English español
Search
 

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/52975

Title: Automatic detection of defective crankshafts by image analysis and supervised classification
Author(s): Remeseiro López, Beatriz
Tarrío Saavedra, J.
Francisco Fernández, M.
Penedo, M .G.
Naya, S.
Cao, R.
Issue date: 2019
Publisher version: http://dx.doi.org/10.1007/s00170-019-03819-7
Citation: International Journal of Advanced Manufacturing Technology (2019); doi:10.1007/s00170-019-03819-7
URI: http://hdl.handle.net/10651/52975
ISSN: 0268-3768
Sponsored: This work has been partially supported by the Xunta de Galicia (Centro Singular de Investigaciòn de Galicia ED431G/01). Additionally, the research of Ricardo Cao, Mario Francisco-Fernández, Salvador Naya and Javier Tarrío Saavedra has been partially supported by MINECO grants MTM2014-52876-R and MTM2017-82724-R, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015); whilst the research of Manuel G. Penedo has been partially supported by grants Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-047), all the previous grants through the ERDF. This work has been also supported by FORJACEMIC project (Research into new processes and microalloyed steels for hot forging of automotive crankshafts).
Project id.: MINECO/MTM2014-52876-R
MINECO/MTM2017-82724-R
Appears in Collections:Artículos
Informática
Investigaciones y Documentos OpenAIRE

Files in This Item:

File SizeFormat
Automatic.pdf4,15 MBAdobe PDFView/Open


Exportar a Mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias