English español
Search
 

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Tesis >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/45043

Title: Diving into the amphibian genome: Genetic architecture of larval life history traits
Other title: Buscando en el genoma de los anfibios: Arquitectura genética de rasgos larvarios de historia de vida
Author(s): Palomar García, Gemma
Advisor: González Nicieza, Alfredo César
Cano Arias, José Manuel
Other authors: Biología de Organismos y Sistemas, Departamento de
Keywords: Biogeociencias
Biología molecular de microorganismos
Issue date: 27-Jul-2017
Format extent: 211 p.
Abstract: Knowing the genetic basis of adaptive traits is essential to predict the magnitude and the pace of evolutionary change. However, little is known about the detailed genetic architecture of evolutionary important traits in natural populations. At the current rate of climate change, many species and populations cannot cope with the new environmental conditions. Thus, it is critical to know whether threatened populations have enough adaptive potential to face this rate of change and to have the tools available to monitor vulnerable populations at the species range. These are, indeed, the transversal topics of this thesis. Using as model vulnerable amphibian populations (i.e. high-altitude populations with reduced population size and high degree of isolation, and populations affected by an emergent fungal disease), this thesis estimates the heritable component of several early life fitness-related traits, fungal infection rate and their genetic correlations. We provide the first estimation of the genetic component of Batrachochytrium dendrobatidis load in an amphibian host and identify associated genetic polymorphisms. Furthermore, we present the densest linkage map for Rana temporaria to date, which was used to locate specific genomic regions related to larval life history traits. Overall, this thesis detailed the genetic architecture of several amphibian important traits revealing that the studied populations harbour significant adaptive potential. In addition, our mapping efforts usher in the development of markers related to ecologically important traits. These tools are invaluable to understand evolutionary processes at large scale and to monitor relevant functional variation for conservation purposes.
Description: Tesis con mención internacional
Embargo date: 2028-01-01
URI: http://hdl.handle.net/10651/45043
Local notes: DT(SE) 2017-229
Appears in Collections:Tesis

Files in This Item:

File Description SizeFormat
TD_GemmaPalomarGarcia.pdfArchivo protegido18,6 MBAdobe PDFView/Open


Exportar a Mendeley


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias