RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Limits of Electoral Predictions using Twitter

Autor(es) y otros:
Gayo Avello, DanielAutoridad Uniovi; Metaxas, Panagiotis T.; Mustafaraj, Eni
Fecha de publicación:
2011
Editorial:

Association for the Advancement of Artificial Intelligence

Descripción física:
p. 490-493
Resumen:

Using social media for political discourse is becoming common practice, especially around election time. One interesting aspect of this trend is the possibility of pulsing the public’s opinion about the elections, and that has attracted the interest of many researchers and the press. Allegedly, predicting electoral outcomes from social media data can be feasible and even simple. Positive results have been reported, but without an analysis on what principle enables them. Our work puts to test the purported predictive power of social media metrics against the 2010 US congressional elections. Here, we applied techniques that had reportedly led to positive election predictions in the past, on the Twitter data collected from the 2010 US congressional elections. Unfortunately, we find no correlation between the analysis results and the electoral outcomes, contradicting previous reports. Observing that 80 years of polling research would support our findings, we argue that one should not be accepting predictions about events using social media data as a black box. Instead, scholarly research should be accompanied by a model explaining the predictive power of social media, when there is one.

Using social media for political discourse is becoming common practice, especially around election time. One interesting aspect of this trend is the possibility of pulsing the public’s opinion about the elections, and that has attracted the interest of many researchers and the press. Allegedly, predicting electoral outcomes from social media data can be feasible and even simple. Positive results have been reported, but without an analysis on what principle enables them. Our work puts to test the purported predictive power of social media metrics against the 2010 US congressional elections. Here, we applied techniques that had reportedly led to positive election predictions in the past, on the Twitter data collected from the 2010 US congressional elections. Unfortunately, we find no correlation between the analysis results and the electoral outcomes, contradicting previous reports. Observing that 80 years of polling research would support our findings, we argue that one should not be accepting predictions about events using social media data as a black box. Instead, scholarly research should be accompanied by a model explaining the predictive power of social media, when there is one.

Descripción:

Fifth International AAAI Conference on Weblogs and Social, 17-21 July 2011, Barcelona, Spain

URI:
http://hdl.handle.net/10651/11899
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2862
ISBN:
978-1-57735-505-2
Colecciones
  • Informática [872]
  • Ponencias, Discursos y Conferencias [4228]
Ficheros en el ítem
Thumbnail
untranslated
2862-14190-1-PB.pdf (613.2Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image