
Weighted Tardiness Minimization in Job Shops

with Setup Times by Hybrid Genetic Algorithm

Miguel A. González, Camino R. Vela, and Ramiro Varela

Department of Computer Science,
University of Oviedo, (Spain) Campus de Viesques s/n, Gijón, 33271, Spain

http://www.aic.uniovi.es/tc

Abstract. In this paper we confront the weighted tardiness minimiza-
tion in the job shop scheduling problem with sequence-dependent setup
times. We start by extending an existing disjunctive graph model used
for makespan minimization to represent the weighted tardiness problem.
Using this representation, we adapt a local search neighborhood origi-
nally defined for makespan minimization. The proposed neighborhood
structure is used in a genetic algorithm hybridized with a simple tabu
search method. This algorithm is quite competitive with state-of-the-
art methods in solving problem instances from several datasets of both
classical JSP and JSP with setup times.

1 Introduction

In this paper we confront the Job Shop Scheduling Problem with Sequence-
Dependent Setup Times (SDST-JSP) with weighted tardiness minimization. JSP
has interested to researchers over the last decades, but in most cases the ob-
jective function is the makespan, even though other objective functions such as
weighted tardiness or total flow time are sometimes more important in many real-
life problems. Also, setup considerations are a relevant characteristic of many
real scheduling problems that add to the difficulty of solving these problems
with respect to their non-setup counterparts. Incorporating sequence-dependent
setup times changes the nature of scheduling problems, so well-known results
and techniques for the JSP are not directly applicable to the SDST-JSP. Some
extensions have been done for makespan minimization in [1,6,13].

As far as we know, the best approach to weighted tardiness minimization
in the SDST-JSP is the presented by Sun and Noble in [10]. They propose a
shifting bottleneck algorithm and in their experimental study this algorithm is
compared with very simple heuristics (some priority rules) across randomly gen-
erated instances that are not available for further comparison. However, weighted
tardiness has been largely considered for the classic JSP, maybe the algorithms
proposed in [3] and [7] being the most relevant approaches currently. In [3], Es-
safi et al. propose a hybrid genetic algorithm that uses a local search based in
reversing critical arcs and an algorithm that iterates between hill climbing and
random generation of neighbors to escape from local optima. In [7] Mati et al.
propose a local search method that uses estimators to evaluate the neighbors and

J.A. Lozano, J.A. Gámez, and J.A. Moreno (Eds.): CAEPIA 2011, LNAI 7023, pp. 363–372, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.aic.uniovi.es/tc

364 M.A. González, C.R. Vela, and R. Varela

that is capable of minimizing any regular objective function, i.e. a non-decreasing
function on the completion time of the operations.

We propose a hybrid algorithm that combines a genetic algorithm (GA) with
tabu search (TS). The core of this algorithm is a variation of the neighborhood
structure NS

1 introduced in [13] for the SDST-JSP with makespan minimization,
which in its turn extends the structures proposed in [12] for the classical JSP.
We define a disjunctive graph model for the SDST-JSP with weighted tardiness
minimization to formalize this neigborhood. The proposed algorithm is termed
GA + TS in the following. We also define a method for estimating the weighted
tardiness of the neighbors, and we will see that this estimation is less accurate
and more time consuming than similar estimations for the makespan, due to
the difference in the problem difficulty. We have conducted an experimental
study across conventional benchmarks to compare GA + TS with state-of-the-
art algorithms in both classical JSP and SDST-JSP. The results show that the
proposed algorithm outperforms the other methods.

The rest of the paper is organized as follows. In Section 2 we formulate the JSP
and introduce the notation used across the paper. In section 3 we describe the
main components of the genetic algorithm. The proposed neighborhood struc-
ture, the weighted tardiness estimation algorithm and the main components of
the TS algorithm are described in Section 4. Section 5 reports results from the
experimental study. Finally, in Section 6 we summarize the main conclusions
and propose some ideas for future work.

2 Description of the Problem

In the job shop scheduling problem, a set of N jobs, J = {J1, . . . , JN}, are
to be processed on a set of M machines (resources), R = {R1, . . . , RM} while
minimizing some function of completion times of the jobs, subject to constraints:
(i) the sequence of machines for each job is prescribed, and (ii) each machine
can process at most one job at a time. The processing of a job on a machine
is called an operation, and its duration is a given constant. We denote by pu

the processing time of operation u. A time may be needed to adjust a machine
between two consecutive operations, which is called a setup time, and which
may or may not be sequence-dependent. We adopt the following notation for
the setup times: Suv is the setup time between consecutive operations u, v ∈ Rj ,
and S0u is the setup time required before u if this operation is the first one
scheduled on his machine. A job Ji may also have a due date di, that is a time
before jobs should be completed, and a weight wi, that is the relevance of the
job. The objective here is to minimize the weighted cost of the jobs exceeding
its due-dates, also known as the weighted tardiness. In the following, we denote
by tu the starting time of operation u, that needs to be determined.

The SDST-JSP has two binary constraints: precedence and capacity. Prece-
dence constraints, defined by the sequential routings of the tasks within a job,
translate into linear inequalities of the type: tu + pu ≤ tv, if v is the next opera-
tion to u in the job sequence. Capacity constraints that restrict the use of each

Weighted Tardiness Minimization in Job Shops with Setup Times 365

resource to only one task at a time translate into disjunctive constraints of the
form: tu + pu + Suv ≤ tv ∨ tv + pv + Svu ≤ tu, where u and v are operations
requiring the same machine.

The objective is to obtain a feasible schedule that minimizes the weighted
tardiness, defined as: ∑

i=1,...,N

wiTi

where Ti is the tardiness of the job i, defined as Ti = max{Ci − di, 0} , where
Ci is the completion time of job i. This problem is denoted by J |sij |

∑
wiTi in

the literature.

2.1 The Disjunctive Graph Model Representation

The disjunctive graph is a common representation in scheduling, its exact defi-
nition depending on the particular problem. For the J |sij |

∑
wiTi problem, we

propose that it be represented by a directed graph G = (V, A∪E∪I1∪I2). Each
node in set V represents a task of the problem, with the exception of the dummy
nodes start and endi 1 ≤ i ≤ N , which represent fictitious operations that do
not require any machine. Arcs in A are called conjunctive arcs and represent
precedence constraints while arcs in E are called disjunctive arcs and represent
capacity constraints. Set E is partitioned into subsets Ei, with E = ∪j=1,...,MEj ,
where Ej corresponds to resource Rj and includes two directed arcs (v, w) and
(w, v) for each pair v, w of operations requiring that resource. Each arc (v, w)
in A is weighted with the processing time of the operation at the source node,
pv, and each arc (v, w) of E is weighted with pv + Svw. Set I1 includes arcs of
the form (start, v) for each operation v of the problem, weighted with S0v. Set
I2 includes arcs (ω(i), endi), 1 ≤ i ≤ N , weighted with pω(i), where ω(i) is the
last operation of job Ji

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs =
(V, A ∪H ∪ J1 ∪ I2), where H = ∪j=1...MHj , Hj being a minimal subset of arcs
of Ej defining a processing order for all operations requiring Rj and where J1

consists of arcs (start, vj), j = 1 . . .M , vj being the first operation of Hj . Finding
a solution can thus be reduced to discovering compatible orderings Hj , or partial
schedules, that translate into a solution graph Gs without cycles. Figure 1 shows
a solution to a problem with 3 jobs and 3 machines; dotted arcs belong to H
and J1, while continuous arcs belong to A.

To calculate the weighted tardiness of the schedule we have to compute the
cost of a critical path in Gs to each node endi 1 ≤ i ≤ N , i.e., a directed
path in Gs from node start to node endi having maximum cost. Nodes and arcs
in a critical path are also termed critical. A critical path may be represented
as a sequence of the form start, B1, . . . , Br, endi, 1 ≤ i ≤ N , where each Bk,
1 ≤ k ≤ r, is a critical block, a maximal subsequence of consecutive operations
in the critical path requiring the same machine.

366 M.A. González, C.R. Vela, and R. Varela

θ11, R1 θ12, R2 θ13, R3 end1

start θ21, R1 θ22, R3 θ23, R2 end2

θ31, R2 θ32, R1 θ33, R3 end3

4 3

3 4

3 3

2

3

3

1

3 + 2

4 + 1

1
3 + 2

3 + 2

1
4 + 1

3 + 2

Fig. 1. A feasible schedule to a problem with 3 jobs and 3 machines

In order to simplify expressions, we define the following notation for a feasible
schedule. Given a solution graph Gs for the SDST-JSP, the head of an operation
v, denoted rv, is the cost of the longest path from node start to node v, i.e., the
starting time of v in the schedule represented by Gs. A tail qi

v, 1 ≤ i ≤ N is the
cost of the longest path from node v to node endi, minus the duration of task
in node v. For practical reasons we will take qi

v = −∞ when no path exist from
v to endi. Here, it is important to remark that we have had to define N tails
for each operation, while for makespan minimization it is required just one. Let
PJv and SJv denote respectively the predecessor and successor of v in the job
sequence, and PMv and SMv the predecessor and successor of v in its machine
sequence. We take node start to be PJv for the first task of every job and PMv

for the first task to be processed in each machine; note that pstart = 0. Then, the
head of every operation v and every dummy node may be computed as follows:

rstart = 0
rv = max(rPJv + pPJv , rPMv + pPMv + SPMvv)

rendi = rv + pv, (v, endi) ∈ I2, 1 ≤ i ≤ N

Similarly, for 1 ≤ i ≤ N , we take node endi as SJv for the last task of job i, and
pendi = 0. So, the tail of all operations are computed as follows:

qi
endi

= 0

qj
endi

= −∞, j �= i

qj
v =

{
max(qj

SJv
+ pSJv , qj

SMv
+ pSMv + SvSMv) if SMv exists

qj
SJv

+ pSJv otherwise

qj
start = max

v∈SMstart

{qj
v + pv + S0v}

Weighted Tardiness Minimization in Job Shops with Setup Times 367

3 Genetic Algorithm for the SDST-JSP

In this paper we will use a conventional GA, with permutations with repeti-
tion as our encoding schema and Job Order Crossover (JOX) for chromosome
mating, uniform selection and generational replacement using tournament be-
tween two parents and two offspring. To build schedules we have used the Serial
Schedule Generation Schema (SSGS) proposed in [1] for the SDST-JSP. SSGS
iterates over the operations in the chromosome sequence and assigns each one
the earliest starting time that satisfies all constraints with respect to previously
scheduled operations. SSGS produces active schedules, provided that the trian-
gular inequality for the setup times holds for all operations requiring the same
machine [1], and this is the case in the instances used in our experimental study.

When combined with GA, TS is applied to every schedule produced by SSGS.
Then, the chromosome is rebuilt from the improved schedule obtained by TS,
so as its characteristics can be transferred to subsequent offspring. This effect of
the evaluation function is known as Lamarckian evolution.

4 Tabu Search for the Weighted Tardiness Minimization
in the SDST-JSP

We use here a conventional TS algorithm [4], the particular implementation is
borrowed from [5]. In the next subsections we describe in detail the components
of the algorithm that has been adapted to the SDST-JSP with weighted tar-
diness minimization, namely the neighborhood structure and the procedure for
weighted tardiness estimation after a move.

4.1 The Neighborhood Structure

As usual, this structure is based on changing processing orders in a critical block.
However, the number of critical paths in a problem instance is usually large and
so not all candidate moves can be considered in order to obtain a reasonable
number of neighbors. To do that, we consider two options: all critical paths
corresponding to tardy jobs or just the critical path that most contributes to
the objective function. We have observed that neither option is clearly better
than the other in some preliminary experiments. Moreover, it happens that there
are substantial differences that depend on the instances, so we have finally opted
to consider them both and choose randomly each time the TS algorithm is issued.

Also, we have opted to consider a neighborhood structure that generates a
small number of neighbors from each critical block. For this reason, we adapted
the structure NS

1 proposed in [13] for SDST-JSP with makespan minimization,
which is based on previous structures given in [8] and [12] for the standard JSP.
This structure can be formalized for the SDST-JSP with weighted tardiness
minimization from the disjunctive model defined in 2.1. NS

1 is based on the
following results.

368 M.A. González, C.R. Vela, and R. Varela

Proposition 1. Let H be a schedule and (v, w) a disjunctive arc that is not in a
critical block. Then, reversing the arc (v, w) does not produce any improvement,
provided that the triangular inequality for the setup times holds for all operations
requiring the same machine.

So we have to reverse a critical arc to obtain an improving schedule. In [13]
the authors define non-improving conditions for some reversals of critical arcs in
makespan optimization that in principle can not be translated to the weighted
tardiness case. Regarding feasibility, the next result gives a sufficient condition
for an alternative path not existing after the reversal of a critical arc. If such an
alternative path exists then the resulting neighbor would be unfeasible because
it would contain a cycle.

Proposition 2. Let H be a schedule and (v, w) an arc in a critical block. A
sufficient condition for an alternative path between v and w not existing is that

rPJw < rSJv + pSJv + min{Skl|(k, l) ∈ E, Jk = Jv}
where Jk is the job of operation k.

So, the neighborhood structure NS
1 is defined as follows.

Definition 1. (NS
1) Given a schedule H, the neighborhood NS

1 (H) consists of
all schedules derived from H by reversing one arc (v, w) of a critical block, pro-
vided that feasibility condition given in proposition 2 holds.

4.2 Weighted Tardiness Estimation

Even though computing the weighted tardiness of a neighbor only requires to
recompute heads (tails) of operations that are after (before) the first (last) op-
eration moved, for the sake of efficiency the selection rule is based on weighted
tardiness estimations instead of computing the actual weighted tardiness of all
neighbors. For this purpose, we have extended the procedure lpath given for the
JSP in [11] to cope with both setup times and weighted tardiness. This procedure
is termed lpathSWT and it is shown in Algorithm 1.

Remember that each task t has N tails denoted by q1
t . . . qN

t . For each i =
1 . . .N , lpathSWT estimates the cost of the longest path from node start to each
node endi through the node v or the node w, and then estimates the weighted
tardiness of the neighboring schedule from the estimations of these paths. It’s
easy to prove that lpathSWT produces a lower bound for the weighted tardiness
when using NS

1 .
The makespan estimation algorithm lpath is very accurate and very efficient.

However, lpathSWT is much more time consuming as it calculates N tails for
each operation. Moreover, experiments conclude that weighted tardiness esti-
mation is much less accurate than makespan estimation. We have conducted a
series of experiments in several instances, generating 3 millions of neighbors for
each instance, and for 81.56% of neighbors the makespan estimation coincided

Weighted Tardiness Minimization in Job Shops with Setup Times 369

Require: A sequence of operations (w, v) as they appear after a move
Ensure: A estimation of the weighted tardiness of the resulting schedule

TotalEst = 0;
r′w = max {rPJw + pPJw , rPMw + pPMw + SPMww};
r′v = max {rPJv + pPJv , r′w + pw + Swv};
for i = 1 to N do

q′iv = max {qi
SJv

+ pSJv , qi
SMv

+ pSMv + SvSMv};
q′iw = max {qi

SJw
+ pSJw , q′iv + pv + Swv};

PartialEst = max {r′w + pw + q′iw}, {r′v + pv + q′iv };
TotalEst = TotalEst + (max((PartialEst− di), 0) ∗ wi;

return TotalEst;

Alg. 1. Procedure lpathSWT

with the actual value, but for weighted tardiness this value drops to 51.37% of
the cases.

Other authors, for example Mati et al. in [7] or Essafi et al. in [3] opted to
use more accurate estimations (they report results with exact estimations from
57% to 76%, depending on the particular instance). However, their estimation
procedure is more time consuming as the complexity goes up from O(1) to O(N)
for each path, where N is the number of jobs.

For these reasons, we have opted to evaluate the actual weighted tardiness
when the neighbor’s estimation is lower than the actual weighted tardiness of
the original schedule. So, the use of lpathSWT allows the algorithm to discard
a lot of neighbors in a very fast manner. Some preliminary results have shown
that the improvement achieved in this way makes up the time consumed by far.

5 Experimental Study

The purpose of the experimental study is to compare GA+TS with other state-
of-the-art algorithms. Firstly, we compare our algorithm with the GLS algorithm
proposed in [3] and the MDL algorithm proposed in [7] to solve the JSP. We ex-
perimented across the 22 instances of size 10×10 proposed by Singer and Pinedo
in [9] (ABZ5, ABZ6, LA16 to LA24, MT10, and ORB01 to ORB10). Weights
and due dates are defined as follows: the first 20% of the jobs have a weight 4
(very important jobs), the next 60% have weight 2 (moderately important jobs)
and the remaining jobs have weight 1 (not important jobs). The due date di for
each job i is defined in this way:

di = f ∗
M∑

j=1

pij ,

where f is a parameter that controls the tightness of the due dates. In this
benchmark three values are considered: f = 1.3, f = 1.5 and f = 1.6.

The algorithm proposed by Essafi et al. is implemented in C++ and the ex-
periments are carried out in a PC with a 2.8 GHz processor and 512 MB RAM,

370 M.A. González, C.R. Vela, and R. Varela

giving a maximum runtime of 18 seconds per run. The local search proposed by
Mati et al. runs in a Pentium with a 2.6 GHz processor, and they use a maximum
runtime of 18 seconds too. GA+TS runs in a Windows XP in a Intel Core 2 Duo
at 2.66GHz with 2Gb RAM. We choose the parameters /58/70/50/ (/GA pop-
ulation/GA generations/maximum number of iterations without improvement
for TS/) for GA + TS to obtain a similar runtime.

Table 1 summarizes the results of these experiments; 10 trials were done for
each instance and the average weighted tardiness of the 10 solutions and the
number of times that the best known solution (BKS) was found are reported,
“-” indicates that BKS is reached in all 10 trials.

Table 1. Results from GLS, MDL and GA+TS across Singer and Pinedo’s instances

f = 1.3 f = 1.5 f = 1.6
Inst. BKS GLS MDL GA+TS BKS GLS MDL GA+TS BKS GLS MDL GA+TS

ABZ5 1403 - 1414(2) 1412(7) 69 - - - 0 - - -
ABZ6 436 - - - 0 - - - 0 - - -
LA16 1169 1175(9) - - 166 - - 166(9) 0 - - -
LA17 899 - - - 260 - - - 65 - - -
LA18 929 933(6) 934(6) - 34 - - - 0 - - -
LA19 948 949(8) - 998(4) 21 - - - 0 - - -
LA20 805 - - 834(3) 0 - - 0(7) 0 - - -
LA21 463 - - - 0 - - - 0 - - -
LA22 1064 1087(1) 1077(4) 1079(3) 196 - - - 0 - - -
LA23 835 865(2) 865(2) 870(1) 2 - - - 0 - - -
LA24 835 - - - 82 86(3) 86(2) 88(1) 0 - - -
MT10 1363 1372(9) - 1383(9) 394 - - - 141 162(1) 152(1) 145(6)
ORB1 2568 2651(0) 2639(3) 2578(8) 1098 1159(6) 1247(0) - 566 688(0) 653(0) 592(2)
ORB2 1408 1444(2) 1426(3) 1426(3) 292 - - - 44 - - -
ORB3 2111 2170(4) 2158(1) 2160(6) 918 943(4) 961(0) 939(4) 422 514(1) 463(4) 434(7)
ORB4 1623 1643(7) 1690(2) 1632(6) 358 394(8) 435(4) - 66 78(8) 68(8) -
ORB5 1593 1659(1) 1775(0) 1615(7) 405 - 415(8) 428(7) 163 181(0) 176(3) 176(3)
ORB6 1790 - 1793(9) 1854(5) 426 440(5) 437(5) 430(8) 28 - - -
ORB7 590 592(9) - - 50 55(8) - - 0 - - -
ORB8 2429 2522(0) 2523(0) 2477(4) 1023 1059(7) 1036(6) 1033(2) 621 669(0) 643(1) 639(3)
ORB9 1316 - - - 297 311(7) 299(9) 302(9) 66 83(7) 80(4) -
ORB10 1679 1718(5) 1774(1) 1731(6) 346 400(4) 436(0) 430(2) 76 142(0) 117(0) 82(5)

GA + TS was the only algorithm capable of reaching the BKS in at least
one run for all 66 instances. Globally, GA + TS obtains the BKS in 517 of the
total 660 runs (78.3%), GLS in 443 (67.1%) and MDL in 458 (69.4%). Regarding
the average weighted tardiness, we have run two t-tests with alpha level at 0.05
to compare GA + TS against GLS and MDL. With p-values of 0.016 and 0.010
respectively, both tests showed that there is good evidence that the mean average
weighted tardiness obtained by GA + TS is lower than the obtained by the
other methods. Overall, GA + TS is quite competitive with the state-of-the-art
algorithms in solving the classic JSP with weighted tardiness minimization.

In the second series of experiments, we compared GA+TS with ILOG CPLEX
CP Optimizer (CP) in solving the SDST-JSP across the BT-set proposed in [2].
We define due dates and weights as before. BT instances are divided in three
groups depending on its size: small instances, t2-ps01 to t2-ps05, are 10 × 5,
medium instances, t2-ps06 to t2-ps10, are 15 × 5, and large instances, t2-ps11
to t2-ps15, are 20× 5. These instances verify the triangular inequality for setup
times. GA + TS was parameterized as /100/200/50/. CP was run setting the

Weighted Tardiness Minimization in Job Shops with Setup Times 371

option “Extended” for parameter “NoOverlapInferenceLevel” as the results in
this case were slightly better. Both methods were run 30 times for each instance.
Table (2) summarizes the results of these experiments: for each method and
instance, the average value of the weighted tardiness is reported. The time taken
by GA + TS in a single run is given in the last column. CP was given this time
plus 20% more in each run. As we can observe, GA + TS reaches much better
solutions than CP . On average, the weighted tardiness obtained by CP is 13.6%
worse than that obtained by GA + TS. We have run a t-test with alpha level at
0.05, and with a p-value of 0.000 the test showed that there is strong evidence
that the mean average weighted tardiness obtained by GA + TS is lower than
the obtained by CP.

Table 2. Results from GA+TS and CP in solving SDST-JSP with weighted tardiness
minimization on the BT-set

Inst.
f = 1.3 f = 1.5 f = 1.6

GA+TS CP GA+TS CP GA+TS CP T(s)
t2-ps01 4454 4994 3361 3911 2852 3506 47
t2-ps02 3432 4143 2674 2957 2301 2558 48
t2-ps03 4001 4609 3120 3560 2677 3143 51
t2-ps04 3732 4021 2890 3050 2539 2632 48
t2-ps05 3806 4445 2996 3532 2620 3038 45
t2-ps06 9941 10533 8238 8997 7436 8148 121
t2-ps07 9508 10552 8079 8875 7425 8642 122
t2-ps08 9902 10834 8360 9317 7624 8521 120
t2-ps09 9998 11569 8215 9697 7317 8813 124
t2-ps10 10569 11999 8745 9968 7914 8848 116
t2-ps11 23052 26169 20816 24132 19764 22909 229
t2-ps12 23158 25331 21119 22309 20106 21039 241
t2-ps13 24026 25729 21821 23548 20618 22279 244
t2-ps14 25416 27569 23051 25580 21892 24079 250
t2-ps15 25427 27144 23028 25450 22049 23919 237

6 Conclusions

Our study of SDST-JSP has demonstrated that metaheuristics such as genetic
algorithms and tabu search are very efficient in solving complex scheduling prob-
lems. These techniques are flexible and robust, so as they can be adapted to the
particular characteristics of a given problem. Here, we have seen how a solution
designed to cope with makespan can be adapted to cope with weighted tardiness,
which is well-known that is harder to optimize. Also, we have demonstrated that
for weighted tardiness minimization, a specific solution based on specific knowl-
edge of the problem domain can be much more efficient than a solution built on
a general purpose solver.

As future work, we plan to consider other scheduling problems and different
objective functions, even non-regular objective functions, i.e. objective functions
that could be decreasing on the completion times of the operations, such as
robustness or stability measures.

372 M.A. González, C.R. Vela, and R. Varela

Acknowledgments. This research has been supported by the Spanish Ministry
of Science and Innovation under research project MICINN-FEDER TIN2010-
20976-C02-02 and by the Principality of Asturias under grant FICYT-BP07-109.

References

1. Artigues, C., Lopez, P., Ayache, P.D.: Schedule generation schemes for the job
shop problem with sequence-dependent setup times: Dominance properties and
computational analysis. Annals of Operations Research 138, 21–52 (2005)

2. Brucker, P., Thiele, O.: A branch and bound method for the general-job shop
problem with sequence-dependent setup times. Operations Research Spektrum 18,
145–161 (1996)

3. Essafi, I., Mati, Y., Dauzère-Pérès, S.: A genetic local search algorithm for min-
imizing total weighted tardiness in the job-shop scheduling problem. Computers
and Operations Research 35, 2599–2616 (2008)

4. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
5. González, M.A., Vela, C.R., Varela, R.: Genetic Algorithm Combined with Tabu

Search for the Job Shop Scheduling Problem with Setup Times. In: Mira, J.,
Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009.
LNCS, vol. 5601, pp. 265–274. Springer, Heidelberg (2009)

6. González, M.A., Vela, C., Varela, R.: A new hybrid genetic algorithm for the job
shop scheduling problem with setup times. In: Proceedings of the Eighteenth In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2008), pp.
116–123. AAAI Press, Sidney (2008)

7. Mati, Y., Dauzere-Peres, S., Lahlou, C.: A general approach for optimizing regu-
lar criteria in the job-shop scheduling problem. European Journal of Operational
Research (2011), doi:10.1016/j.ejor.2011.01.046

8. Matsuo, H., Suh, C., Sullivan, R.: A controlled search simulated annealing method
for the general jobshop scheduling problem. Working paper 03-44-88, Graduate
School of Business, University of Texas (1988)

9. Singer, M., Pinedo, M.: A computational study of branch and bound techniques for
minimizing the total weighted tardiness in job shops. IIE Transactions 30, 109–118
(1998)

10. Sun, X., Noble, J.: An approach to job shop scheduling with sequence-dependent
setups. Journal of Manufacturing Systems 18(6), 416–430 (1999)

11. Taillard, E.: Parallel taboo search techniques for the job shop scheduling problem.
ORSA Journal on Computing 6, 108–117 (1993)

12. Van Laarhoven, P., Aarts, E., Lenstra, K.: Job shop scheduling by simulated an-
nealing. Operations Research 40, 113–125 (1992)

13. Vela, C.R., Varela, R., González, M.A.: Local search and genetic algorithm for
the job shop scheduling problem with sequence dependent setup times. Journal of
Heuristics 16, 139–165 (2010)

	Weighted Tardiness Minimization in Job Shops with Setup Times by Hybrid Genetic Algorithm
	Introduction
	Description of the Problem
	The Disjunctive Graph Model Representation

	Genetic Algorithm for the SDST-JSP
	Tabu Search for the Weighted Tardiness Minimization in the SDST-JSP
	The Neighborhood Structure
	Weighted Tardiness Estimation

	Experimental Study
	Conclusions
	References

