English español
Búsqueda
 

Repositorio de la Universidad de Oviedo > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10651/44554

Título : Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery
Autor(es) y otros: Peón García, Juan José
Recondo González, María del Carmen
Fernández Menéndez, Susana del Carmen
Fernández Calleja, Javier Jesús
Miguel, Eduardo de
Carretero, Laura
Fecha de publicación : 24-nov-2017
Editorial : MDPI
Versión del editor: https://dx.doi.org/10.3390/rs9121211
Citación : Remote Sensing, 9(12):1211 (2017); doi:10.3390/rs9121211
Descripción física: 1211
Resumen : The Airborne Hyperspectral Scanner (AHS) and the Hyperion satellite hyperspectral sensors were evaluated for their ability to predict topsoil organic carbon (C) in burned mountain areas of northwestern Spain slightly covered by heather vegetation. Predictive models that estimated total organic C (TOC) and oxidizable organic C (OC) content were calibrated using two datasets: a ground observation dataset with 39 topsoil samples collected in the field (for models built using AHS data), and a dataset with 200 TOC/OC observations predicted by AHS (for models built using Hyperion data). For both datasets, the prediction was performed by stepwise multiple linear regression (SMLR) using reflectances and spectral indices (SI) obtained from the images, and by the widely-used partial least squares regression (PLSR) method. SMLR provided a performance comparable to or even better than PLSR, while using a lower number of channels. SMLR models for the AHS were based on a maximum of eight indices, and showed a coefficient of determination in the leave-one-out cross-validation R2 = 0.60–0.62, while models for the Hyperion sensor showed R2 = 0.49–0.61, using a maximum of 20 indices. Although slightly worse models were obtained for the Hyperion sensor, which was attributed to its lower signal-to-noise ratio (SNR), the prediction of TOC/OC was consistent across both sensors. The relevant wavelengths for TOC/OC predictions were the red region of the spectrum (600–700 nm), and the short wave infrared region between ~2000–2250 nm. The use of SMLR and spectral indices based on reference channels at ~1000 nm was suitable to quantify topsoil C, and provided an alternative to the more complex PLSR method.
URI : http://hdl.handle.net/10651/44554
ISSN : 2072-4292
Aparece en las colecciones: Artículos
Explotación y Prospección de Minas
Investigaciones y Documentos OpenAIRE

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
remotesensing-09-01211.pdfArtículo6,42 MBAdobe PDFVisualizar/Abrir


Exportar a Mendeley


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Creative Commons

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias