English español
Búsqueda
 

Repositorio de la Universidad de Oviedo > Trabajos Fin de Máster > Ingeniería y Arquitectura > Máster Universitario en Soft Computing y Análisis Inteligente de Datos >

Use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10651/13450

Título : A Study of Decomposition Methods for Multilabel Classification
Autor(es) y otros: Menéndez López, Begoña Herminia
Director(es): Coz Velasco, Juan José del
Luaces Rodríguez, Óscar
Fecha de publicación : jul-2012
Resumen : Multilabel classi cation is a task commonly required in many elds nowadays. It is an extension of conventional classi cation in which each instance may be associated with more than one label. Some examples of applications where multilabel classi cation is employed are media contents, functional genomics and directed marketing. There are di erent kinds of methods for multilabel classi cation tasks. Some of them, transform the problem while others extend speci c learning algorithms in order to handle multilabel data. A particular subset of the former are decomposition methods which split multilabel classi cation tasks into simplier ones. This project is focused on these methods. Speci cally, a study of Binary Relevance (BR) method in relation with other decomposition methods is done. BR is a very simple and common approach that learns a binary classi er for each one of the labels of the original problem. It presents some advantages, like its linear complexity with the number of labels, but it has the disadvantage that it does not consider dependence among labels. Nevertheless, as it is shown in this work, the performance of this algorithm is not as bad as it could be thought when comparing it with others methods. Its performance is closely related to the evaluation metric and to the target loss function optimized by the base learner used. Additionaly, also an study of some others decompostion methods (CC, DBR, NS and STA) was done in order to determine if it is better to use actual labels or predictions in the training phase and if better performance is obtained employing only previous ones in a chain structure or all of them. The conclusion is that, in general, it is better to use actual labels but it depends again on the evaluation metric applied.
URI : http://hdl.handle.net/10651/13450
Aparece en las colecciones: Máster Universitario en Soft Computing y Análisis Inteligente de Datos

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
TFM_BML.pdfTrabajo Fin de Master478,88 kBAdobe PDFVisualizar/Abrir


Exportar a Mendeley


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons
Creative Commons

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

 

Base de Datos de Autoridades Biblioteca Universitaria Consultas / Sugerencias