English español

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/31599

Title: An efficient hybrid evolutionary algorithm for scheduling with setup times and weighted tardiness minimization
Author(s): González Fernández, Miguel Ángel
González Rodríguez, Inés
Rodríguez Vela, María del Camino
Varela Arias, José Ramiro
Issue date: 2012
Publisher: Springer
Publisher version: http://dx.doi.org/10.1007/s00500-012-0880-y
Citation: Soft Computing, 16(12), p. 2097-2113 (2012); doi:10.1007/s00500-012-0880-y
Format extent: p. 2097-2113
Abstract: We confront the job shop scheduling problem with sequence dependent setup times and weighted tardiness minimization. To solve this problem, we propose a hybrid metaheuristic that combines the intensification capability of tabu search with the diversification capability of a genetic algorithm which plays the role of long term memory for tabu search in the combined approach. We define and analyze a new neighborhood structure for this problem which is embedded in the tabu search algorithm. The efficiency of the proposed algorithm relies on some elements such as neighbors filtering and a proper balance between intensification and diversification of the search. We report results from an experimental study across conventional benchmarks, where we analyze our approach and demonstrate that it compares favorably to the state-of-the-art methods
URI: http://hdl.handle.net/10651/31599
ISSN: 1432-7643
Sponsored: This research has been supported by the Spanish Government under research grants FEDER TIN2010-20976-C02- 02 and MTM2010-16051
Project id.: FEDER/TIN2010-20976-C02-02
Appears in Collections:Artículos

Files in This Item:

File Description SizeFormat
Gonzalez2012_postprint.pdf569,55 kBAdobe PDFView/Open

Exportar a Mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias