English español

Repositorio de la Universidad de Oviedo. > Producción Bibliográfica de UniOvi: RECOPILA > Ponencias, Discursos y Conferencias >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10651/31240

Title: Discovering relevancies in very difficult regression problems: applications to sensory data analysis
Author(s): Díez Peláez, Jorge
Fernández Bayón, Gustavo
Quevedo Pérez, José Ramón
Coz Velasco, Juan José del
Luaces Rodríguez, Óscar
Alonso González, Jaime
Bahamonde Rionda, Antonio
Issue date: 2004
Format extent: p. 993-994
Abstract: Learning preferences is a useful tool in application fields like information retrieval, or system configuration. In this paper we show a new application of this Machine Learning tool, the analysis of sensory data provided by consumer panels. These data sets collect the ratings given by a set of consumers to the quality or the acceptability of market products that are principally appreciated through sensory impressions. The aim is to improve the production processes of food industries. We show how these data sets can not be processed in a useful way by regression methods, since these methods can not deal with some subtleties implicit in the available knowledge. Using a collection of real world data sets, we illustrate the benefits of our approach, showing that it is possible to obtain useful models to explain the behavior of consumers where regression methods only predict a constant reaction in all consumers, what is useless and unacceptable
URI: http://hdl.handle.net/10651/31240
Appears in Collections:Ponencias, Discursos y Conferencias

Files in This Item:

File Description SizeFormat
discovering.pdf172,66 kBAdobe PDFView/Open

Exportar a Mendeley

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias