {F1,0.5, F(0.5,0.5),(0,1)}.

Reverse the roles of roles of F1,F2 to obtain F1 ≻FSDi F2 for i = 5, 6 and
F2 ≻FSDi F1 for i = 2, 3.

• For FSDi-incomparability, i = 1, . . . , 6, take F1 = {F1,0.5, F(0.5,0.5),(0,1)}
and F2 = {F( 1

n ,0.5,0.5− 1
n ),(0,0.5,1), F(0.5− 1

n ,0.5, 1
n ),(0,0.5,1) : n ≥ 3}.

• For F2 ≻FSD4 F1, take F1 = {F1,0.5, F(0.5,0.5),(0,1)} and
F2 = {F( 1

n ,0.5,0.5− 1
n ),(0,0.5,1), F(0.5− 1

n ,0.5, 1
n ),(0,0.5,1) : n ≥ 3, F(0.5,0.5),(0.5,1)}.

By reversing the roles of F1,F2 we obtain an example of F1 ≻FSD4 F2.

Example 8. [Possible scenarios under Proposition 12]

• For F∗
1 ≻FSDi F2, i = 2, . . . , 6, take F1 = F∗

1 .

• To see that we may have F1 ≻FSD3 F2 and F2 ≻FSD3 F∗
1 , take the sets

F1 = {F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)},F∗
1 = {F1,0.5, F(0.5,0.5),(0,1)} and

F2 = {F(0.75,0.25),(0.5,1), F(0.25,0.25,0.5),(0,0.5,1)}.

• For F1 ≻FSD6 F2 and F2 ≻FSD6 F∗
1 take F1,F∗

1 as before and F2 =
{F(0.25,0.75),(0,0.5), F(0.5,0.25,0.25),(0,0.5,1)}.

• For F1 ≻FSD4 F2 and F2 ≻FSD4 F∗
1 , let us consider

F1 = {F(0.25,0.25,0.5),(0,0.5,1), F1,0.5, F(0.5,0.5),(0,1)},
F2 = {F(0.25,0.5,0.25),(0,0.5,1), F(0.4,0.2,0.4),(0,0.5,1)},
F∗

1 = {F(0.25,0.75),(0,0.5), F1,0.5, F(0.5,0.5),(0,1)}.

• For F∗
1 ≡FSDi F2 and F1 ≻FSDi F2, i = 3, 4, 6, consider F1,F2 associated

to the same p-box and such that F1 ≻FSDi F2 for i = 3, . . . , 6, as in
Example 7, and let F∗

1 = F2.

• For F∗
1 ≡FSD5 F2 and F1 ≻FSD5 F2, let F1 = {F1,0.5, F(0.5,0.5),(0,1)},F2 =

{F(0.5,0.5),(0,0.5), F(0.5,0.5),(0.5,1)} and F∗
1 = F2.

• For F1 ≻FSDi F2 while F∗
1 ,F2 are FSDi-incomparable for i = 2, 3, 4,

take F1 = {F(0.5,0.5),(0.5,1), F(0.5,0.5),(0,0.5)},F2 = {F} and let us consider
F∗

1 = {F1,0.5, F(0.5,0.5),(0,1)}.
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• For F1 ≻FSD6 F2 while F∗
1 ,F2 are FSD6-incomparable, take

F1 = {F( 1
n ,1− 2

n , 1
n ),(0,0.5,1), F( 1

2−
1
n , 2

n , 12−
1
n ),(0,0.5,1) | n ≥ 3},

F∗
1 = {F1,0.5, F(0.5,0.5),(0,1)},

F2 = {F(0.5− 1
n ,0.5, 1

n ),(0,0.5,1), F | n ≥ 3}.

Example 9. [The converse implications of Proposition 17 do not hold.]

• Given F1 = {F1,0.5− 1
n
: n > 3},F2 = {F1,0.5}, we have that xF 1

= xF 2
=

xF 2
= 0.5, but F1 ̸≽FSD2,FSD3,FSD4 F2.

• Given F1 = {F1,0.5+ 1
n
: n > 3},F2 = {F1,0.5}, we have xF 1

= xF 2
= 0.5,

but F1 ̸≽FSD5,FSD6 F2.

• For the second item, take F1 = F2 = {I[0.5,1]}; then F1 ≡FSDi F2 for
i = 1, . . . , 6, but no strict inequality holds.
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