English español

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/34045

Title: Buckling of laminated-glass beams using the effective-thickness concept
Author(s): López Aenlle, Manuel
Fernández Fernández, Pelayo
García García, Ismael
García Prieto, María Antonia
Martín Rodríguez, Ángel
Fernández Canteli, Alfonso Carlos
Keywords: Laminated glass
Issue date: Mar-2016
Publisher: Elsevier
Publisher version: http://dx.doi.org/10.1016/j.compstruct.2015.11.014
Citation: Composite Structures, 137, p. 44-55 (2016), doi:10.1016/j.compstruct.2015.11.014
Format extent: p. 44-55
Abstract: Structural stability is one of the design requirements in laminated-glass beams and plates due their slenderness and brittleness. In this paper the equations of the classical Euler theory for buckling of isotropic monolithic beams are extended to laminated-glass beams using the effective thickness and the effective Young modulus concepts. It is demonstrated that the dependency of the effective stiffness on boundary conditions can be considered using buckling ratios of Euler theory corresponding to isotropic linear monolithic beams. The analytical predictions are validated by compressive experimental tests in simply supported beams. Fixed boundary conditions are difficult to reproduce in experimental tests due to the brittleness of the glass and for this reason fixed–fixed and fixed–pinned boundary conditions were validated using a finite element model
URI: http://hdl.handle.net/10651/34045
ISSN: 0263-8223
Sponsored: The financing support given by the Spanish Ministry of Economy and Competitiveness through the project BIA2014-53774-R is gratefully appreciated
Project id.: MINECO/BIA2014-53774-R
Appears in Collections:Construcción e Ingeniería de Fabricación
Investigaciones y Documentos OpenAIRE

Files in This Item:

File Description SizeFormat
BucklingLaminatedCOSTok.pdfPostprint584,08 kBAdobe PDFView/Open

Exportar a Mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias