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Introduction

Peirce gradings V = V 2 ⊕ V 1 ⊕ V 0 of a Jordan system V are introduced in [4,11] as a generalization
of Peirce decompositions with respect to idempotents. As shown in [11], Peirce gradings are directly
linked to involutive automorphisms and gradings.

In [4, 4.1], it is shown that the components Vα , α = 0,1,2, inherit nondegeneracy and Von Neu-
mann regularity from V , among other properties. In [1], it is shown that V 0 and V 2 inherit strong
primeness, primitivity, semiprimitivity and simplicity from V . These results extend those obtained by
McCrimmon [6,7] about inheritance of simplicity by the diagonal components of a Peirce decomposi-
tion with respect to an idempotent.

Neher [11] gives examples of Peirce gradings not coming from idempotents. Indeed, if we consider
a Jordan system J̃ with an idempotent e and take any nonzero ideal J of J̃ such that e /∈ J , then
the usual Peirce decomposition J̃ = J̃2(e) ⊕ J̃1(e) ⊕ J̃0(e) gives rise to a Peirce grading in J (with
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Jα = J̃α(e) ∩ J for α ∈ {0,1,2}) which does not come, in general, from an idempotent of J . We will
study, in the case of Jordan algebras, if every Peirce grading of J comes from a Peirce decomposition
with respect of an idempotent in an algebra J̃ containing J as a subalgebra.

The paper is divided into three parts, apart from a preliminary section in which we outline some
known results and definitions. In the first section we study Peirce gradings of associative algebras
and show that they always come from idempotents in bigger algebras. We also show that not all
Peirce gradings in special Jordan algebras are induced by associative Peirce gradings. In the second
section we give a necessary condition on Peirce gradings of a Jordan algebra J for them to come
from idempotents in a bigger algebra, and build the natural extension J̃ of J where the idempotent
element should be found. Finally, in Section 3, we prove that the necessary condition of the previous
section is also sufficient for Jordan algebras without 2-torsion, by showing that then J̃ is indeed a
Jordan algebra. We also prove that this additional condition holds automatically in sufficiently regular
(for example nondegenerate) Jordan algebras.

0. Preliminaries

0.1. We will work with associative and Jordan algebras over an arbitrary ring of scalars Φ . The reader
is referred to [3,9,10] for basic results, notation, and terminology, though we will stress here some
definitions.

0.2. A quadratic algebra J in the sense of [5, Section 1] is given on a Φ-module by its squares x2 and
products Ux y, for x, y ∈ J . They are quadratic in x and linear in y, so that we have their linearizations,
given by x ◦ y = V x y := (x + y)2 − x2 − y2, and Ux,z y = V x,y z = {x, y, z} := Ux+z y − Ux y − U z y.
A quadratic algebra is a Jordan algebra if it strictly satisfies

QJ1: V x,x = V x2 ,
QJ2: Ux V x = V xUx ,
QJ3: Ux(x2) = (x2)2,
QJ4: UxU y(x2) = (Ux y)2,
QJ5: Ux2 = U 2

x ,
QJ6: UUx y = UxU y Ux ,

for any x, y ∈ J , i.e., the polynomials j1(x, y) := V x,x y − V x2 y, j2(x, y) := Ux V x y − V xUx y, j3(x) :=
Ux(x2)− (x2)2, j4(x, y) := UxU y(x2)− (Ux y)2, j5(x, y) := Ux2 y − U 2

x y, j6(x, y, z) := UUx y z − UxU y Uxz
vanish strictly on J , i.e., vanish on any scalar extension of J .

0.3. One can get Jordan algebras from associative algebras by symmetrization: Given an associative
algebra R with products xy, for any x, y ∈ R , one can build a Jordan algebra, denoted R(+) , on the
same Φ-module and with the same squares as R (x2 = xx) and Jordan products Ux y = xyx. A Jordan
algebra is said to be special when it is a subalgebra of R(+) , for some associative algebra R .

0.4. A Jordan algebra J is said to be unital if there exists a unit element 1 ∈ J such that, U1x = x,
Ux1 = x2, for any x ∈ J . The unit element is unique (when it exists) and idempotent (12 = 1). Any
Jordan algebra J has a unitization Ĵ = J ⊕ Φ1, which is a Jordan algebra built on the direct sum of J
and a free Φ-module with basis {1}, given by

(x + λ1)2 = x2 + 2λx + λ21, Ux+λ1(y + μ1) = Ux y + μx2 + λ2 y + λx ◦ y + 2λμx + λ2μ1,

for any x, y ∈ J , λ,μ ∈ Φ . The algebra J is an ideal of Ĵ , and 1 is the unit element of Ĵ [5].

0.5. We will need the following identities of Jordan algebras, which are direct consequences of Mac-
donald’s Theorem [2]:
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(i) {x, y, y} = x ◦ y2, {x, y2, y} = {x, y, y2} = x ◦ y3,
(ii) (x ◦ y) ◦ z = {x, y, z} + {y, x, z},

(iii) 2x3 = x ◦ x2,
(iv) (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x),
(v) (x ◦ y)2 = x ◦ U y x + Ux y2 + U y x2,

(vi) x2m+n = Uxm xn , (xm)n = xmn ,
(vii) UxU y x = Ux◦y x − x ◦ U y x2 − U y x3,

(viii) U zUxU z y = U zUx◦z y − {z2 ◦ x, y, U zx} + {x, z2, y} ◦ U zx − {y, z, U zUxz} − U z2 Ux y,
(ix) 2Ux y = x ◦ (x ◦ y) − x2 ◦ y.

0.6. Following [1,4,9,11], given a Jordan algebra J , a Peirce grading of J is a decomposition J =
J2 ⊕ J1 ⊕ J0 (direct sum of Φ-modules) such that, for any α,β,γ ∈ {0,1,2},

(i) U Jα Jβ ⊆ J2α−β ,
(ii) { Jα, Jβ, Jγ } ⊆ Jα−β+γ ,

(iii) { J0, J2, J } = { J2, J0, J } = 0,
(iv) J 2

2 ⊆ J2, J 2
0 ⊆ J0, J 2

1 ⊆ J0 + J2,
(v) J2 ◦ J1 + J0 ◦ J1 ⊆ J1, J2 ◦ J0 = 0,

where Jλ = 0 if λ /∈ {0,1,2}. A Jordan algebra equipped with a Peirce grading will be said Peirce
graded. We will consider the natural projections πα : J → Jα , πα(x) = xα , α ∈ {0,1,2}. Notice that
(i)–(v) involve at most degree two multiplications, so that any scalar extension of a Peirce graded
Jordan algebra is naturally Peirce graded.

0.7. Notice that J0 y J2 can be exchanged, i.e., taking J ′
α = J2−α for α ∈ {0,2}, we obtain a new

Peirce grading J = J ′
2 ⊕ J ′

1 ⊕ J ′
0.

0.8. Given an idempotent e in a Jordan algebra J , the usual Peirce decomposition J = J2(e) ⊕ J1(e) ⊕
J0(e) of J with respect to e, where

J2(e) = Ue J , J1(e) = (V e − 2Ue) J , J0(e) = (Id − V e + Ue) J (1)

[3, Section I.5], is an example of Peirce grading of J which, following [11], will be called an idempotent
Peirce grading. Notice the lack of “(0,2)-symmetry” in idempotent Peirce gradings. On the other hand,
we recall the basic fact that, for any xα ∈ Jα(e),

e ◦ xα = αxα. (2)

1. Peirce gradings in associative algebras

1.1. Given an associative algebra R , a Peirce grading of R is a decomposition R = R11 ⊕ R10 ⊕ R01 ⊕ R00
(direct sum of Φ-modules) such that, for any α,β,γ , δ ∈ {0,1},

(i) Rαβ Rγ δ ⊆ Rαδ , if β = γ ,
(ii) Rαβ Rγ δ = 0, if β 
= γ .

We will consider the natural projections παβ : R → Rαβ , παβ(x) = xαβ , α,β ∈ {0,1}.
Given an idempotent e in an associative algebra R , the usual Peirce decomposition R = R11(e) ⊕

R10(e) ⊕ R01(e) ⊕ R00(e) of R with respect to e is an example of Peirce grading of R .
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1.2. Given a Peirce grading of an associative algebra R = R11 ⊕ R10 ⊕ R01 ⊕ R00, let R̃ = R ⊕ Φe be
the Φ-module obtained as a direct sum of R and a free Φ-module with basis {e}. Define a Φ-algebra
structure on R̃ by the fact that R is a subalgebra of R̃ and

e2 = e, xe = x11 + x01, ex = x11 + x10,

for any x ∈ R , i.e., for any x, y ∈ R and λ,μ ∈ Φ ,

(λe + x)(μe + y) = λμe + λ(y11 + y10) + μ(x11 + x01) + xy.

The proof of the following result is straightforward.

1.3. Theorem. Under the conditions of (1.2), R̃ is an associative algebra such that R is an ideal of R̃ , and
Rαβ = R̃αβ(e) ∩ R, for any α,β ∈ {0,1}.

1.4. Any Peirce grading R = R11 ⊕ R10 ⊕ R01 ⊕ R00 of an associative algebra R obviously induces
a Peirce grading of J = R(+) by taking J2 = R11, J1 = R01 + R10, J0 = R00. The converse is false:
Let R = G(e1, e2) be the nonunital Grassmann or exterior algebra in two generators over Φ (Φ is
an arbitrary ring of scalars), and let J = R(+) , which is a trivial algebra. Then, J0 = Φe1, J2 = Φe2,
J1 = Φe1e2 is a Peirce grading of J which does not come from any (associative) Peirce grading of R
in the above sense, since the associative product J0 J2 is nonzero.

2. Peirce gradings of Jordan algebras

2.1. We will remark some basic multiplication properties of a Peirce graded Jordan algebra J =
J2 ⊕ J1 ⊕ J0, which are direct consequences of (0.5)(i), (ii) together with the definition (0.6). If
xα, yα, zα ∈ Jα , α = 0,1,2, then

(i) x2
2 ◦ x1 = (x1 ◦ x2) ◦ x2, x2

0 ◦ x1 = (x1 ◦ x0) ◦ x0,
(x2 ◦ y2) ◦ x1 = (x1 ◦ x2) ◦ y2 + (x1 ◦ y2) ◦ x2,
(x0 ◦ y0) ◦ x1 = (x1 ◦ x0) ◦ y0 + (x1 ◦ y0) ◦ x0,

(ii) (x1 ◦ x2) ◦ x0 = (x1 ◦ x0) ◦ x2 = {x0, x1, x2},
(iii) π2((x1 ◦ x2) ◦ y1) = {x2, x1, y1}, π0((x1 ◦ x2) ◦ y1) = {x1, x2, y1},

π2((x1 ◦ x0) ◦ y1) = {x1, x0, y1}, π0((x1 ◦ x0) ◦ y1) = {x0, x1, y1},
(iv) π2({x2

1, y1, z1}) = {π2(x2
1), y1, z1}, π0({x2

1, y1, z1}) = {π0(x2
1), y1, z1},

π2({x1, y2
1, z1}) = {x1,π0(y2

1), z1}, π0({x1, y2
1, z1}) = {x1,π2(y2

1), z1},
(v) π2(Ux1 y2

1) = Ux1 (π0(y2
1)), π0(Ux1 y2

1) = Ux1 (π2(y2
1)),

(vi) π2(x4
1) = (π2(x2

1))
2, π0(x4

1) = (π0(x2
1))

2.

2.2. Let J be a subalgebra of a Jordan algebra J̃ , and assume that J is equipped with a Peirce grading
J = J2 ⊕ J1 ⊕ J0 induced by an idempotent e ∈ J̃ , i.e., Jα = J̃α(e) ∩ J . Then

x3
1 = π0

(
x2

1

) ◦ x1 = π2
(
x2

1

) ◦ x1, for any x1 ∈ J1. (1)

Moreover, (1) holds strictly on J in the sense that any linearization of (1) holds in J , i.e., (1) holds in
any (naturally Peirce graded) scalar extension of J . This is due to the fact that the hypotheses extend
naturally to scalar extensions of J and J̃ .

Indeed,

x3
1 = e ◦ x3

1

(
by (0.8)(2), since x3

1 ∈ J1 by (0.6)(i)
)

= {
e, x2

1, x1
} (

by (0.5)(i)
)

= (
e ◦ x2

1

) ◦ x1 − {
x2

1, e, x1
} (

by (0.5)(ii)
)
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= 2π2
(
x2

1

) ◦ x1 − {
π0

(
x2

1

)
, e, x1

} − {
π2

(
x2

1

)
, e, x1

} (
by (0.6)(iv) and (0.8)(2)

)

= 2π2
(
x2

1

) ◦ x1 − {
π2

(
x2

1

)
, e, x1

} (
by (0.6)(iii) since e ∈ J̃2(e)

)

= 2π2
(
x2

1

) ◦ x1 − π2
(
x2

1

) ◦ (e ◦ x1) + {
π2

(
x2

1

)
, x1, e

} (
by (0.5)(ii)

)

= 2π2
(
x2

1

) ◦ x1 − π2
(
x2

1

) ◦ x1
(
by (0.8)(2) and (0.6)(ii)

)

= π2
(
x2

1

) ◦ x1.

The second equality follows from the first together with the following general fact:

2.3. If J = J2 ⊕ J1 ⊕ J0 is a Peirce graded Jordan algebra and x1 ∈ J1, then

x3
1 = π0

(
x2

1

) ◦ x1 ⇔ x3
1 = π2

(
x2

1

) ◦ x1.

Just notice that 2x3
1 = x1 ◦ x2

1 = x1 ◦ π0(x2
1) + x1 ◦ π2(x2

1) using (0.5)(iii) and (0.6)(iv).

2.4. There are examples of Peirce gradings not fulfilling (2.2)(1): Let S = Φ[X] be the free nonunital
associative algebra in one generator X and let Φ be an arbitrary ring of scalars. Let L be the (as-
sociative) ideal of S generated by X4, and A = S/L. Clearly, A is an associative algebra and a free
Φ-module with basis

{
a = X + L, b = X2 + L, c = X3 + L

}
.

In the special Jordan algebra J = A(+) one can readily check that J2 = Φb, J1 = Φa + Φc, J0 = 0 is a
Peirce grading, but a3 = c 
= 0 and π0(a2) ◦ a = 0 since π0(a2) = 0 because a2 = b ∈ J2.

2.5. Let J = J2 ⊕ J1 ⊕ J0 be a Peirce graded Jordan algebra. Let J̃ = J ⊕Φe be the Φ-module obtained
as a direct sum of J and a free Φ-module with basis {e}. We can define a quadratic algebra structure
(cf. [5, Section 1]) on J̃ by establishing, for any x, y ∈ J :

(i) J is a subalgebra of J̃ ,
(ii) e2 = e, which implies

e ◦ e = 2e,
(iii) e ◦ x = 2x2 + x1,
(iv) Uee = e,
(v) Uex = x2, which implies

{e, x, e} = 2x2,
(vi) Uxe = x2

2 + x2 ◦ x1 + π0(x2
1), which implies

{x, e, y} = x2 ◦ y2 + x2 ◦ y1 + y2 ◦ x1 + π0(x1 ◦ y1),
(vii) {e, x, y} = x2 ◦ y2 + π2(x1 ◦ y1) + x2 ◦ y1 + x1 ◦ y0,

(viii) {e, e, x} = 2x2 + x1,

i.e., for any x, y ∈ J , α,β ∈ Φ ,

(a) (x + αe)2 = x2 + α(2x2 + x1) + α2e, and
(b) Ux+αe(y +βe) = Ux y +β(x2

2 + x2 ◦ x1 +π0(x2
1))+α2 y2 +αβ(2x2 + x1)+α(x2 ◦ y2 +π2(x1 ◦ y1)+

x1 ◦ y2 + x0 ◦ y1) + α2βe.

Under these conditions J is automatically an ideal of J̃ and the quotient J̃/ J is isomorphic to
the subalgebra Φe of J̃ . Notice that Φe is a Jordan algebra isomorphic to Φ(+) . We have the natural
projections μ : J̃ → J and τ : J̃ → Φe, given by μ(x + αe) = x, τ (x + αe) = αe, for any x ∈ J ,α ∈ Φ ,
and we remark that τ is a quadratic algebra epimorphism, whose kernel is J .
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2.6. The “(0–2)-symmetry” of the Peirce grading in J disappears in J̃ (2.5). However, we will be

able to make use of that symmetry by further extending J̃ . Let ̂̃J be the unitization of J̃ . Thus ̂̃J =
J ⊕ Φe ⊕ Φ1. Notice that the subalgebra J ⊕ Φ1 of ̂̃J is simply the unitization Ĵ of J , hence a Jordan

algebra. Let J ′ = J Peirce graded by J ′
2 = J0, J ′

1 = J1, J ′
0 = J2, build J̃ ′ as in (2.5), and let ̂̃J ′ be its

unitization.
We can define a linear map ϕ : ̂̃J → ̂̃J ′ by

ϕ| Ĵ = Id Ĵ , ϕ(e) = 1 − e, (1)

which satisfies

ϕ
(
πα(x)

) = πα(x) = π ′
2−α(x) = π ′

2−α

(
ϕ(x)

)
, α = 1,2, (2)

for any x ∈ J .
The proof of the following result is straightforward.

2.7. Proposition. Under the conditions of (2.6), ϕ is a quadratic algebra isomorphism.

3. Main results

3.1. In this section, when J is a Peirce graded Jordan algebra, J̃ will denote the quadratic algebra
built in (2.5).

3.2. As in [5], we also consider the notion of commutative Jordan algebra: a linear algebra (C,◦)

over Φ , such that

x ◦ y = y ◦ x and
(
x2 ◦ y

) ◦ x = x2 ◦ (y ◦ x)

hold strictly on J . Notice that, when 1/2 ∈ Φ , these are the usual linear Jordan algebras.

3.3. Proposition. Let ( J , ( )2, U ) be a quadratic Φ-algebra such that

(i) 2Ux y = x ◦ (x ◦ y) − x2 ◦ y, for any x, y ∈ J and
(ii) the identity (x2 ◦ y) ◦ x = x2 ◦ (y ◦ x) holds strictly on J .

Then, the polynomials 4 j1 , 8 j2 , 8 j3 , 32 j4 , 16 j5 , and 64 j6 vanish strictly on J .

Proof. Let us consider the linear algebra ( J ,◦), whose squares will be denoted

x2̃ := x ◦ x = 2x2. (1)

By (ii), ( J ,◦) is a commutative Jordan algebra, so that ( J , ( )2̃, Ũ ) is a Jordan algebra [5, Cor. on
p. 277], where

Ũx y = 2x ◦ (x ◦ y) − (x ◦ x) ◦ y = 2
(
x ◦ (x ◦ y) − x2 ◦ y

) = 4Ux y,

Ṽ x y = x ◦̃ y = (x + y)2̃ − x2̃ − y2̃ = 2x ◦ y = 2V x y, (2)

hence it strictly satisfies

QJ1: Ṽ x,x = Ṽ
x2̃ , i.e., 4V x,x = 4V x2 ,

QJ2: Ũx Ṽ x = Ṽ xŨx , i.e., 8Ux V x = 8V xUx ,
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QJ3: Ũx(x2̃) = (x2̃)2̃ , i.e., 8Ux(x2) = 8(x2)2,
QJ4: ŨxŨ y(x2̃) = (Ũx y)2̃ , i.e., 32UxU y(x2) = 32(Ux y)2

QJ5: Ũ
x2̃ = Ũ 2

x , i.e., 16Ux2 = 16U 2
x

QJ6: Ũ Ũx y = ŨxŨ y Ũx , i.e., 64UUx y = 64UxU y Ux .

We have shown that 4 j1, 8 j2, 8 j3, 32 j4, 16 j5, and 64 j6 vanish strictly on J . �
3.4. Lemma. Let J = J2 ⊕ J1 ⊕ J0 be a Peirce graded Jordan algebra. For any x, y ∈ J , we have the following
equalities in J̃ :

(i) (e ◦ e) ◦ x + ((x ◦ e) ◦ e) ◦ e = e ◦ (e ◦ x) + (x ◦ e) ◦ (e ◦ e),
(ii) (x2 ◦ e) ◦ e + ((x ◦ e) ◦ e) ◦ x = x2 ◦ (e ◦ e) + (x ◦ e) ◦ (e ◦ x),

(iii) (e ◦ y) ◦ x + ((x ◦ e) ◦ y) ◦ e = e ◦ (y ◦ x) + (x ◦ e) ◦ (y ◦ e).

If, in addition, the Peirce grading in J satisfies (2.2)(1), then also

(iv) (x2 ◦ e) ◦ x = x2 ◦ (e ◦ x),
(v) (x2 ◦ y) ◦ e + ((x ◦ e) ◦ y) ◦ x = x2 ◦ (y ◦ e) + (x ◦ e) ◦ (y ◦ x).

Proof. Using (0.6), for any x, y ∈ J ,

x2 = x2
2 + π2

(
x2

1

)
︸ ︷︷ ︸

=π2(x2)

+ x1 ◦ x2 + x1 ◦ x0︸ ︷︷ ︸
=π1(x2)

+ x2
0 + π0(x2

1)︸ ︷︷ ︸
=π0(x2)

, (1)

x ◦ y = x2 ◦ y2 + π2(x1 ◦ y1)︸ ︷︷ ︸
=π2(x◦y)

+ x1 ◦ y2 + x1 ◦ y0 + x2 ◦ y1 + x0 ◦ y1︸ ︷︷ ︸
=π1(x◦y)

+ x0 ◦ y0 + π0(x1 ◦ y1)︸ ︷︷ ︸
=π0(x◦y)

. (2)

Using (1), (2), (0.6), and (2.5), one can readily check:

(i) (e ◦ e) ◦ x + ((x ◦ e) ◦ e) ◦ e = e ◦ (e ◦ x) + (x ◦ e) ◦ (e ◦ e) = 12x2 + 3x1,
(ii) (x2 ◦ e)◦ e + ((x◦ e)◦ e)◦ x = x2 ◦ (e ◦ e)+ (x◦ e)◦ (e ◦ x) = 12x2

2 +4π2(x2
1)+2x2

1 +6x1 ◦ x2 +2x1 ◦ x0,
(iii) (e ◦ y) ◦ x + ((x ◦ e) ◦ y) ◦ e = e ◦ (y ◦ x)+ (x ◦ e) ◦ (y ◦ e) = 6x2 ◦ y2 + 3y2 ◦ x1 + 3y1 ◦ x2 + x1 ◦ y1 +

2π2(x1 ◦ y1) + x0 ◦ y1 + x1 ◦ y0.

Now, let us assume that the Peirce grading in J satisfies (2.2)(1). Using (1), (2), (0.6), and (2.5), we
obtain:

(
x2 ◦ e

) ◦ x = 4x3
2 + 2π2

(
x2

1

) ◦ x2 + 2x2
2 ◦ x1 + 2π2

(
x2

1

) ◦ x1

+ (x1 ◦ x2) ◦ x2 + (x1 ◦ x2) ◦ x1 + (x1 ◦ x2) ◦ x0

+ (x1 ◦ x0) ◦ x2 + (x1 ◦ x0) ◦ x1 + (x1 ◦ x0) ◦ x0 (3)

and

x2 ◦ (e ◦ x) = 4x3
2 + 2π2

(
x2

1

) ◦ x2 + 2(x1 ◦ x2) ◦ x2 + 2(x1 ◦ x0) ◦ x2

+ x2
2 ◦ x1 + π2

(
x2

1

) ◦ x1 + (x1 ◦ x2) ◦ x1

+ (x1 ◦ x0) ◦ x1 + x2
0 ◦ x1 + π0

(
x2

1

) ◦ x1. (4)

By (2.1)(i)(ii), and (2.2)(1), (3) and (4) coincide, i.e., (iv) holds.
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Let a = (x2 ◦ y) ◦ e + ((x ◦ e) ◦ y) ◦ x, b = x2 ◦ (y ◦ e) + (x ◦ e) ◦ (y ◦ x).
Using (1), (2), (0.6), and (2.5), it can be checked that

π2(a) = 2x2
2 ◦ y2 + 2x2

1 ◦ y2 + 2(x2 ◦ y2) ◦ x2 + (x1 ◦ y1) ◦ x2

+ π2
(
2(x1 ◦ x2) ◦ y1 + 2(x1 ◦ x0) ◦ y1 + 2(x2 ◦ y1) ◦ x1

+ (x1 ◦ y2) ◦ x1 + (x1 ◦ y0) ◦ x1
)
,

π2(b) = 2x2
2 ◦ y2 + 2x2

1 ◦ y2 + 2x2 ◦ (x2 ◦ y2) + 2x2 ◦ (x1 ◦ y1)

+ π2
(
(x1 ◦ x2) ◦ y1 + (x1 ◦ x0) ◦ y1 + x1 ◦ (x1 ◦ y2)

+ x1 ◦ (x1 ◦ y0) + x1 ◦ (x2 ◦ y1) + x1 ◦ (x0 ◦ y1)
)
,

and π2(a) = π2(b) because

π2
(
(x1 ◦ x2) ◦ y1 + (x1 ◦ x0) ◦ y1 + (x2 ◦ y1) ◦ x1

) = x2 ◦ (x1 ◦ y1) + π2
(
x1 ◦ (x0 ◦ y1)

)

by (2.1)(iii) and (0.5)(ii).
We also have, by (1), (2), (0.6) and (2.5)

π1(a) = (x1 ◦ x2) ◦ y2 + (x1 ◦ x0) ◦ y2 + (x1 ◦ x2) ◦ y0 + (x1 ◦ x0) ◦ y0

+ x2
2 ◦ y1 + x2

1 ◦ y1 + x2
0 ◦ y1 + 2(x2 ◦ y2) ◦ x1 + (x1 ◦ y1) ◦ x1

+ 2(x2 ◦ y1) ◦ x2 + 2(x2 ◦ y1) ◦ x0 + (x1 ◦ y2) ◦ x2 + (x1 ◦ y2) ◦ x0

+ (x1 ◦ y0) ◦ x2 + (x1 ◦ y0) ◦ x0,

π1(b) = 2(x1 ◦ x2) ◦ y2 + 2(x1 ◦ x0) ◦ y2 + x2
2 ◦ y1 + x2

1 ◦ y1 + x2
0 ◦ y1

+ 2x2 ◦ (x1 ◦ y2) + 2x2 ◦ (x1 ◦ y0) + 2x2 ◦ (x2 ◦ y1) + 2x2 ◦ (x0 ◦ y1)

+ x1 ◦ (x2 ◦ y2) + x1 ◦ (x1 ◦ y1) + x1 ◦ (x0 ◦ y0),

and π1(a) = π1(b) because

(x1 ◦ x2) ◦ y0 + (x1 ◦ x0) ◦ y0 + (x2 ◦ y2) ◦ x1 + 2(x2 ◦ y1) ◦ x0 + (x1 ◦ y2) ◦ x0 + (x1 ◦ y0) ◦ x0

= (x1 ◦ x2) ◦ y2 + (x1 ◦ x0) ◦ y2 + x2 ◦ (x1 ◦ y2) + x2 ◦ (x1 ◦ y0) + 2x2 ◦ (x0 ◦ y1) + x1 ◦ (x0 ◦ y0)

using (2.1)(i), (ii).
Let ϕ be the map defined in (2.6). By (2.6)(1)(2), and the fact that ϕ is a quadratic algebra homo-

morphism (2.7),

ϕ
(
π0(a − b)

) = π ′
2

(
ϕ(a − b)

) = π ′
2

((
x2′ ◦′ y

) ◦′ (1 − e) + ((
x ◦′ (1 − e)

) ◦′ y
) ◦′ x − (

x2′ ◦′ (y ◦′ (1 − e)
)

+ (
x ◦′ (1 − e)

) ◦′ (y ◦′ x)
))

= π ′
2

((
x2′ ◦′ y

) ◦′ 1 + (
(x ◦′ 1) ◦′ y

) ◦′ x − (
x2′ ◦′ (y ◦′ 1) + (x ◦′ 1) ◦′ (y ◦′ x)

))

− π ′
2

((
x2′ ◦′ y

) ◦′ e + (
(x ◦′ e) ◦′ y

) ◦′ x − (
x2′ ◦′ (y ◦′ e) + (x ◦′ e) ◦′ (y ◦′ x)

))

= π ′
2

(
2x2′ ◦′ y + (2x ◦′ y) ◦′ x − (

x2′ ◦′ 2y + 2x ◦′ (y ◦′ x)
))
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− π ′
2

((
x2′ ◦′ y

) ◦′ e + (
(x ◦′ e) ◦′ y

) ◦′ x − (
x2′ ◦′ (y ◦′ e) + (x ◦′ e) ◦′ (y ◦′ x)

))

= π ′
2(0) − π ′

2

((
x2′ ◦′ y

) ◦′ e + (
(x ◦′ e) ◦′ y

) ◦′ x − (
x2′ ◦′ (y ◦′ e) + (x ◦′ e) ◦′ (y ◦′ x)

)) = 0

since J̃ ′ satisfies the same conditions as J̃ .
By injectivity of ϕ (2.7), π0(a − b) = 0, and we have shown πα(a − b) = 0 for any α = 0,1,2, i.e.,

a − b = 0, that is to say, (v) holds. �
3.5. Theorem. If J = J2 ⊕ J1 ⊕ J0 is a Peirce graded Jordan algebra, then J̃ satisfies (3.3)(i). If the Peirce
grading of J satisfies (2.2)(1) strictly, then J̃ satisfies (3.3)(ii). If, in addition, J does not have 2-torsion, then
J̃ is a Jordan algebra, and Jα = J̃α(e) ∩ J , for any α ∈ {0,1,2}.

Proof. By the definition (2.5) of J̃ , for any α,β ∈ Φ , x, y ∈ J ,

(
(x + αe) ◦ (y + βe)

) ◦ (x + αe) − (x + αe)2 ◦ (y + βe)

= (
x ◦ y + β(2x2 + x1) + α(2y2 + y1) + 2αβe

) ◦ (x + αe) − (
x2 + α(2x2 + x1) + α2e

) ◦ (y + βe)

= (x ◦ y) ◦ x − x2 ◦ y + α
(
(2y2 + y1) ◦ x + e ◦ (x ◦ y) − (2x2 + x1) ◦ y

)

+ α2(e ◦ (2y2 + y1) − e ◦ y
) + αβ

(
e ◦ (2x2 + x1) + 2e ◦ x − e ◦ (2x2 + x1)

)

+ α2β(2e ◦ e − e ◦ e) + β
(
(2x2 + x1) ◦ x − e ◦ x2)

= (x ◦ y) ◦ x − x2 ◦ y + 2α
(

y2 ◦ x1 + y1 ◦ x0 + x2 ◦ y2 + π2(x1 ◦ y1)
)

+ 2α2 y2 + 2αβ(2x2 + x1) + 2α2βe + 2β
(
x2

2 + x2 ◦ x1 + π0
(
x2

1

))
, (1)

using (3.4)(1)(2), (0.6), and (2.5). Now, (2.5)(b) and (1) with (0.5)(ix) for J imply (3.3)(i) for J̃ .
Let us now assume that the Peirce grading of J satisfies (2.2)(1). Using that e is an idempotent of

J̃ (2.5)(ii), we have

(
(x + αe)2 ◦ (y + βe)

) ◦ (x + αe) = ((
x2 + αx ◦ e + α2e

) ◦ (y + βe)
) ◦ (x + αe)

= (
x2 ◦ y

) ◦ x + α
((

x2 ◦ y
) ◦ e + (

(x ◦ e) ◦ y
) ◦ x

)

+ α2((e ◦ y) ◦ x + (
(x ◦ e) ◦ y

) ◦ e
)

+ α3(e ◦ y) ◦ e + β
(
x2 ◦ e

) ◦ x + αβ
((

x2 ◦ e
) ◦ e + (

(x ◦ e) ◦ e
) ◦ x

)

+ α2β
(
(e ◦ e) ◦ x + (

(x ◦ e) ◦ e
) ◦ e

) + α3β(e ◦ e) ◦ e, (2)

and

(x + αe)2 ◦ (
(y + βe) ◦ (x + αe)

) = (
x2 + αx ◦ e + α2e

) ◦ (
(y + βe) ◦ (x + αe)

)

= x2 ◦ (y ◦ x) + α
(
x2 ◦ (y ◦ e) + (x ◦ e) ◦ (y ◦ x)

)

+ α2(e ◦ (y ◦ x) + (x ◦ e) ◦ (y ◦ e)
)

+ α3e ◦ (y ◦ e) + βx2 ◦ (e ◦ x) + αβ
(
x2 ◦ (e ◦ e) + (x ◦ e) ◦ (e ◦ x)

)

+ α2β
(
e ◦ (e ◦ x) + (x ◦ e) ◦ (e ◦ e)

) + α3βe ◦ (e ◦ e). (3)

The equality between (2) and (3) follows from (0.5)(iv) applied to J , and (3.4). Moreover, any scalar
extension of J̃ comes from the corresponding scalar extension of J (naturally Peirce graded, and
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satisfying (2.2)(1) since J satisfies it strictly) through the construction (2.5), hence it also satisfies the
equality (2) = (3), i.e., J̃ satisfies (3.3)(ii).

By (3.3), the polynomials 4 j1, 8 j2, 8 j3, 32 j4, 16 j5, and 64 j6 vanish strictly on J̃ , hence, for any
linearization p of ji , i = 1, . . . ,6, 2k p vanishes on J̃ , for some k. Now let us assume that J does not
have 2-torsion, and recall the natural projections μ,τ defined in (2.5). We have that 0 = μ(2k p( J̃ )) =
2kμ(p( J̃ )) implies μ(p( J̃ )) = 0 since μ(p( J̃ )) ⊆ J . On the other hand, since τ is a quadratic algebra
homomorphism (2.5), τ (p( J̃ )) ⊆ p(τ ( J̃ )) ⊆ p(Φe) = 0 because Φe is a Jordan algebra. Thus p( J̃ ) = 0,
and we have shown that the polynomials ji , i = 1, . . . ,6, vanish strictly on J̃ , i.e., J̃ is a Jordan
algebra. Finally, the equalities Jα = J̃α(e) ∩ J , for any α ∈ {0,1,2}, are immediate consequences of
(0.8) and (2.5). �
3.6. The unitization Ĵ of J (0.4) is a particular case of J̃ when we consider in J the trivial Peirce
grading given by J2 = J , J1 = J0 = 0, which obviously satisfies (2.2)(1) strictly, and write e = 1. In
this sense, (3.5) can be viewed as a generalization of [5, Theorem 5] in absence of 2-torsion.

3.7. Notice that if J does not have 2-torsion and satisfies (2.2)(1), then it automatically satisfies it
strictly, which happens with any identity of degree at most three in each of its variables.

3.8. Corollary. A Peirce grading J = J2 ⊕ J1 ⊕ J0 of a Jordan algebra without 2-torsion J satisfies (2.2)(1)
if and only if there exists a Jordan algebra J̃ with an idempotent e such that J is a subalgebra of J̃ , and
Jα = J̃α(e) ∩ J , for any α ∈ {0,1,2}.

Proof. The “only if” follows from (3.5) and (3.7), while the “if” is proved in (2.2). �
In the following results, we will show that basic conditions of regularity on a Peirce graded algebra

automatically imply (2.2)(1).

3.9. Lemma. Let J = J2 ⊕ J1 ⊕ J0 be a Peirce graded Jordan algebra. Then z ◦ J = z2 = 0, for any z =
x3

1 − π2(x2
1) ◦ x1 , with x1 ∈ J1 .

Proof. Using (0.6)(iv), x2
1 = a2 + a0, where a2 = π2(x2

1) ∈ J2, a0 = π0(x2
1) ∈ J0. If y0 ∈ J0, then

{x1,a2, y0} = {a0, x1, y0} = 0 by (0.6)(ii)(iii), hence

(
π2

(
x2

1

) ◦ x1
) ◦ y0 = (a2 ◦ x1) ◦ y0 = {a2, x1, y0} + {x1,a2, y0}

(
by (0.5)(ii)

)

= {a2, x1, y0} = {a2, x1, y0} + {a0, x1, y0} = {
x2

1, x1, y0
} = x3

1 ◦ y0

by (0.5)(i), which implies z ◦ J0 = 0.
By (0.7), also z ◦ J2 = 0. Let y1 ∈ J1

(
π2

(
x2

1

) ◦ x1
) ◦ y1 = (a2 ◦ x1) ◦ y1 = {a2, x1, y1} + {x1,a2, y1}

(
by (0.5)(ii)

)

= π2
({

x2
1, x1, y1

}) + π0
({

x1, x2
1, y1

}) (
by (2.1)(iv)

)

= π2
(
x3

1 ◦ y1
) + π0

(
x3

1 ◦ y1
) (

by (0.5)(i)
)

= x3
1 ◦ y1,

which implies z ◦ J1 = 0, and we have shown z ◦ J = 0.
Now,

(
π2

(
x2

1

) ◦ x1
)2 = (a2 ◦ x1)

2 = a2 ◦ Ux1 a2 + Ua2 x2
1 + Ux1 a2

2

(
by (0.5)(v)

)

= Ua2 x2
1 + Ux1 a2

2

(
by (0.6)(i)(v)

)
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= Ua2 (a2 + a0) + Ux1 a2
2 = Ua2 a2 + Ux1 a2

2

(
by (0.6)(i)

)

= Ua2+a0 a2 + Ux1 a2
2

(
by (0.6)(i)(iii)

)

= Ux2
1
a2 + Ux1 a2

2 = Ux1 Ux1 a2 + Ux1 a2
2 (by QJ5)

= Ux1

(
Ux1 a2 + a2

2

) = Ux1

(
π0

(
Ux1 x2

1

) + π2
(
x4

1

)) (
by (2.1)(v)(vi)

)

= Ux1

(
π0

(
x4

1

) + π2
(
x4

1

)) (
by (0.5)(vi)

)

= Ux1 x4
1

(
by (0.6)(iv)(v)

)

= x6
1, (1)

hence

z2 = (
x3

1 − π2
(
x2

1

) ◦ x1
)2 = (

x3
1

)2 + (
π2

(
x2

1

) ◦ x1
)2 − x3

1 ◦ (
π2

(
x2

1

) ◦ x1
)

= x6
1 + x6

1 − (
z + (

π2
(
x2

1

) ◦ x1
)) ◦ (

π2
(
x2

1

) ◦ x1
) (

by (0.5)(vi) and (1)
)

= x6
1 + x6

1 − (
π2

(
x2

1

) ◦ x1
) ◦ (

π2
(
x2

1

) ◦ x1
)

(since z ◦ J = 0)

= x6
1 + x6

1 − 2
(
π2

(
x2

1

) ◦ x1
)2 = 0

by (1). �
3.10. Lemma. Let J be a Jordan algebra, z ∈ J .

(i) z ◦ J = z2 = 0 ⇒ z3 ◦ J = (z3)2 = (z3)3 = 0.
(ii) z ◦ J = z3 = 0 ⇒ U zU J z = 0.

(iii) z ◦ J = z2 = z3 = 0 ⇒ UU z x J = 0, for any x ∈ J .

Proof. (i) For any x ∈ J ,

z3 ◦ x = {
z2, z, x

} (
by (0.5)(i)

)

= 0,

(
z3)2 = z6 = U z2 z2 (

by (0.5)(vi)
)

= 0,

(
z3)3 = z9 = U z2 z5 (

by (0.5)(vi)
)

= 0.

(ii) For any x ∈ J ,

U zUxz = U z◦xz − z ◦ Uxz2 − Uxz3 (
by (0.5)(vii)

)

⊆ U z◦ J z − z ◦ J − U J z3 = 0.
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(iii) For any x, y ∈ J ,

UU z x y = U zUxU z y (by QJ6)

= U zUx◦z y − {
z2 ◦ x, y, U zx

} + {
x, z2, y

} ◦ U zx

− {y, z, U zUxz} − U z2 Ux y
(
by (0.5)(viii)

)

= 0

by the hypotheses and (ii). �
3.11. Theorem. If J = J2 ⊕ J1 ⊕ J0 is a Peirce graded Jordan algebra, then (2.2)(1) holds strictly when J is
under any of the following circumstances:

(i) J does not have 2-torsion and does not contain nonzero invisible elements,
(ii) J is special and semiprime,

(iii) J is nondegenerate.

Proof. We remark that any of the properties (i)–(iii) on J is inherited by the scalar extension J ⊗Φ

Φ̃ of J when Φ̃ is the unital, associative, commutative ring of Φ-polynomials in an infinite set of
variables. Then, if we show that (2.2)(1) holds on J , it will also hold on J ⊗Φ Φ̃ , which implies
(2.2)(1) holds strictly on J .

Let x1 ∈ J1, and z = x3
1 − π2(x2

1) ◦ x1. We have to show that, assuming (i), (ii) or (iii), z = 0.
(i) By (3.9), z ◦ J = 0, which implies that z is invisible (cf. [8]) since J does not have 2-torsion.

Hence z = 0.
(ii) Since J is special, we can find an associative algebra A such that it is an envelope of J , i.e.,

J � A(+) and A is generated as an associative algebra by J . Let I be the ideal of A generated by z.
Since z2 = z ◦ J = 0, it can be readily seen that I I = 0. Then L = I ∩ J is an ideal of J such that
U L L ⊆ I I I = 0, which, by semiprimeness of J , implies L = 0. Hence z ∈ I ∩ J = L = 0.

(iii) Notice that t := z3 satisfies t ◦ J = t2 = t3 = 0 by (3.10)(i). Hence, for any x ∈ J , Ut x is an
absolute zero divisor of J by (3.10)(iii). By nondegeneracy of J , Ut x = 0 for any x ∈ J , i.e., t itself is
an absolute zero divisor of J , hence t = 0 again by nondegeneracy. Thus, z3 = 0, and (3.10)(iii) implies
that U zx is an absolute zero divisor of J , for any x ∈ J , but this implies, as above, that z = 0. �
3.12. Corollary. If J = J2 ⊕ J1 ⊕ J0 is a Peirce graded Jordan algebra without 2-torsion in any of the situations
(3.11)(i)–(iii), then J̃ is a Jordan algebra with an idempotent e such that J is a subalgebra of J̃ , and Jα =
J̃α(e) ∩ J , for any α ∈ {0,1,2}.

3.13. Further comments. The condition of absence of 2-torsion can be removed in (3.5) (hence in
(3.8) and (3.12)). In that general setting, the proof is much more involved and lengthy and will be the
subject of a forthcoming paper.
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