Mostrar el registro sencillo del ítem

Numerical model for determining the effective heat capacity of macroencapsulated PCM for building applications

dc.contributor.authorÁlvarez Rodríguez, Matías
dc.contributor.authorAlonso Martínez, Mar 
dc.contributor.authorSuárez Ramón, Inés María 
dc.contributor.authorGarcía Nieto, Paulino José 
dc.date.accessioned2024-01-24T08:40:48Z
dc.date.available2024-01-24T08:40:48Z
dc.date.issued2024-01-19
dc.identifier.citationApplied Thermal Engineering, 242 (2023); doi:10.1016/j.applthermaleng.2024.122478
dc.identifier.issn1359-4311
dc.identifier.urihttps://hdl.handle.net/10651/71003
dc.description.abstractThis paper presents a finite difference model of macroencapsulated PCM panels coupled with the genetic algorithm for the determination of effective heat capacity of whole panels via inverse method. This provides an accurate characterization of the thermal properties of macroencapsulated PCMs for building envelope applications. A novel definition of the effective heat capacity is proposed based on the superimposition of two Gaussian curves, applicable to any PCM whose phase transition is characterized by a single peak. Three PCMs were tested, subjected to temperature variation rates typically experienced in building envelopes: 0.5 °C/h and 1 °C/h. Surface temperature and heat flux were measured and used in the inverse method procedure. The developed model is accurate, as numerical results greatly agree with the experiments: the root mean square difference between the experimental and numerical heat fluxes ranged between 0.543 and 1.246 W/m2. Significant differences in the effective heat capacity were found between the whole macrocapsule and small quantities of PCM (specified in the datasheets). The effective heat capacity specified in the datasheets is sensibly greater than that of the whole macrocapsules determined through the inverse method: the specific heat in the solid phase was up to 107.39 % higher in the datasheet values, the specific heat in the liquid phase up to 184.04 %, and the peak effective heat capacity, between 18.28 % and 164.11 %. The same happened to the enthalpy: datasheet values were 61.24 % – 175.55 % greater than inverse method results. This proves that latent heat is overestimated if small quantities of PCM are analyzed, and not the whole panels. The scale effect was assessed by comparing two capsules with the same material, but with different quantities of PCM: 0.5 kg and 1 kg. A greater mass of PCM over the total mass of the capsule implies a different relationship between the effective heat capacity and temperature, with higher peak heat capacity. The capsule with 1 kg of PCM showed a peak effective heat capacity up to 30.65 % greater than that of the panel with 0.5 kg of PCM. Thus, adequate modeling in building applications requires characterization of whole macroencapsulated PCMs. The determination of the relationship between temperature and effective heat capacity of macroencapsulated PCMs presented in this work could easily be incorporated into other simulation software, facilitating the assessment of adaptive envelopes with PCM macrocapsules.spa
dc.description.sponsorshipEste artículo ha recibido financiación del Ministerio de Universidades a través de un contrato FPU (FPU21/05062); Ministerio de Ciencia e Innovación a través de un proyecto del Plan Nacional (PID2021- 128056OA-I00) y Red Temática (RED2022-134219-T); y Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología a través de un proyecto GRUPIN (SV-PA-21-AYUD 2021 51328).spa
dc.language.isoengspa
dc.publisherElsevierspa
dc.relation.ispartofApplied Thermal Engineeringspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights© 2024 The Author(s).
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInverse Methodspa
dc.subjectGenetic Algorithmspa
dc.subjectEffective heat capacityspa
dc.subjectBuilding Materialspa
dc.subjectPhase change modelingspa
dc.subjectMacroencapsulated phase change materialspa
dc.titleNumerical model for determining the effective heat capacity of macroencapsulated PCM for building applicationsspa
dc.typejournal articlespa
dc.identifier.doi10.1016/j.applthermaleng.2024.122478
dc.relation.projectIDPID2021- 128056OA-I00spa
dc.relation.projectIDFPU21/05062spa
dc.relation.projectIDSV-PA-21-AYUD 2021 51328spa
dc.relation.projectIDRED2022-134219-Tspa
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.applthermaleng.2024.122478
dc.rights.accessRightsopen accessspa
dc.type.hasVersionVoRspa


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons