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Abstract—An inverse Fast Multipole Method (FMM) for 

imaging applications is presented. The goal is the acceleration of 
an inverse source-based method for geometry reconstruction 
achieved by taking advantage of the multipole expansion 
properties of the scattered fields and reconstructed equivalent 
currents. By conjugating the FMM terms, it is possible to recover 
the equivalent currents from the scattered fields in just one step 
rather than using matrix inversion or cost function minimization. 
For the sake of simplicity, 2D problems where the objects-under-
test having symmetry along one dimension are considered. 
 

Index Terms— Imaging, Inverse Methods, Fast Multipole 
Method, Near Field characterization, Sources Reconstruction 
Method (SRM). 

I. INTRODUCTION 

NVERSE scattering methods are the basis for a wide range 
of applications in which non-destructive testing is required. 

Among these applications are medical diagnostics [1], 
detection of buried targets [2],[3] or security scanners for 
detecting concealed weapons [4]. 

The inverse scattering problem can be divided according to 
the targeted solution: either by profile or geometry retrieval 
(object-under-test external boundary) or by constitutive 
parameter retrieval. 

In regard to the profile reconstruction, one of the 
possibilities is the parameterization of the object contour, thus 
imposing the proper boundary condition (e.g. zero tangential 
field in case of PEC) [5]-[7]. Further improvements could be 

made with the introduction of auxiliary equivalent currents 
inside the object contour, which would improve the estimation 
of the scattered field 
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[8]. In both cases, the resulting system of 
equations is non-linear, requiring non-linear optimization 
methods for solution. 

Other methods are based on the so-called inverse source 
problem [9]-[12], where a set of equivalent currents are 
reconstructed in order to retrieve geometry and/or constitutive 
parameters. This inverse problem was initially reduced to a 
linear system of equations relating the scattered field and the 
equivalent currents [9]. The improvement of the inverse 
scattering method accuracy results in a non-linear formulation 
of the inverse scattering problem. For a general case, the non-
linear problem must be solved using global search algorithms, 
as proposed in [10] using genetic algorithms, or with the 
Inexact-Newton method [11] .  

Even when the proposed problem is linear, one of the 
obstacles to be overcome is the computational cost, especially 
in those cases where the observation and reconstruction 
domains are electrically large, as in the case of burgeoning 
applications of millimeter wave radars. Moreover, some of the 
practical applications require quasi real-time processing. To 
reduce the computational time, two strategies can be adopted: 
i) Hardware improvement, as for example, the use of Graphics 
Processing Units (GPU), and ii) Introduction of acceleration 
methods in the inversion algorithms.  

This work is focused on the second strategy and 
consequently presents an inverse Fast Multipole Method 
(FMM) [13]-[17], which is applied to accelerate an existing 
Volumetric Source Reconstruction Method [12]. While the 
FMM has been successfully applied in radar imaging [18] and 
in the Source Reconstruction Method (SRM) [19],[20], this 
work also presents a new forward solution of the inverse 
problem (i.e. one not requiring any matrix inversion). 

II. THE INVERSE FAST MULTIPOLE METHOD 

   The Volumetric Source Reconstruction Method [12] is 
based on the volumetric equivalence principle that allows the 
substitution of the original sources (e.g. the induced currents 
on a metallic scatterer) with a volumetric equivalent current 
distribution that radiates the same field as the original sources. 
 For the sake of simplicity, the formulation will be given for 
a 2D case assuming a TM-polarized field as in [12]. The field 
radiated by an electric current distribution J J z 

    

defined on a surface S’ is given by (1): 
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Where is the Hankel function of 0-th order and 

second kind,

(2)
0H
R( ; ')  

)

 is the distance from the observation 

points ( ,  
    to the source points ' '( ', ')   

  , k0 is 

the wavenumber, and  is the intrinsic impedance. The 
integral equation above can be expressed as a linear system of 
equations where the impedance matrix (ZEscatt,Jeq) is 
approximated by the Fast Multipole Method (FMM) factors: 
disaggregation (D), translation (T), and aggregation (A) [13]: 
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ˆ
eqJ  is defined as ˆ

eq eqJ J S  where  is the subdomain 

where the current is defined and 

S

eqJ  is the current density in 

that subdomain. As indicated in [19],[20] one of the FMM 
advantages when it is applied to inverse problems is the fact 
that the observation and source domains are physically 
different, so in most cases, no adjacent groups are present. 
Even more, if the distance between the observation and source 
domains is large enough, the FMM far-field condition [15], 
[19] is satisfied for all the groups, allowing for the translation 
matrix simplification.  

The aggregation (A) and disaggregation (D) factors are 
based on plane wave expansions with respect to the center of 
each group. In the case of the translation matrix (T), the far-
field approach [15] is considered for a 2D formulation (3), 
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where 
obs sC C
 

 is the distance from the center of the source 

group 
sC


to the center of the observation group . 
obsC


The FMM can also be applied to the inverse scattering 
problem. As the (A) and (D) terms are plane wave operators, it 
is possible to reverse the propagation direction by conjugating 
these terms, resulting in (D i) and (A i). The direction of the 
translator operator can be reversed by doing the same while 
the attenuation factor is inverted, (T i) (Eq. (4)). Thus, the 
electric currents can be calculated from the scattered fields as 
indicated in Eq. (5): 
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Consequently, it is possible to recover the currents from the 
scattered fields in just one step without the use of matrix 
inversion or cost function minimization. The remarkable 
contribution of this approach is the computational cost 
savings. No linear system of equations needs to be solved with 
the currents calculated in a “forward” manner. In addition, 
because the FMM is an acceleration technique, it also 
contributes the reduction of the computational cost: while the 

impedance matrix (ZEscatt,Jeq) size is equal to the number of 
observation points times the number of sources, the inverse 
FMM is implemented in such a way so that just the translation 
matrix (T i), whose size is the number of observation groups 
times the number of source groups, is stored. 

The inverse FMM is based on the far-field approach of the 
translation term (T i). As stated in [15], the applicability of this 
approach is based on the following criterion (6): 
 

    2

0min max / 2obs s gC C k D 
   (6) 

where Dg is the size of the observation and sources groups.  
Note that for electrically large objects, the observation domain 
may be placed in the near field region of the object, but by 
making adjustments based on the group size, the FMM far-
field condition can be still satisfied. 

When considering multiple frequencies (Nfreq) and incident 
plane waves (M inc) illuminating the object-under-test [12], an 
inverse problem is solved independently for each incidence 
and frequency. The equivalent currents retrieved for each case 
are combined coherently [2] according to: 
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where  is the wavenumber for the n-th frequency, and  

is the unitary propagation vector for the m-th incident 
direction of the incident plane wave. 

0
nk ˆm

inck

III. APPLICATION EXAMPLES 

A. Metallic object profile reconstruction 

In order to test the inverse FMM capabilities, an arbitrary 
object with a constant cross section on z-axis is chosen. The 
object is illuminated by 3 TM-polarized incident plane waves 
coming from = 0º, 120º and 240º, with frequencies from 700 
to 1000 MHz in 20 MHz-step (35 % bandwidth with respect 
to the 850 MHz center frequency). The scattered field for each 
incidence and frequency is simulated using 2D-Method-of-
Moments software, where the field is evaluated on a circle 
with radius  = 10 m, and sampled each =2º. The field on 
the observation points will be affected by numerical noise to 
simulate virtual measurements. 

The reconstruction domain is a 5 x 5.5 m rectangular 
domain discretized in 4x4 cm square patches (0.13x0.13  at 
the highest frequency, 1 GHz). This means that the resulting 
system of equations has 360 equations (number of field 
samples acquired in the circumferential observation domain) 
and 17388 unknowns (number of sources domain patches). As 
the number of incidences and frequencies is M inc=3 and 
Nfreq=16 respectively, 48 inverse problems have to be solved. 

Regarding inverse FMM, no grouping is made on the 
observation domain (as only 360 points are considered), so the 
observation domain groups’ size is zero. The sources domain 
is divided into 156 groups, each with a size of approximately 
Dg = 0.6 m. As the minimum distance from observation to 
source groups is 6.2 m, then: 
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    2
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So the FMM far-field criterion is (weakly) satisfied at the 
highest working frequency, 1 GHz. Fig. 1 represents the 
observation and source domains, and the inverse FMM 
grouping. With regard to the computational cost, Table 1 
compares the calculation time of the Volumetric Source 
Reconstruction Method [12] and the Inverse FMM technique. 
Even with a 2D geometry, remarkable speed-up, about 40x, 
can be appreciated. 
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Fig. 1. Observation and sources domains, and FMM grouping. 

 

y 
ax

is
 (

m
)

(a)

Einc

Einc

Einc

N
o
rm

a
liz

ed
 a

m
pl

itu
d
e 

(d
B

)

y 
a

xi
s 

(m
)

x axis (m)

(b)

Einc

Einc

Einc

N
o

rm
a
liz

e
d 

a
m

p
lit

ud
e
 (

d
B

)

 
Fig. 2. Reconstructed equivalent currents (normalized amplitude, dB). (a) 
Using the Volumetric Source Reconstruction Method. (b) Using the Inverse 
FMM. 3 incidences and 16 frequencies are considered. The white dotted line 
represents the true profile. 

Concerning the method accuracy, the retrieved equivalent 
electric currents using all the available information (16 
frequencies and 3 incidences) are plotted in Fig. 2, generating 
a reasonable estimation of the object profile. It must be noted 
that the currents are combined coherently as indicated in (7).  

In addition, when comparing the inverse FMM results Fig. 
2 (a) to the ones given by the volumetric SRM Fig. 2 (b), no 
significant discrepancies are appreciated. The inverse FMM 
has also been tested for robustness against noise, plotting the 
reconstructed currents in Fig. 3: even for a 10 dB SNR, an 
acceptable profile estimation is achieved. 
 

 Volumetric SRM Inverse FMM 
1 incidence, 1 freq. 62 s 1.5 s 
1 inc., 16 freqs. 1074 s 21 s 
3 inc., 16 freqs. 2874 s 62 s 

Table 1. Calculation time. 
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Fig. 3. Reconstructed equivalent currents (normalized amplitude, dB) using 3 
incidences and 16 frequencies for different SNR values. The white dotted line 
represents the true profile. 

B. Reconstruction of three metallic objects 

In a second example, the method’s capability for recovering 
the metallic profile of several objects is tested. The objects-
under-test are the same as in [12], with an electric size of 
around 5  at the highest working frequency. 16 frequencies 
from 700 to 1000 MHz are selected, resulting in a 35 % 
bandwidth with respect to the center 850 MHz frequency. The 
objects are illuminated by TM-polarized plane waves coming 
from 8 directions (0º to 315º, in 45º-steps). The scattered field 
is evaluated in a circumference of  = 10 m, sampled each 
= 1º. It is assumed that the object-under-test profile is 
constant in the z direction, so again a 2D Method-of-Moments 
code has been used to evaluate the scattered fields. Noise is 
added with SNR of 40 dB. 

The equivalent currents are reconstructed from the 
calculated scattered field in a square domain of 6 x 6 m, 
discretized in 0.03 x 0.03 m square patches, corresponding to 
0.1 x 0.1  at 1 GHz (the highest frequency). This corresponds 
to an inverse problem with 360 equations (field samples) and 
40401 unknowns (equivalent currents). If using all the 
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available information (8 incidences and 16 frequencies), 128 
inverse problems must be solved.  
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