
A Genetic Algorithm for the Open Shop

Problem with Uncertain Durations

Juan José Palacios1, Jorge Puente1, Camino R. Vela1,
and Inés González-Rodŕıguez2

1 A.I. Centre and Department of Computer Science,
University of Oviedo, Spain

{UO165228,puente,crvela}@uniovi.es

http://www.aic.uniovi.es/Tc
2 Department of Mathematics, Statistics and Computing,

University of Cantabria, Spain
ines.gonzalez@unican.es

Abstract. We consider a variation of the open shop problem where task
durations are allowed to be uncertain and where uncertainty is modelled
using fuzzy numbers. We propose a genetic approach to minimise the
expected makespan: we consider different possibilities for the genetic
operators and analyse their performance, in order to obtain a competitive
configuration. Finally, the performance of the proposed genetic algorithm
is tested on several benchmark problems, modified so as to have fuzzy
durations, compared with a greedy heuristic from the literature.

1 Introduction

The open shop scheduling problem is often regarded as a variation of the job shop
scheduling problem, and traditionally it has received considerably less attention
by researchers. However, its significantly larger solution space and the scarcity
of specific methods to solve it make it an important problem in itself, with an
increasing presence in the recent literature [1],[2],[3]. It is also a problem with
clear applications. Consider for instance testing facilities, where units go through
a series of diagnostic tests that need not be performed in a specified order and
where different testing equipment is usually required for each test. To enhance
the range of applications of scheduling, part of the research is devoted to model
the uncertainty and vagueness pervading real-world situations. The approaches
are diverse [4] and, among these, fuzzy sets have been used in a wide variety of
approaches, ranging from representing incomplete or vague states of information
to using fuzzy priority rules with linguistic qualifiers or preference modelling [5].
Incorporating uncertainty to scheduling usually requires a significant reformu-
lation of the problem and solving methods, in order that the problem can be
precisely stated and solved efficiently and effectively. Some attempts have been
made to extend heuristic methods to shop scheduling problems where durations
are modelled via fuzzy intervals, most commonly and successfully for the flow
shop problem (for instance, in [6] and [7]) and also for the job shop [8], [9], [10]
and [11].

J. Mira et al. (Eds.): IWINAC 2009, Part I, LNCS 5601, pp. 255–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.aic.uniovi.es/Tc

256 J.J. Palacios et al.

2 Open Shop Scheduling with Uncertain Durations

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs J1, . . . , Jn to be processed on a set of m physical resources or
machines M1, . . . , Mm. Each job consists of m tasks or operations, each requiring
the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {Ok, 1 ≤ k ≤ mn}. A solution to this problem is
a schedule–an allocation of starting times for all operations– which is feasible,
in the sense that all constraints hold, and is also optimal according to some
criterion. Here, the objective will be minimising the makespan Cmax, that is,
the time lag from the start of the first operation until the end of the last one, a
problem often denoted O||Cmax in the literature.

2.1 Uncertain Durations

In real-life applications, it is often the case that it is not known in advance
the exact time it will take to process one operation and only some uncertain
knowledge is available, for instance, an interval of possible durations, or a most
likely duration with a certain error margin. Such knowledge can be modelled
using a triangular fuzzy number or TFN, given by an interval [n1, n3] of possible
values and a modal value n2 in it. For a TFN N , denoted N = (n1, n2, n3), the
membership function takes the following triangular shape:

µN (x) =

⎧
⎪⎨

⎪⎩

x−n1

n2−n1 : n1 ≤ x ≤ n2

x−n3

n2−n3 : n2 < x ≤ n3

0 : x < n1 or n3 < x

(1)

In the open shop, we essentially need two operations on processing times (fuzzy
numbers), the sum and the maximum. These are obtained by extending the cor-
responding operations on real numbers using the Extension Principle. However,
computing the resulting expression is cumbersome, if not intractable. For the
sake of simplicity and tractability of numerical calculations, we follow [8] and
approximate the results of these operations, evaluating the operation only on
the three defining points of each TFN. It turns out that for any pair of TFNs
M and N , the approximated sum M + N ≈ (m1 + n1, m2 + n2, m3 + n3) coin-
cides with the actual sum of TFNs; this is not necessarily so for the maximum
M ∨N ≈ (m1 ∨n1, m2 ∨n2, m3 ∨n3), although they have identical support and
modal value.

The membership function of a fuzzy number can be interpreted as a possibility
distribution on the real numbers. This allows to define its expected value [13],
given for a TFN N by E[N] = 1

4 (n1 + 2n2 + n3). It coincides with the neutral
scalar substitute of a fuzzy interval and the centre of gravity of its mean value [5].
It induces a total ordering ≤E in the set of fuzzy intervals [8], where for any two
fuzzy intervals M, N M ≤E N if and only if E[M] ≤ E[N].

A Genetic Algorithm for the Open Shop Problem with Uncertain Durations 257

Require: an instance of FuzO||E[Cmax], P
Ensure: a schedule for P

1. generate and evaluate the initial population;
while No termination criterion is satisfied do

2. select chromosomes from the current population;
3. apply recombination operators to the chromosomes selected at step 2.;
4. evaluate the chromosomes generated at step 3;
5. apply replacement using chromosomes from step 2. and step 3.;

return the schedule from the best chromosome evaluated so far;

Algorithm 1. Genetic Algorithm

2.2 Fuzzy Open Shop Scheduling

If processing times of operations are allowed to be imprecise and such imprecision
or uncertainty is modelled using TFNs, the resulting schedule is fuzzy in the sense
that starting and completion times for each operation and hence the makespan
are TFNs. Each TFN can be seen as a possibility distributions on the values
that the time may take. Notice however that there is no uncertainty regarding
the task processing ordering given by the schedule.

An important issue with fuzzy times is to decide on the meaning of “optimal
makespan”. It is not trivial to optimise a fuzzy makespan, since neither the
maximum nor its approximation define a total ordering in the set of TFNs.
Using ideas similar to stochastic scheduling, we follow the approach taken for
the fuzzy job shop in [9] and use the total ordering provided by the expected
value and consider that the objective is to minimise the expected makespan
E[Cmax]. The resulting problem may be denoted FuzO||E[Cmax].

3 Genetic Algorithms for the FOSP

The open shop scheduling problem is NP-complete for a number of machines
m ≥ 3 [12].This motivates the use of metaheuristic techniques to solve the
general m-machine problem. For instance, [1] proposes two heuristic methods
to obtain a list of operation priorities later used in a basic algorithm of list
scheduling. Also, local search and genetic algorithms are used, by themselves
or combined with each other and with dispatching rules: [14] presents an iter-
ative improvement algorithm with a heuristic dispatching rule to generate the
initial solutions; [15] proposes a tabu search algorithm, [2] introduces a genetic
algorithm hybridised with local search, and a genetic algorithm using heuristic
seeding is proposed in [16]. In [17], a local search with constraint propagation
and conflict-based heuristics framework is applied to OSP, and [3] proposes a
solution based on particle swarm optimisation. However, to our knowledge, none
of these metaheuristic techniques have been adapted to the case where durations
are fuzzy numbers.

258 J.J. Palacios et al.

From all heuristic strategies, genetic algorithms (GAs) have proved effective
techniques to solve scheduling problems, specially when hybridised with other
strategies, such as local search. The structure of a standard genetic algorithm is
described in Algorithm 1. First, the initial population is generated and evaluated.
Then the genetic algorithm iterates for a number of steps or generations and in
each iteration, a new population is built from the previous one by applying the
genetic operators such as selection, mutation, crossover, etc,. Clearly, the choice
of chromosome codification and genetic operators is decisive in order to obtain
a competitive GA.

3.1 Chromosome Codification and Evaluation

Following [2], we use operation-based chromosomes. This representation encodes
a schedule as an ordered sequence of operations, with one gene per operation.
Operations are listed in the order in which they are scheduled, so a chromosome
is just a permutation of numbers from 1 to nm, where number i corresponds to
operation Oi. Such a permutation expresses partial orders among operations in
each job and each machine.

Decodification of a chromosome may be done in different ways. Here, we con-
sider two approaches. The first one is to schedule every operation so its starting
time is the maximum of the completion times of the previous operation in its
machine and the previos operation in its job, according to the ordering provided
by the chromosome. This strategy produces semi-active schedules, meaning that
for any operation to start earlier, the relative ordering of at least two operations
must be swapped.

The second approach consists in using an insertion strategy, scheduling oper-
ations directly from the order expressed in the chromosome: the starting time
of each operation is obtained as the earliest possible time given the operations
which are already scheduled (previous in the chromosome) both on the same
machine and on the same job. It is easy to check that this strategy yields ac-
tive schedules, where a schedule is active if one operation must be delayed for
any other one to start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an optimal one [12].

To obtain the initial population, chromosomes are obtained as random per-
mutations of (1 2 3 4 5 6 7 8 9). Notice that, given the codification schema, this
initialisation method, albeit simple, always produces feasible individuals.

3.2 Genetic Operators

Selection. In order to select chromosomes from one population to be combined
and generate the next population, we propose to group the chromosomes in pairs
at random, so as to give every individual the opportunity to contribute to the
next generation.

Crossover. Once we have a pair of chromosomes, we consider several crossover
operators proposed in the literature (c.f. [18]):

A Genetic Algorithm for the Open Shop Problem with Uncertain Durations 259

First, we consider the Partially-Mapped Crossover or pmx, which builds an off-
spring by choosing a subsequence from one parent and preserving the order and
position of as many operations as possible from the other parent. A subsequence
is selected by choosing two random cut points, which serve as boundaries for
swapping operations, for instance, we may have as parents p1 = (123 |4567|89),
p2 = (4 5 2 |1 8 7 6| 9 3) with two cut points marked by |. The segment between
cut points in the first parent is copied in the same positions onto the first off-
spring: o1 = (x x x |4 5 6 7| x x) and similarly with the segment from the second
parent onto the second offspring o2 = (x x x |1 8 7 6| x x) (the symbol x may be
interpreted as ‘unknown at present’). The cut also defines a mapping between
the operations in the same position in both parents: 1 ↔ 4, 8 ↔ 5, 7 ↔ 6,
6 ↔ 7. Next, we fill further operations in the first (resp. second) offspring from
the second (resp. first) parent for which there is no conflict: o1 = (xx2 |4567|93)
and o2 = (x 2 3 |1 8 7 6| x 9). Finally, we resolve the conflicts by replacing the
operation from the second (resp. first) parent which already appears between the
cut points with the corresponding operation from the first (resp. second) parent,
according to the obtained mapping: o1 = (182456793) and o2 = (423|1876|59).

A second operator is Linear-Order Crossover or lox in short, a modification
of the well-known order crossover so as not to treat chromosomes as circular.
This operator selects a subsequence of operations at random and copies this
subsequence from the first (resp. second) parent onto the first (resp. second)
offspring. It then completes each offspring by placing operations from left to
right in the same order as they appear in the other parent. For instance, for the
same parents as above, p1 = (1 2 3 |4 5 6 7| 8 9), p2 = (4 5 2 |1 8 7 6| 9 3) and the
same selected subsequence, the offsprings would be o1 = (2 1 8 4 5 6 7 9 3) and
o2 = (2 3 4 |1 8 7 6| 5 9). lox is designed so as to preserve as much as possible
both the relative positions between genes and the absolute positions relative to
the extreme operations in the parents, which correspond to the high and low
priority operations.

A modification of lox is the pbx or Position-Based Crossover where, instead
of selecting one subsequence of operations to be copied, several operations are
selected at random for that purpose.

Mutation. Mutation is applied to a chromosome by randomly modifying its
features, thus helping to preserve population diversity and providing a mecha-
nism to escape local minima. Among the several mutation operators proposed
for permutation-based codification [18], we consider insertion and swap muta-
tions. The insertion operator selects an operation at random and then inserts it
into another random position. The swap or gene swapping operator selects two
positions at random and then swaps the operations in these positions.

Replacement. From each pair of parents we obtain offsprings by applying crossover
and mutation. This forms a set of four solutions from which two will be accepted
as members of the next generation using tournament: the two old chromosomes
and the new ones are put together and the best two are selected to replace the
parents in the next generation. Here, we have two possibilities, namely, accept two

260 J.J. Palacios et al.

chromosomes with the same fitness (same expected makespan), or force the two
accepted chromosomes to have different fitness. Notice that with this replacement
scheme, inferior solutions are eliminated only through newborn superior solutions.
Therefore, both the best and worst makespans of the solutions in the population
at each generation are non-increasing and there is an implicit elitism.

As we can see, by selecting one operator or another from those explained
herein, we obtain a wide range of configurations for a GA. Our goal is to choose
the best possible configuration based on thorough experimentation.

4 Experimental Results

For the experimental study, we follow [8] and generate a set of fuzzy problem
instances from well-known benchmark problems. In particular, we consider a
subset of the problems proposed by Taillard [19], consisting of four families of
problems of sizes 4× 4, 5× 5, 7× 7 and 10× 10 and where each family contains
10 problem instances. From each of these crisp problem instances, we gener-
ate 10 fuzzy instances, so we have 400 fuzzy problem instances in total. To
generate a fuzzy instance from a crisp one, we transform each crisp process-
ing time x into a symmetric fuzzy processing time p(x), so its modal value is
p2 = x and p1, p3 are random values, symmetric w.r.t. p2 and generated so
the TFN’s maximum range of fuzziness is 30% of p2. By doing this, the op-
timal solution to the crisp problem provides a lower bound for the fuzzified
version [8]. The obtained benchmarks for the fuzzy open shop are available at
http://www.aic.uniovi.es/tc/spanish/repository.htm

4.1 Configuration and Parameter Setting

A first set of experiments is conducted to choose the GA’s configuration, in an
incremental approach, where the first step is to fix the population size and the
number of generations, to ensure convergence. We outline the experimentation
process and give a summary of results, but we omit a more detailed exposition,
due to lack of space and the large number (400) of problem instances used.

The convergence study is performed using the following base configuration:
fitness, active scheduling; crossover, lox with probability px = 0.70; mutation,
insertion with probability pm = 0.05; selection, random pairs; replacement, tour-
nament with repetition. For this base configuration, the GA has been run varying
the number of maximum iterations depending on the problem sizes: 1000 (4×4),
5000 (5×5), 10000 (7×7 and 10×10). Tests have been repeated with two differ-
ent population sizes: 100 and 200 and for each possibility we have considered the
average performance across ten runs. The quality of a solution is assessed using
the following makespan relative error w.r.t. a lower bound: (E[Cmax]−LB)/LB
with LB = max(maxj{

∑n
i=1 pij}, maxi{

∑m
j=1 pij}), where pij is the crisp pro-

cessing time of the operation belonging to job Ji which has to be processed
on machine Mj . Here, we have considered the relative makespan error of the
best individual in each generation and have followed the error evolution along

A Genetic Algorithm for the Open Shop Problem with Uncertain Durations 261

 600

 700

 800

 900

 1000

 1100

 1200

 0 5 10 15 20 25 30 35 40

Active Scheduling
Semiactive Scheduling

Fig. 1. Convergence of base configuration of GA for problem tai10 1 05

the generations for both population sizes, establishing as convergence point the
point where the difference between the generation’s error and the minimum error
obtained with the maximum number of generations is less than 1%. With this
criterion, we set the population size as 100 for all problems, with the number of
generations depends on the size as follows: 4 × 4 : 40, 5 × 5 : 130, 7 × 7 : 1600,
10 × 10 : 3000.

Having fixed the base configuration for population size and number of genera-
tions, we decide on the type of chromosome evaluation: active or semi-active
scheduling. To compare both approaches, we extend the running time for the GA
with semi-active scheduling so it is approximately the same as that of the GA
with active scheduling. The conclusion is that, under equivalent conditions, the
relative makespan error for semi-active scheduling is between 3.074% and 4.438%
worse than for active scheduling. We therefore opt for the latter. Figure 1 illus-
trates the convergence of the GA with both active and semi-active scheduling
for problem tai10 1 05, that is, the fifth fuzzy instance obtained from the first
problem proposed by Taillard of size 10 × 10. The x axis represents the time
taken in seconds and the y axis represents the expected makespan.

To perform replacement, we only need choose whether to filter those chro-
mosomes with the same expected makespan or not. Again, with the base config-
uration and using active scheduling, the experimental results show that the cost
of filtering individuals with identical makespan is insignificant w.r.t. the total
running time of the algorithm and it always generates slightly better results.

Using the GA with active scheduling and replacement with no repetition,
we analyse the performance of the three different crossover operators using as
crossover probability values 0.7, 0.8, 0.9. Again, the conclusions are drawn based
on the relative makespan error w.r.t. LB and also on computational cost. The
results show that there is no significant difference between pmx and lox, both for
the makespan error and running times, being 0.7 the best value for the crossover
probability. pmx is always better, although the improvement w.r.t. lox is less
than 0.4%. pmx is also preferred to pbx, since the latter takes approximately
28.38% more running time and the makespan does not always improve. For the

262 J.J. Palacios et al.

Table 1. Average relative makespan error (in %) for all families of problems

Problem
GA

Random Pop. ds/lrpt
B A

4 × 4 3.002 4.020 4.774 12.473
5 × 5 3.432 6.263 9.840 16.100
7 × 7 1.480 4.123 11.698 10.938

10 × 10 1.382 3.624 13.723 7.069

ten sets of fuzzy problems of size 10 × 10, pbx with px = 0.9 (the best of the
three values) only improves the makespan obtained with pmx with px = 0.7 in
three of the sets and this improvement is less than 0.9%. We conclude that the
crossover for the final configuration will be pmx with px = 0.7 (although lox is
very similar).

As above, we try the two mutation operators and adjust the mutation prob-
ability choosing from 0.05, 0.10, 0.15. Here the best results for insertion are ob-
tained with pm = 0.05 and the best results for swap are obtained with pm = 0.10;
overall, insertion behaves better than swap.

After this experimental analysis, the chosen configuration for the GA will
be: fitness, active scheduling; crossover, pmx with probability px = 0.70; muta-
tion, insertion with probability pm = 0.05; selection, random pairs; replacement,
tournament without repetition.

4.2 Performance

To evaluate the performance of the proposed GA, we run the GA 30 times for
each problem instance and consider the average value across these 30 runs of the
relative makespan error for the best individual (B) and the average (A) in the last
generation. Table 1 shows these values averaged across the 100 problem instances
of each size, as a summary of the GA’s behaviour, compared to the makespan
relative error obtained by a dispatching rule ds/lrpt proposed in [14], adapted
to fuzzy durations, and also compared to relative error of the best individual
from a population of random permutations, with as many individuals as the
total number of chromosomes evaluated by the GA. No other comparisons are
made since, to our knowledge, there are no heuristic methods proposed in the
literature for FuzO||E[Cmax].

Each row of Table 1 summarises the information relative to 100 problem
instances: 10 fuzzy versions of each of the 10 crisp instances of one size. More
detailed results are presented in Table 2, where each row corresponds to one set of
10 fuzzy versions of a crisp instance of size 10×10. As expected, the GA compares
favourably with the random population. Concentrating on the second table, the
makespan for the latter is between 9.259% and 10.904% worse (it also takes
between 36.238% and 37.959% more running time). The GA also performs better
than the priority rule ds/lrpt with, of course, smaller difference in makespan
error (between 2.263% and 4.564% compared to the average performance of

A Genetic Algorithm for the Open Shop Problem with Uncertain Durations 263

Table 2. Average relative makespan error (in %) for sets of problems of size 10 × 10

Problem
GA

Random Pop. ds/lrpt
B A

tai10 1 2.743 5.245 16.044 7.508
tai10 2 0.923 2.842 12.904 5.940
tai10 3 2.140 4.591 14.101 7.738
tai10 4 0.568 2.404 11.659 5.884
tai10 5 1.687 3.987 13.559 8.160
tai10 6 0.520 2.608 14.150 6.018
tai10 7 1.088 3.497 12.890 6.920
tai10 8 1.361 3.839 14.063 7.815
tai10 9 1.366 3.541 14.513 8.105
tai10 10 1.422 3.686 13.343 6.607

the GA). Notice as well that the relative errors for the best (B) and average
(A) solution do not differ greatly, which means that the GA is quite stable.
Also, relative errors are relatively small, showing that the GA either obtains an
optimum solution or is quite close, even for the problems of greater size.

5 Conclusions and Future Work

We have considered an open shop problem with uncertain durations modelled
as triangular fuzzy numbers, FuzO||E[Cmax], and have proposed a genetic al-
gorithm to solve this problem. Using a permutation-based codification, we have
considered several genetic operators and have conducted a thorough experimen-
tation in order to select operators and set GA parameters to obtain a final
competitive configuration. The performance of the GA has been assessed on
a set of problems obtained from classical ones in what would constitute a first
benchmark for FuzO||E[Cmax]. The GA has obtained good results both in terms
of relative makespan error and also in comparison to a priority rule and a popu-
lation of random solutions. These promising results suggest directions for future
work. First, the GA should be tested on more difficult problems, fuzzy versions
of other benchmark problems from the literature. Also, the GA provides a solid
basis for the development of more powerful hybrid methods, in combination
with local search techniques, an already successful approach in classical shop
problems [15],[2] and also in fuzzy open shop [7] and fuzzy job shop [9],[20].

References

1. Guéret, C., Prins, C.: Classical and new heuristics for the open-shop problem: A
computational evaluation. European Journal of Operational Research 107, 306–314
(1998)

2. Liaw, C.F.: A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research 124, 28–42 (2000)

264 J.J. Palacios et al.

3. Sha, D.Y., Cheng-Yu, H.: A new particle swarm optimization for the open shop
scheduling problem. Computers & Operations Research 35, 3243–3261 (2008)

4. Herroelen, W., Leus, R.: Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research 165, 289–306 (2005)

5. Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible con-
straints vs. coping with incomplete knowledge. European Journal of Operational
Research 147, 231–252 (2003)

6. Celano, G., Costa, A., Fichera, S.: An evolutionary algorithm for pure fuzzy flow-
shop scheduling problems. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 11, 655–669 (2003)

7. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and
its application to flowshop scheduling. IEEE Transactions on Systems, Man, and
Cybernetics–Part C: Applications and Reviews 67(3), 392–403 (1998)

8. Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE
Transactions of Fuzzy Systems 7, 557–569 (1997)

9. González Rodŕıguez, I., Vela, C.R., Puente, J.: A memetic approach to fuzzy job
shop based on expectation model. In: Proc. of IEEE International Conference on
Fuzzy Systems, London, pp. 692–697. IEEE, Los Alamitos (2007)

10. González Rodŕıguez, I., Puente, J., Vela, C.R., Varela, R.: Semantics of schedules
for the fuzzy job shop problem. IEEE Transactions on Systems, Man and Cyber-
netics, Part A 38(3), 655–666 (2008)

11. Tavakkoli-Moghaddam, R., Safei, N., Kah, M.: Accessing feasible space in a gener-
alized job shop scheduling problem with the fuzzy processing times: a fuzzy-neural
approach. Journal of the Operational Research Society 59, 431–442 (2008)

12. Pinedo, M.L.: Scheduling, 3rd edn. Theory, Algorithms, and System. Springer,
Heidelberg (2008)

13. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value
models. IEEE Transactions on Fuzzy Systems 10, 445–450 (2002)

14. Liaw, C.F.: An iterative improvement approach for the nonpreemptive open shop
scheduling problem. European Journal of Operational Research 111, 509–517
(1998)

15. Liaw, C.F.: A tabu search algorithm for the open shop scheduling problem. Com-
puters and Operations Research 26, 109–126 (1999)

16. Puente, J., Diez, H., Varela, R., Vela, C., Hidalgo, L.: Heuristic Rules and Genetic
Algorithms for Open Shop Scheduling Problem. In: Conejo, R., Urretavizcaya, M.,
Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS(LNAI), vol. 3040, pp.
394–403. Springer, Heidelberg (2004)

17. Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence 139, 21–45 (2002)

18. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd revised and extended edn. Springer, Heidelberg (1996)

19. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278–285 (1993)

20. González Rodŕıguez, I., Vela, C.R., Puente, J., Varela, R.: A new local search
for the job shop problem with uncertain durations. In: Proc. of the Eighteenth
International Conference on Automated Planning and Scheduling, pp. 124–131.
AAAI Press, Menlo Park (2008)

	Introduction
	Open Shop Scheduling with Uncertain Durations
	Uncertain Durations
	Fuzzy Open Shop Scheduling

	Genetic Algorithms for the FOSP
	Chromosome Codification and Evaluation
	Genetic Operators

	Experimental Results
	Configuration and Parameter Setting
	Performance

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CMMI10
 /CMTI10
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

