English español

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/8069

Title: An efficient optimization method to obtain the set of most promising minima in multimodal problems
Author(s): Noriega González, Álvaro
Vijande Díaz, Ricardo
Cortizo Rodríguez, José Luis
Rodríguez Ordóñez, Eduardo
Sierra Velasco, José Manuel
Keywords: Evolution Strategy
Multimodal Function
Initial Position Problem
Issue date: 2009
Publisher: EDP Sciences
Publisher version: http://dx.doi.org/10.1051/ijsmdo/2009019
Citation: Int. J. Simul. Multidisci. Des. Optim., 3(4), p. 424-431 (2009); doi:10.1051/ijsmdo/2009019
Format extent: p. 424-431
Abstract: This paper propounds a new evolution strategy, the Discrete Directions Mutation Evolution Strategy (DDMES), with the aim of obtaining the set of most promising minima in multimodal functions and making this process as efficient as possible. First, DDM-ES is compared with a Genetic Algorithm (GA) on two scaleable test functions with 5, 10, 15 and 20 dimensions, showing better behaviour than GA when the objective function is unimodal but not being as global as the GA in highly multimodal ones. Later, the multimodal search nature of DDM-ES is shown applying this ES on two functions with multiple minima. Finally, an application of DDM-ES to the problem of the initial position of a mechanism is shown.
URI: http://hdl.handle.net/10651/8069
ISSN: 1779-6288
Appears in Collections:Construcción e Ingeniería de Fabricación

Files in This Item:

File Description SizeFormat
An efficient optimization method to obtain the set of most promising minima in multimodal problems.pdfVersión del editor378,81 kBAdobe PDFView/Open

Exportar a Mendeley

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias