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Biocatalytic procedures can circumvent some of the drawbacks 

that classical methodologies present in chemical synthesis.[1] One 

example is shown by the Baeyer-Villiger (BV) reaction, a process 

discovered more than 100 years ago that consists in the nucleophilic 

insertion of one atom of oxygen in the adjacent position of a 

carbonyl moiety affording esters or lactones.[2] This reaction 

proceeds using peroxides or peracids as oxidants with, in general, 

low selectivity, employing labile and shock-sensitive compounds 

that do not match with the principles of the Green Chemistry. 

Baeyer-Villiger monooxygenases (BVMOs, 1.14.13.x) represent an 

effective alternative to perform the BV reaction.[3] These 

biocatalysts are nicotinamide dependent flavoenzymes that convert 

linear or cyclic ketones into esters and lactones, respectively, using 

molecular oxygen as mild oxidant. In general, BVMOs display 

excellent chemo-, regio- and/or enantioselectivities while using 

environmentally friendly reaction conditions. 

BVMOs have been widely used in the desymmetrisation or the 

kinetic resolution of cyclic and bicyclic ketones, as well as linear 

aliphatic and alkyl aryl ketones.[3] Recently, several BVMOs from 

different bacterial origin were employed in the enzymatic kinetic 

resolution of a set of aliphatic β-hydroxyketones and β-

aminoketones, valuable synthons in the preparation of optically 

active diols and amino acids, respectively, via regioselective 

Baeyer–Villiger oxidation.[4] Herein we investigate whether 

aliphatic acyclic racemic α-alkyl-β-ketoesters are accepted as 

substrates by BVMOs. Interestingly, since spontaneous racemisation 

of the starting material occurs, this allowed us to perform an 

effective BVMO-catalysed dynamic kinetic resolution (DKR).[5] 

Such effective BVMO-based DKR provides a new catalytic pathway 

for the synthesis of high-valuable enantiopure α-acylated hydroxy 

esters (Scheme 1).[6] 

These compounds are important intermediates that can easily be 

turned into enantioenriched α-hydroxy acids, very interesting 

derivatives well-known for their use in the cosmetic industry.[7] 

They can also be selectively hydrolysed into the corresponding α-

hydroxy esters, versatile products that find application in the 

chemical, food and pharmaceutical industry, as e.g. anticancer drugs, 

antibiotics and other bioactive natural derivatives.[8] Alkyl hydroxy 

esters are also employed as useful building blocks of numerous 

highly valuable compounds.[9] 

Three BVMOs were selected to perform the selective Baeyer-

Villiger reaction of the starting material: phenylacetone 

monooxygenase (PAMO) from Thermobifida fusca,[10] its M446G 

mutant[11] and 4-hydroxyacetophenone monooxygenase (HAPMO) 

from Pseudomonas fluorescens ACB,[12] being achieved the best 

results with the two wild-type enzymes. It is worth noting that these 

biocatalysts are primarily active on aromatic compounds and have 

been mainly employed in the synthesis of enantioenriched aromatic 

sulfoxides, ketones and esters. In this study, we show that these 

biocatalysts also accept non-aromatic substrates. 
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Scheme 1. BVMO-catalysed dynamic kinetic resolution of aliphatic α-
alkyl-β-ketoesters and subsequent hydrolysis of the diesters in order 
to obtain the corresponding enantioenriched α-hydroxy esters. 

Starting α-alkyl-β-ketoesters were synthesised following a 

similar methodology to that previously described, by treatment of 

the β-ketoesters with the corresponding alkyl halides in basic 

medium.[13] Initially, the BVMO-catalysed oxidation of racemic 

methyl 2-methyl-3-oxobutanoate rac-1a was carried out in Tris-HCl 

50 mM pH 8.0. In these conditions, reactions in the presence of 

PAMO or HAPMO led to enantiopure (S)-1b. Although conversions 

were lower than 30%, racemic β-ketoester was recovered after 48 

hours, showing that under these conditions substrate racemisation is 

feasible. As PAMO has shown higher activities in the oxidation of 

sulfides and ketones at high pHs,[14] this also ensured a fast substrate 

racemisation and therefore it was possible to obtain 62% of 
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enantiopure diester (S)-1b after 48 hours by working at pH 9.0 

(entry 1, Table 1). Again, the starting ketone was recovered in 

racemic form. So, by simply modifying the reaction pH, it was 

possible to perform a more suitable DKR process. 

The same reaction conditions were applied to the selective 

oxidation of other α-methyl-β-ketoesters presenting different alkyl 

substituents at the ester moiety. Biooxidation of rac-ethyl 2-methyl-

3-oxobutanoate rac-2a led to enantiopure (S)-2b with 90% 

conversion after 48 hours (entry 2), while complete formation of the 

isopropyl analogue (S)-3b (entry 4) was observed using identical 

conditions. For this substrate, a high conversion was even possible 

at pH 8.0, recovering the enantiopure diester with 72% conversion 

(entry 3). Thus, by increasing the size of the ester alkyl chain, faster 

oxidative processes were afforded by PAMO without influence on 

the excellent S-selectivity. 

Table 1. DKRs of racemic β-ketoesters rac-1-10a employing BVMOs 

to synthesise (S)-1-10b (t=48 h).
[a]

 

Entry Ketone BVMO
[b] 

c [%]
[c]

 eep [%]
[d] 

1 rac-1a PAMO 62 ≥ 99  

2 rac-2a PAMO 90 ≥ 99  

3
[e] 

rac-3a PAMO 72 ≥ 99  

4 rac-3a PAMO ≥ 99 ≥ 99  

5 rac-4a PAMO 56 92  

6 rac-5a HAPMO 37 ≥ 99  

7 rac-5a PAMO 89 ≥ 99  

8 rac-6a HAPMO 59 ≥ 99  

9 rac-6a PAMO ≥ 99 ≥ 99  

10 rac-7a HAPMO 46 ≥ 99  

11 rac-7a PAMO ≥ 99 ≥ 99  

12 rac-8a HAPMO 91 ≥ 99  

13
[f] 

rac-8a PAMO ≥ 99 ≥ 99  

14 rac-9a PAMO ≥ 99 51  

15 rac-10a HAPMO ≥ 99 ≥ 99  

16 rac-10a PAMO ≥ 99 ≥ 99  

[a] For reaction details, see SI. [b] Reactions were performed at 20ºC 

when using HAPMO and 30ºC for PAMO. [c] Determined by GC. [d] 

Measured by GC or HPLC. In all cases, S configuration was observed. 

[e] Reaction performed at pH 8.0. [f] Reaction time 24 h. 

Baeyer-Villiger oxidation of rac-methyl 2-methyl-3-

oxopentanoate (4a) led to (S)-4b with a moderate conversion and a 

high selectivity (entry 5). In order to improve this conversion and 

since PAMO has previously demonstrated its ability to catalyse 

oxidative processes in non-conventional media,[15] we studied the 

oxidation of substrate 4a in aqueous buffer containing (non)miscible 

organic solvents. Thus, the use of 5% v v-1 of co-solvents presenting 

different physicochemical properties was analysed. As shown in 

Figure 1, usage of a hydrophilic solvent such as 1,4-dioxane led to a 

slight increase in the conversion, while the optical purity of (S)-4b 

remained constant. The best result was achieved in the presence of 

5% v v-1 tBuOMe (TBME), yielding 72% of the final diester with 

96% optical purity. The use of 5% hexane resulted in a very low 

conversion, but (S)-4b was recovered in enantiopure form. 

Selective oxidation of different alkyl 2-ethyl-3-oxobutanoates 

(rac-5-7a) was performed in order to obtain optically active alkyl 2-

acetoxybutanoates (S)-5-7b. As shown in entries 6-11 of Table 1, 

these reactions led to the formation of enantiopure diesters (S)-5-7b, 

with differences in the conversions depending on the substrate 

structure. While the BVMO-catalysed oxidation of the methyl 

derivative 5a was slightly slower than the corresponding ethyl and 

isopropyl analogues, PAMO afforded (S)-6b and (S)-7b 

quantitatively after 48 hours. HAPMO was more efficient for the 

preparation of enantiopure (S)-6b (59% conversion, entry 8). 

 

Figure 1. PAMO-biocatalysed oxidation of racemic methyl 2-methyl-
3-oxopentanoate rac-4a in presence of different cosolvents. ●: 
Conversion. ○: Enantiomeric excess. 

The influence of the rac-7a concentration on both PAMO 

activity and stereoselectivity was studied when employing two 

different reaction media: 1) Buffer Tris-HCl 50 mM pH 9.0; and 2) 

buffer containing 5% v v-1 TBME. Although conversions were lower 

at elevated substrate concentrations, the space time yield (expressed 

as mg of 7a consumed per L of solution per h) increased, reaching a 

maximum at 20 mM (3.5 g L-1) in buffer, while the presence of 5% v 

v-1 TBME allowed obtaining an optimal concentration of 50 mM 

(8.6 g L-1). The stereoselectivity of the enzyme remained completely 

unchanged at elevated substrate concentrations. 

Dynamic kinetic resolution of a bulkier substrate, rac-ethyl 2-

acetylpent-4-enoate (8a), achieved enantiopure (S)-8b when 

employing either HAPMO or PAMO (entries 12 and 13). This 

afforded (S)-8b with complete enantioselectivity and high 

conversion with both enzymes. Since (S)-ethyl 2-acetoxypent-4-

enoate is a trifunctionalised compound; it represents an interesting 

starting material to perform further transformations. 

 

Figure 2. Time dependent conversion of rac-8a into (S)-8b using 

purified PAMO. ▲: Optical purity of 8a, X: 8b conversion, ♦: (S)-8b 

optical purity. 

The progress of the PAMO-catalysed biooxidation of racemic 

8a was studied (Figure 2). The DKR was very fast, leading to 50% 

conversion after only 4 hours. Enantiomeric excess of the final 

diester (S)-8b was excellent during the whole oxidative process. 

Initially, the oxidation mainly proceeded as a kinetic resolution, 

with optical purities of the starting material (R)-8a close to 20% ee 

at conversions of 50%. After 4 hours, optical purity of 8a 
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diminished, while the ee of the final diester remained constant. After 

24 h, total conversion to enantiopure (S)-8b was achieved. 

Finally, racemic substrates presenting aromatic rings in their 

structure were also analysed. rac-Isopropyl 2-benzyl-3-

oxobutanoate 9a was not oxidised by HAPMO, while it could be 

converted with complete conversion using PAMO (entry 14). For 

this biocatalyst, moderate optical purity was obtained in the 

synthesis of (S)-9b. Much better results can be achieved in the 

biotransformation of rac-10a, presenting the aromatic ring attached 

to the ester group. For both HAPMO and PAMO, diester 10b was 

recovered with total conversion and complete selectivity (entries 15 

and 16). 

Once we could obtain several α-acylated hydroxy esters with 

excellent conversion and selectivity, the next step was the synthesis 

of the corresponding optically active α-hydroxy esters. Initially, we 

tested a set of commercially available hydrolases in order to obtain 

the selective hydrolysis of the acetyl or propionyl moiety (see 

Supporting Information). For all the biocatalysts tested, no 

hydrolysis or poor regioselectivity was observed. Thus, chemical 

hydrolysis was performed by treatment of the starting diesters with 

the corresponding alcohol in the presence of a catalytic amount of 

hydrochloric acid. By this, enantiopure (S)-hydroxy esters (S)-1-9c 

were achieved with high yields (60-85%). 

This study demonstrates that BVMOs can be used to catalyse 

the oxidation of a set of α-alkyl-β-ketoesters with excellent 

enantioselectivities and conversions in most of the cases. Indeed, 

due to the presence of acidic hydrogen in the substrate structure, its 

racemisation can be performed by working at slightly basic pH, 

resulting in the dynamic kinetic resolution of the starting material, 

affording the final products with conversions close to 100%. 

Furthermore, it illustrates that HAPMO and PAMO can accept not 

only aromatic but also aliphatic substrates. In general, higher yields 

are obtained by increasing the ester alkyl chain up to the isopropyl 

(even benzyl) group. These reactions were performed at higher scale 

(50 mg) in order to obtain the enantiopure final products with 

moderate to high yields. Employing an organic co-solvent in these 

biocatalysed processes, both activity and selectivity of the enzyme 

could be improved allowing the use of a higher substrate 

concentration. 

Experimental Section 

General procedure for the biocatalysed oxidation of the racemic 
α-alkyl-β-ketoesters rac-1-10a employing purified BVMOs. The 
corresponding racemic α-alkyl-β-ketoester (50 mg, 0.22-0.32 mmol) 
was dissolved in Tris-HCl buffer (50 mM, pH 9.0, 13 mL) 
containing 1% DMSO. Then, NADPH (0.2 mM), glucose-6-
phosphate (40 mM), glucose-6-phosphate dehydrogenase (75 units), 
and PAMO (15 units) were added. The mixture was shaken at 250 
rpm at 30ºC. Reactions were stopped after 24 or 36 hours by 
extraction with EtOAc (3  10 mL). The organic layer was dried 
over Na2SO4, the solvent was evaporated under reduced pressure 
and the conversions were measured by GC. No further purification 
was required, except for compounds 4-5b, for which flash 
chromatography on silica gel was employed, using hexane/EtOAc 
9:1 as eluent. Diesters 1-10b were obtained enantiopure (except for 
(S)-9b, achieved with ee= 50%) with yields ranging from 60 to 76%. 
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