English español

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/36852

Title: A new predictive model based on the PSO-optimized support vector machine approach for predicting the milling tool wear from milling runs experimental data
Author(s): García Nieto, Paulino José
García Gonzalo, María Esperanza
Vilán Vilán, José Antonio
Segade Robleda, Abraham
Issue date: 2015
Publisher version: http://dx.doi.org/10.1007/s00170-015-8148-1
Citation: International Journal of Advanced Manufacturing Technology, 86(1), p. 1-12 (2015); doi:10.1007/s00170-015-8148-1
Format extent: p. 1-12
URI: http://hdl.handle.net/10651/36852
ISSN: 0268-3768
Appears in Collections:Artículos

Files in This Item:

There are no files associated with this item.

Exportar a Mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias