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RESUMEN (en español) 

Aproximadamente 380.000 años después del Big Bang, los fotones se desacoplaron de 
los bariones y viajaron libres por el Universo. Hoy en día, aún pueden observarse en la 
banda de microondas. A este efecto se le llama el fondo cósmico de microondas y es 
una sonda clave para los cosmólogos y cosmólogas para conocer la naturaleza y 
evolución del Universo. 

No obstante, en las frecuencias en las que puede observarse el fondo cósmico de 
microondas existen una serie de emisiones provenientes de nuestra Galaxia y de fuentes 
extragaláticas llamadas foregrounds que contaminan los mapas de temperatura y 
polarización. La caracterización de estas emisiones y, por tanto, la recuperación del 
fondo cósmico de microondas depende principalemente de la calidad de la metodología 
escogida. 

Debido al aumento de la calidad de los intrumentos utilizados en astrofísica y 
cosmología, la cantidad de datos disponibles en futuros experimentos del fondo 
cósmico de microondas también aumentará, requiriendo métodos más sofisticados a la 
par que automáticos. Debido a la mejora de la capacidad computacional, los modelos de 
machine learning o aprendizaje automático, que tienen la habilidad de aprender de los 
datos una tarea particular, pero requieren una gran cantidad de memoria y datos, han 
aumentado su impacto en diversas areas de la vida cotidiana. Más aún, las redes 
neuronales, que son modelos de aprendizaje automático inspirados en la neurociencia, 
son perfectos para la recuperación del fondo cósmico de microondas y la 
caracterización de foregrounds, ya que están diseñados para lidiar con comportamientos 
no lineales en los datos, que son precisamente aquellos que caracterizan dichas 
emisiones.  

Esta tesis de doctorado presenta nuevas metodologías basadas en redes neuronales 
artificiales para varios análisis del fondo cósmico de microondas. Más precisamente, 
mediante recorte de parches cuadrados del cielo de microondas visto por el satélite 
Planck, se han entrenado con simulaciones realistas varias redes neuronales 
convolucionales para detección de radio galaxias, para el ajuste de sus propiedades de 
polarización y para la recuperación del fondo cósmico de microondas en temperatura y 
polarización. Por último, se describirán los usos futuros y los desarrollos de estas redes 
neuronales. 



RESUMEN (en Inglés) 

Nearly 380.000 years after the Big Bang, photons decoupled from baryons and freely 
traveled along the Universe. Today, they still can be observed in the microwave regime. 
This effect is called the cosmic microwave background, and it is a key probe for 
cosmologists to understand the nature and evolution of the Universe. 

However, at the frequencies where the cosmic microwave background can be observed, 
there are several emissions from our Galaxy and extragalactic sources called 
foregrounds, which contaminate both temperature and polarization maps. The 
characterization of these emissions and therefore the recovery of the cosmic microwave 
background depend mainly on the quality of the chosen methodology. 

Due to the increasing in the quality of the instruments used in Astrophysics and 
Cosmology, the quantity of available data in future cosmic microwave background 
experiments will also increase, requiring more sophisticated and automatic methods. 
Due to the increasing in the computational capability, machine learning models, which 
have the ability of learning from data a particular task but require high amounts of data 
and memory, have been increased their impact in many areas of human live. 
Furthermore, artificial neural networks, which are machine learning models inspired in 
neuroscience, are perfect for cosmic microwave background recovery and foreground 
characterization since they are designed to deal with non-linear behaviors from data, 
which are precisely the ones that characterize these emissions. 

This PhD thesis presents new methodologies based on artificial neural networks for 
several cosmic microwave background analyses. More precisely, by cutting squared 
patches of the microwave sky as seen by the Planck satellite, several convolutional 
neural networks have been trained with realistic simulations for radio galaxies detection, 
for the constraining of their polarization properties and for the recovery of the cosmic 
microwave background in both temperature and polarization. Lastly, future uses and 
developments of these neural networks will be described. 
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Abstract

Nearly 380.000 years after the Big Bang, photons decoupled from baryons and freely traveled

along the Universe. Today, they still can be observed in the microwave regime. This effect is

called the cosmic microwave background, and it is a key probe for cosmologists to understand

the nature and evolution of the Universe.

However, at the frequencies where the cosmic microwave background can be observed,

there are several emissions from our Galaxy and extragalactic sources called foregrounds, which

contaminate both temperature and polarization maps. The characterization of these emissions

and therefore the recovery of the cosmic microwave background depend mainly on the quality

of the chosen methodology.

Due to the increasing in the quality of the instruments used in Astrophysics and Cosmology,

the quantity of available data in future cosmic microwave background experiments will also

increase, requiring more sophisticated and automatic methods. Due to the increasing in the

computational capability, machine learning models, which have the ability of learning from

data a particular task but require high amounts of data and memory, have been increased their

impact in many areas of human live. Furthermore, artificial neural networks, which are machine

learning models inspired in neuroscience, are perfect for cosmic microwave background recovery

and foreground characterization since they are designed to deal with non-linear behaviors from

data, which are precisely the ones that characterize these emissions.

This PhD thesis, based mainly in several high-impact papers led by the author (Casas

et al. (2022a), Casas et al. (2022b), Casas et al. (2023a), Casas et al. (2023b)), presents new

methodologies based on artificial neural networks for several cosmic microwave background

analyses. More precisely, by cutting squared patches of the microwave sky as seen by the Planck

satellite, several convolutional neural networks have been trained with realistic simulations for

radio galaxies detection, for the constraining of their polarization properties and for the recovery

of the cosmic microwave background in both temperature and polarization. Lastly, future uses

and developments of these neural networks will be described.





Resumen

Aproximadamente 380.000 años después del Big Bang, los fotones se desacoplaron de los bar-

iones y viajaron libres por el Universo. Hoy en d́ıa, aún pueden observarse en la banda de

microondas. A este efecto se le llama el fondo cósmico de microondas y es una sonda clave para

los cosmólogos y cosmólogas para conocer la naturaleza y evolución del Universo.

No obstante, en las frecuencias en las que puede observarse el fondo cósmico de microon-

das existen una serie de emisiones provenientes de nuestra Galaxia y de fuentes extragaláticas

llamadas foregrounds que contaminan los mapas de temperatura y polarización. La caracteri-

zación de estas emisiones y, por tanto, la recuperación del fondo cósmico de microondas depende

principalemente de la calidad de la metodoloǵıa escogida.

Debido al aumento de la calidad de los intrumentos utilizados en astrof́ısica y cosmoloǵıa,

la cantidad de datos disponibles en futuros experimentos del fondo cósmico de microondas

también aumentará, requiriendo métodos más sofisticados a la par que automáticos. Debido

a la mejora de la capacidad computacional, los modelos de machine learning o aprendizaje

automático, que tienen la habilidad de aprender de los datos una tarea particular, pero requieren

una gran cantidad de memoria y datos, han aumentado su impacto en diversas areas de la vida

cotidiana. Más aún, las redes neuronales, que son modelos de aprendizaje automático inspirados

en la neurociencia, son perfectos para la recuperación del fondo cósmico de microondas y la

caracterización de foregrounds, ya que están diseñados para lidiar con comportamientos no

lineales en los datos, que son precisamente aquellos que caracterizan dichas emisiones.

Esta tesis de doctorado, basada principalmente en varios art́ıculos de alto impacto liderados

por el autor (Casas et al. (2022a), Casas et al. (2022b), Casas et al. (2023a), Casas et al.

(2023b)), presenta nuevas metodoloǵıas basadas en redes neuronales artificiales para varios

análisis del fondo cósmico de microondas. Más precisamente, mediante recorte de parches

cuadrados del cielo de microondas visto por el satélite Planck, se han entrenado con simulaciones

realistas varias redes neuronales convolucionales para detección de radio galaxias, para el ajuste

de sus propiedades de polarización y para la recuperación del fondo cósmico de microondas en

temperatura y polarización. Por último, se describirán los usos futuros y los desarrollos de

estas redes neuronales.
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CHAPTER 1

Introduction

1.1 Background and motivation

Nearly 13.800 billion years from today, all the known things in the Universe, that is, planets,

satellites, stars and galaxies, were constrained in a state of extremely high energy. At that

instant, there was not space nor time. After a spontaneous change of the initial conditions,

time started and space become expanded, a phenomenon known as Big Bang (Weinberg (2008),

Baumann (2018), Schneider (2015)). Physical laws, as we know today, at least started at the

smallest time interval that can be measured, which is 10−44 seconds after the Big Bang, a

time called Planck time. The initial change of phase produced several quantum fluctuations at

10−36 seconds after the Big Bang, during the exponentially expansion of the Universe known as

Cosmic Inflation (Guth (1981), Linde (1982)). Those primordial fluctuations formed structures

in the early Universe that evolve into stars, galaxies and groups of galaxies by following the

gravitational instability paradigm. Once expanded, the mean temperature of the Universe

started to decrease.

When the Universe reached T ≈ 1012K, radiation density was composed by all the protons

and neutrons (both baryons) today forming the visible baryonic matter, as so as electrons,

photons, positrons, neutrinos, and also dark matter particles. All those particles were in equi-

librium. Then, about one second after the Big Bang, temperature reached T ≈ 1010K, while

particles maintained the equilibrium due to the shorter mean time between reaction with re-

spect to the expansion of the Universe. However, while temperature decreased bellow 1010K,

neutrinos could not be longer in equilibrium, and then they decoupled from the other par-

ticles, a process called freeze-out. Although neutrinos decoupled, the Universe continued its

expansion. Then, temperature continued to decrease. When it reached ≈ 5 × 109K, electron

and positron pairs could no longer be produced efficiently, a process called pair annihilation.

After that, nearly all electrons were converted into photons, remaining the Universe electrically

neutral.

1
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After one second and before 3 minutes after the Big Bang, at about ∼ 109K, protons

and neutrons formed lights elements such as Hidrogen, Helium and Litium nuclei and also

their isotopes by nuclear reactions such as the ones in the stars. That process is called Big

Bang Nucleosynthesis (BBN). Then, about 3 minutes after the Big Bang, when temperature

reached ∼ 3000K, BBN was over. At those stages, the Universe mainly consisted in photons,

protons, helium nuclei, other light elements and electrons. Following the optical depth for

Thomson scattering parameter (Planck Collaboration, 2020d), photons could propagate freely

from a redshift z ∼ 1000, which is inside the range of the corresponding redshift for the

Hubble expansion during recombination. This is called the last scattering surface. Those

photons from recombination are predicted, by following the Wien law, to be propagated from the

recombination epoch until today without further interaction with other particles. They should

follow a Planck spectrum, with only changing their temperature after recombination. Moreover,

they could be observed today, redshifted into the microwave regime of the electromagnetic

spectrum.

Figure 1.1: Scheme of the thermal history of the Universe (Mambrini, 2021).

These arguments firstly showed up in 1948, when George Gamow and collaborators pre-

dicted a thermal radiation of between 5 and 50 K due to the current abundance of nuclei. Years

after, in 1964, Arno Penzias and Robert Wilson detected a fixed radiation of 3.5 K at 7.35 cm

in the spectrum (Penzias and Wilson, 1965). This excess in the antenna was precisely the first

detection of the photons from recombination epoch, a radiation called the cosmic microwave

background (CMB). This observation, considered to be isotropically emitted in all directions of

the sky, is correlated with the theoretical predictions by Lemâıtre of a Universe adiabatically

expanding and cooling from its first stages. Then Penzias and Wilson won the Nobel Prize for

2
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that astonishing discovery.

Figure 1.2: Horn antenna used in 1964 by Penzias and Wilson to discover the CMB (NASA

image).

Immediately after, the main idea was that, if the structures of the Universe evolved from

small initial fluctuations by gravitational instability, they would be present in the CMB, since

the photons carrying out the radiation, they could not interact with such matter, as explained

before. Therefore, the CMB, although isotropic as a first approximation, has to be an inhomo-

geneus radiation at 10−5K levels. Cosmologists then started to study these CMB anisotropies.

The dipole, firstly observed in 1969 and 1971 by Conklin (Conklin, 1969) and Henry

(Henry, 1971), respectively, was the first detected CMB anisotropy. It is interpreted as our

proper motion with respect to the surface of the last scattering. After that, it was clear that

more anisotropies would be present in the CMB, and their study could shade light about the

structure and evolution of the Universe. For that purpose, NASA launched in 1989 the COsmic

Background Explorer (COBE, Smoot et al. (1992)). It saw the sky 3 years before Smoot and

collaborators published the first detection of the CMB anisotropies on angular scales θ ≳ 7◦,

corresponding to the first 20 harmonics 1.

1See Section 2.1.1 for understanding the comparison between angular scales and harmonics.
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Figure 1.3: COBE CMB anisotropy results. Top figure: the isotropic CMB emission. Middle

figure: the CMB dipole. Bottom figure: l ∼ 20 multipole anisotropies, being the mean temper-

ature fluctuation represented on each case (NASA image).

A Nobel Prize for George Smoot and John Mather, the principal investigators of DMR

and FIRAS detectors aboard COBE, respectively, was the reward for COBE results.

Moreover, since the CMB is theoretically generated by an isotropic Gaussian stochastic

process, all its information can be extracted from the power spectrum of its map, which could

be expanded in spherical harmonics as described in Section 2.1.1, and it is usually plotted as

l(l + 1)Cl/(2π) because of historical reasons and also since it would be constant for a scale

invariant pattern on the sky.

Following this expression, the acoustic oscillations of the photon/baryon fluid before pho-

4
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tons finally decoupled would left an imprint in the CMB power spectrum in form of peaks on

angular scales θ ≳ 2◦, corresponding to multipoles l > 100. For this purpose, several experi-

ments were built, standing out BOOMERANG (de Bernardis et al., 2001), Maxima (Balbi et al.,

2001) and DASI (Halverson et al., 2002), which observed the first acoustic peak at l1 ∼ 200.

They also predicted more peaks at l ∼ nl1, being n even. However, their sensitivity was not

enough for a reliable detection.

Furthermore, two main more aspects motivate the necessity of a precise measurement of

the CMB anisotropies: firstly, as explained in Bucher (2015), several codes bases in Markov

Chain Monte Carlo (MCMC) routines were developed in the 90ties with the aim of estimating

cosmological parameters from CMB anisotropies 2. Therefore, with a precise measure of the

CMB power spectra, scientific community could determine the nature and evolution of the

Universe by using the imprint of the photons when climbed out the gravitational potentials

of the structures in the primordial Universe. Secondly, following Hu and White (1997) and

Zaldarriaga and Seljak (1997), polarization is a key probe for Cosmic Inflation, described in

Starobinsky (1982), Guth (1981) and Linde (1982), then a precise measurement of the polariza-

tion, in particular, the B-mode polarization at tensor-to-scalar levels of r = EE/BB ≤ 0.001

would become an unprecedented discovery in science.

Therefore, a new precise CMB experiment should be prepared for these two purposes.

This was the Wilkinson Microwave Anisotropy Probe (WMAP, Bennett et al. (2013)), which

was launched in 2001 and took data for 9 years. It measured the CMB anisotropy with un-

precedented precision, as can be seen by comparing its measure with COBE’s one, as shown in

Figure 1.4. With the new CMB power spectra results, cosmological parameters become fitted

with high accuracy, cimenting the ΛCDM model as the one explaining our Universe, that is,

thanks to WMAP we know that we live in a flat, expanding Universe represented by a cosmo-

logical constant, which started from a high-dense energy state called Big Bang, dominated by

dark matter with respect to baryonic one. After WMAP, new polarization measures came out

from BOOMERANG and the high-resolution ground-based experiments Atacama Cosmology

Telescope (ACT) and South-Pole Telescope (SPT).

In May 2009, ESA launched the Planck Satellite (Planck Collaboration, 2020a). It was

formed by the HFI and LFI instruments, being the first one dedicated to observed the sky at six

frequencies: 100, 143, 217, 353, 545 and 857 GHz and the second one dedicated to observed the

2The reader is encouraged to read references in its concise review.
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sky at 30, 44 and 70 GHz. The precision vary from channels but the maximum one achieved was

around 5 arcminutes, allowing to constrain the CMB power spectrum to l ∼ 2500. Furthermore,

the much larger range of covering with respect previous experiments allowed Planck to unveil

other aspects in Cosmology, such as a proper characterization (at least in temperature) of the

microwave emissions from our Galaxy, the behavior of the different populations of extragalactic

radio and dusty sources, the behavior of clusters of galaxies presenting Sunyaev-Zeldovich effects

3.

Figure 1.4: Three generations of satellites dedicated to the study of the CMB. From left to

right: COBE, WMAP and Planck (NASA image).

In any case, two main goals from Planck were achieved: the release of an unprecedented

detailed all sky CMB maps with its temperature anisotropies constrained to multipoles l ∼ 2500,

as the one shown in Figure 1.5, and the estimation of the cosmological parameters with higher

accuracy than WMAP. However, the third main goal of constraining the polarization was not

covered: the latests results from Planck allowed to estimate the E-mode with high accuracy up

to multipoles l ∼ 1500, as seen in the power spectrum of Figure 2.6, and its correlation with

temperature. However, the B-mode polarization could not be constrained with Planck data.

Therefore, after Planck, it was clear that B-mode polarization and the evidence of the

Cosmic Inflation period would be the main goal of the CMB scientific community. Actually,

the B-mode is characterized at low and middle scales by present experiments such as BICEP2,

POLARBEAR, ACTPol and SPT. Furthermore, the tensor-to-scalar ratio is constrained to

3The reader is encouraged to read Planck results https://www.cosmos.esa.int/web/planck/publications for

more information.
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Figure 1.5: The cosmic microwave background as seen by Planck (ESA image).

r < 0.032 at 95% confidence level using Planck PR4 data and BICEP/Keck 2018 data Tristram

et al. (2022). Upcoming experiments such as LiteBIRD and CMB-S4 are expected to improve

this limit significantly, achieving sensitivities of σ(r) = 0.001 LiteBIRD Collaboration (2023a)

and σ(r) = 0.0005 CMB-S4 Collaboration (2016) respectively.

While CMB community studied the anisotropies of the early Universe, mathematicians and

engineers dreamed of machines doing tasks and thinking like humans. That field of research

is called Machine Learning (ML), which is the ability of a machine to learn some kind of

experience from data in order to aboard a particular task. ML models started to be popular

in the last decades of the XX century, while increasing our computational power (see Hastie

et al. (2001) for a review of the most popular ML approachs and their applications to real

data). In the 40ties, it started the idea of mixing ML with the human brain. Today, this is

called Deep Learning (DL), which is basically the ability of machines inspired on neuroscience

to learn from data. In the past, it was called cybernetics in its early times between the 40ties

and the 60ties, and connectionism in the 80ties-90ties. The actual name of DL mainly arose in

2006 until today (Goodfellow et al., 2016).

The first wave of neural network research started in the 40ties-60ties with the development

of theories of biological learning and the implementation of the Perceptron model Sanger and

Baljekar (1958) with the aim of training a single neuron.

The second wave started in the 80ties, with the movement called connectionism or par-

7
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Figure 1.6: Deep learning research waves representation based on the frequency of its names

(cybernetics, connectionism, neural networks) with respect the years (Goodfellow et al., 2016).

allel distributed processing. The main idea of this wave was that a large number of simple

computational units can process information with intelligence when networked together, which

is the basis of the hidden layers of actual neural networks. Another key ideas arose during

this movement. The first one was the distributed representation, explained in Hinton et al.

(1986). This is that many features should represent each input to a system, and each feature

should represent many inputs. The second one was the use of back-propagation to train deep

neural networks (Rumelhart et al., 1986). However, neural networks popularity decrease while

artificial intelligence research cannot deal with the unreasonable expectations community had.

Also the computational cost was too high for training and testing the neural networks.

In 2006, neural networks training took advantage from Hinton et al. (2006), Bengio et al.

(2006) and other works, allowing to train deeper structures and improve generalization on test

examples. After that, with the increasing of the datasets sizes due to the improvement in the

computation and data storage, deeper structures were developed and tasks such image recog-

nition, sequence learning, reinforcement learning, speech recognition and language processing

can now be automatically solved with neural networks. The future is that, with the actual

computational capability, neural networks will have the same number of neurons than a human

in 2050.

Machine learning and neural networks have also been increasingly used in the last years

in Astronomy, Astrophysics and Cosmology. For example, there are models based on machine

learning for large-scale structure formation and identification, reionization, weak and strong

gravitational lensing identification, redshift prediction or cosmological parameter estimation.

8
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The reader is encouraged to follow several reviews with comprehensive lists of published machine

learning applications to Astronomy (Baron, 2019), Astrophysics (Rodŕıguez et al., 2022) and

Cosmology (Dvorkin et al., 2022). With respect to the CMB, principal machine and deep

learning applications are lensing reconstruction, foreground model inference, inpainting and

component separation 4.

1.2 Objectives and published contributions

The main goal of this PhD thesis is to develop several methodologies based on artificial neural

networks for analyzing cosmic microwave background data. After preprocessing datasets used

for training the models and formed by realistic simulations of the microwave sky as seen by

the Planck satellite, different convolutional neural networks architectures are developed to

investigate which one is better performing and can be adopted for different experiments to

produce reliable results. In particular, two parallel (but related) goals can be defined:

• Detection and characterization of point sources in Planck maps

Although reliable catalogues of radio and infrared galaxies polluting the CMB signal

were published in Planck releases, future experiments with higher resolution will be able

to detect a higher number of them. Neural networks seem to be suitable models for

that purpose, following previous works such as Bonavera et al. (2021). Once detected,

polarization properties about the AGNs behavior of the radio sources, which are not

well known today, could also be constrained with neural networks by using a non-blind

detection methodology.

• Recovering the cosmic microwave background in temperature and polarization

Planck maps

Although component separation (the process of disentangle one signal in a map from the

others) models have recovered the CMB temperature and polarization maps with high

accuracy during the last years, neural networks seem to be an alternative and accurate

models for performing that task, by following previous works such as Petroff et al. (2020),

since they can learn non-linear behaviors from data, which are precisely the ones of the

foregrounds which contaminate the CMB signal.

4The most relevant works are listed in this comprehensive Github: https://github.com/georgestein/ml-in-

cosmology.
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This PhD thesis resume the main results from the following published contributions, all of

them led by the author:

• J. M. Casas, J. Gonzalez-Nuevo, L. Bonavera, et al. (2022). Multi-frequency point

source detection with fully-convolutional neural networks: Performance in realistic mi-

crowave sky simulations. Astronomy and Astrophysics, 658:A110, cited throughout the

thesis as Casas et al. (2022b).

• J. M. Casas, L. Bonavera, J. Gonzalez-Nuevo, et al. (2022). CENN: A fully convolu-

tional neural network for CMB recovery in microwave sky simulations. Astronomy and

Astrophysics, 666:A89, cited throughout the thesis as Casas et al. (2022a).

• J. M. Casas, L. Bonavera, J. Gonzalez-Nuevo, et al. (2023). Constraining polarisa-

tion flux density and angle of point sources by training a convolutional neural network.

Astronomy and Astrophysics, 670:A76, cited throughout the thesis as Casas et al. (2023a).

• J. M. Casas, L. Bonavera, J. Gonzalez-Nuevo, et al. Recovering the E and B-mode

CMB polarization at sub-degree scales with neural networks, cited throughout the thesis

as Casas et al. (2023b).

1.3 Outline of the thesis

This PhD thesis has been structured as follows. Chapter 2 describes the different components

forming the microwave sky, all of them simulated in order to form the datasets used for training

the neural networks. Chapter 3 explains the concepts of machine learning and deep learning,

describing the elements forming the architectures of the neural networks used along this PhD

thesis. Chapters 4 and 5 detail the results obtained when using those neural networks for

detecting point sources in Planck -like realistic simulated patches of the sky and for constraining

their polarization flux density and angle. Both kind of results are published in Casas et al.

(2022b) and Casas et al. (2023a), respectively. Chapters 6 and 7 show the results obtained

when using neural networks for recovering the CMB signal in both temperature and polarization

Planck -like realistic simulated patches of the sky, which are published in Casas et al. (2022a)

and Casas et al. (2023b), respectively. Chapter 8 concludes this PhD thesis by summarizing

the main results and ideas, and also describing ongoing work and future prospects beyond this

PhD thesis.
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CHAPTER 2

The microwave sky

This chapter will cover the physics of the components of the microwave sky, which are simulated

for training the neural networks developed in this PhD thesis. Figures 2.2 and 2.3 show the

microwave sky at the nine frequencies covered by Planck in temperature and the seven ones

observing the polarization maps, respectively. As shown, CMB anisotropies are visible at nearly

all frequencies covered by Planck, especially up to 217 GHz, and always outside the Galactic

plane (latitudes above/bellow ±30◦). The reader is encouraged to compare these all sky maps

with Figure 2.1, where the intensity of Galactic microwave emissions is represented with respect

the frequency.

Therefore, on the one hand, as seen in the bottom colorbars representing the intensity of

the maps in µKCMB units, bellow 100 GHz, Galactic emission dominates most of the map at

30 and 44 GHz in temperature and at 30, 44, 70 and 100 GHz in polarization. This is mainly

due to synchrotron emission from ultra-relativistic electrons spiralling the magnetic field of our

Galaxy. As shown, the highest emission is produced at 30 GHz. In temperature, also free-free

and spinning dust (also known as anomalous microwave emission, AME) are contaminating the

signal at these frequencies. As explained before, these were the channels observed by the LFI

instrument aboard the Planck satellite.

On the other hand, a similar situation can be seen at higher frequencies, which are the

ranges which were covered by the HFI instrument of Planck. In both temperature and polar-

ization, starting at 217 GHz and increasing with frequency, dust from our Galaxy pollute the

signal at this frequency and 353 GHz, especially in polarization. At small scales, thousands of

radio sources detected by Planck contaminate the signal in temperature and, at least hundreds,

in polarization. Also early galaxies in the process of forming their stellar masses emit a huge

amount of dust, contaminating the signal at high frequencies, an emission called the cosmic

infrared background.

As seen, the CMB is not the only emission of the microwave sky, and its recovery and

characterization depend on the quality of the methodologies used for separating these Galactic

and extragalactic contaminants called foregrounds, and also on the knowledge of their behavior
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at these frequencies. The reader is encouraged to see the works by Leach et al. (2008) and

Delabrouille et al. (2013), where pre-Planck methods for separating the signals from the CMB

and the modelling of the different foreground emissions are extensively explained, respectively.

Furthermore, Planck Collaboration (2020b) shows the final four methods used in the Collab-

oration and their resulted CMB and foreground maps. More actual, oriented for polarization,

methods are described in LiteBIRD Collaboration (2023b). Following subsections will describe

briefly each of these components in the microwave sky, emphasizing the ones in the simulations

of this PhD thesis.

Figure 2.1: Frequency dependence of the main Galactic emissions in the microwave sky in

temperature (left panel) and polarization (right panel). Grey vertical lines show each one of

the Planck channels. Black dashed lines show the total sum of these emissions. The bands

for each emission represent the percentage of sky coverage by Planck (Planck Collaboration,

2020a).

2.1 The cosmic microwave background

The CMB is the principal signal along this PhD thesis. In order to understand why we need

a methodology based on neural networks for its recovery, we firsly should take into account

its nature. This section will describe the main characteristics of the signal that change the

cosmology since its discovery by Penzias and Wilson.
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Figure 2.2: Temperature fluctuations of the microwave sky as seen by Planck. The colorbar

in the bottom is the scale in µKCMB units, representing the intensity signal for 30 − 353

GHz channels and the surface brightness in k Jy sr−1 for 545 and 857 GHz channels (Planck

Collaboration, 2020a).

2.1.1 The cosmic microwave background anisotropy

For a given model, pretended to be compared with observations, the most useful quantity to

use is the power spectrum, which is the harmonic transform of the 2-point correlation function

(Durrer, 2008), which contains all the statistical information of the model. In Fourier space it

is defined as

⟨X (k, t0)X
∗ (k′, t0)⟩ = (2π)3δ (k − k′)PX (k), (2.1)

where, in flat space, the function X (k, t0) is the ordinary Fourier transform of the function in

position space X (x, t0), δ (k−k′) is the Dirac δ-function and ⟨⟩ indicates the statistical average.

The CMB anisotropies can also be statistically studied with the power spectrum. Given

∆T/T , a function of position x = x0, time t = t0 and photon direction on the sphere n, the

CMB anisotropies can be described in terms of spherical harmonics, Ylm’s. Assuming that the

distribution of ∆T/T (n) is the same for all directions, the CMB anisotropies become described
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Figure 2.3: Polarized microwave sky as seen by Planck. The first two columns show the Q and

U Stokes parameters while the last column represents the polarized intensity, P =
√
Q2 + U2.

The colorbar in the bottom is the scale in µKCMB units, representing the intensity signal for

30− 353 GHz channels (Planck Collaboration, 2020a).
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as

∆T

T
(x0, t0, n) =

∑
l,m

a lm(x0)Y l,m, ⟨a lm · a l′m′
∗ ⟩ = δ l l′ δmm′Cl, (2.2)

where alm are the expansion coefficients and the Cls are the CMB power spectrum. Then, the

CMB power spectrum can be divided into three regions, as shown in Figure 2.4:

• The Sachs-Wolfe Term

On l ≲ 30, the CMB photons become blueshifted as they fall into Newtonian potential

wells and redshifted when they climb out them. If the depth of the potential well does not

vary with time, both effects cancel, implying that there will not be an integrated Sachs-

Wolfe (ISW) contribution. But if the depth of the potential well changes with time,

in particular if the overall scale of the potential is decaying, the two effects no longer

cancel and an integrated Sachs-Wolfe contribution is imprinted into the power spectrum.

Actually, it is difficult to determine the nature of the Sachs-Wolfe Term because of the

cosmic variance effect from the noisy primary CMB anisotropies emanating from the last

scattering surface. Planck established a ISW effect consistent with a ΛCDM model, and

its 3σ detection allowed to constrain the ΩΛ cosmological parameter.

• The Acoustic Peaks

On l ≳ 100, the contribution to ∆T/T (x0, t0, n) is related to acoustic oscillations due to

the photon/baryon fluid experimenting graviational variations during recombination, a

process commonly known as ”Acoustic Peaks”. Expanding the temperature anisotropies

into spherical harmonics, the angular scale θn relatively corresponds to the harmonic

number

ln ≃ π/θn = πdA (tdec)/λn = dA (tdec)kn = n
√

3πdA (tdec)/tdec, (2.3)

where dA (tdec) is the angular distance to the last scattering surface. For a flat, matter-

dominated Universe, dA (tdec) ≃ t0, then ln ≃ 180n 1. Futhermore, these Acoustic Peaks

depend on the sound speed of the radiation-baryon plasma, leading to the nth peak

ln ≃ kn t0 ∼= nπ
√

3
t0
tdec

. (2.4)

Then, for the first peak, l1 ∼ 220. Subsequent peaks are then given by ln = nl1.

1For a more concise explanation, the reader is encouraged to consult Durrer (2008) and Schneider (2015)

books.
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• The Silk Damping

On l ≳ 1000, the CMB power spectrum become damped when the coupling between

photons and the baryon/electron gas is still present but no longer perfect, being imprinted

smaller acoustic peaks into the power spectrum.

Figure 2.4: Planck 2018 temperature power spectrum in µK2. Red dots show the binned

results while grey ones represent the unbinned results. Blue line shows the ΛCDM theoretical

spectrum. The ±1σ uncertainty is represented as vertical lines for each bin. Residuals with

respect to the ΛCDM model are shown in the middle panel. Unbinned data point uncertainties

are represented in the ±1σ blue region. The difference between 2015 and 2018 Planck results

is represented as green dots in the bottom panel (Planck Collaboration, 2020c).

2.1.2 Polarization in the cosmic microwave background

In the early 80’s, Starobinsky proposed the first semi-realistic model of inflation (Starobinsky,

1982), based on conformal anomaly in quantum gravity. However, it did not solve the homo-

geneity and isotropy problems, although it was the first model predicting gravitational waves
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with a flat spectrum. A more physically clear model, now called ”old inflation”, was proposed

by Alan Guth in 1981 (Guth, 1981), considering inflation as an exponential expansion of the

Universe in a supercooled false vacuum state, that is, the Universe is considered in his theory as

a metastable space without any fields or particles although with a large energy density. Then,

when expanded, the energy density did not change so it should experiment an exponential

expansion, making it very big and flat. While the false vacuum decays, the bubbles of the new

phase collide and the Universe becomes hot. However, as concluded by Linde in 1982 (Linde,

1982), that explanation is misleading because if the new phase bubbles were formed near each

other, Guth’s inflation was too short to solve horizon, flatness and isotropy problems. If they

were formed far away from each other, each of them represents a separate open Universe. Fur-

thermore, Linde described the ”new inflationary theory”, under the assumption that inflation

is a state either in the false vacuum or in an unstable state at the top of the effective potential.

Then, the inflation field slowly rolled down to the minimum of its effective potential, produc-

ing density perturbations which are responsible for the homogeneity of our Universe. These

density perturbation are classified into two categories: scalar and tensor ones. In particular,

tensor perturbations produced gravitational waves in the primordial Universe. 380.000 years

after that moment, they become imprinted into the polarization of the CMB.

Following Zaldarriaga and Seljak (1997), the all-sky CMB polarization could be described

as an expansion in spin-weighted harmonics, an approach more realistic than small scale limit

ones (see references therein). More particularly, the CMB radiation field is a 2 × 2 intensity

tensor Iij. The Stokes parameters Q and U , that characterized the linear polarization of the

photons, are defined as Q = (I11 − I22)/4 and U = I12/2. The temperature anisotropy is

described as T = (I11 + I22)/4 and the Stokes parameter V , defining circular polarization, is

neglected since in Cosmology it cannot be generated through Thomson scattering. Temperature

is then invariant under rotation in the plane perpendicular to photon direction n̂, while Q and

U transform under rotation by an angle ψ as

Q
′

= Qcos(2ψ) + U sin(2ψ)

U
′

= −Qsin(2ψ) + U cos(2ψ),
(2.5)

where ê1
′

= cos(ψe1) + sin(ψe2) and ê2
′

= −sin(ψe1) + cos(ψe2). Then

(Q ± U)
′
(n̂) = e∓2 iψ (Q ± iU)n̂, (2.6)
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which can be expanded in terms of a spin-weighted basis

T (n̂) =
∑
lm

aT, lm Ylm (n̂)

(Q + iU )(n̂) =
∑
lm

a2, lm 2Ylm(n̂)

(Q − iU )(n̂) =
∑
lm

a−2, lm −2Ylm (n̂).

(2.7)

While temperature power spectrum, explained above, is easily computed since its respective

Stokes parameter is invariant under rotation in the plane perpendicular to n̂, both Q and U

not. They have to be rotated for each wavevector k and direction of the sky (n̂). Then, the

estimation of their power spectrum is only valid for small-scale limit. For all sky maps, there

is mandatory to define spin zero rotationally invariant quantities. Using sping raising and

lowering operators ð into Q ± iU , the expansion coefficients aT, lm, a2, lm, a−2, lm
2 and their

linear combinations, these quantities are

aE,lm = −(a2, lm + a−2, lm)/2

aB,lm = i(a2, lm − a−2, lm)/2,
(2.8)

then, one can define the rotationally invariant quantities

CT l =
1

2l + 1

∑
m

⟨a∗T, lmaT, lm ⟩

CE l =
1

2l + 1

∑
m

⟨a∗E,lmaE,lm ⟩

CB l =
1

2l + 1

∑
m

⟨a∗B,lmaB,lm ⟩

CC l =
1

2l + 1

∑
m

⟨a∗T, lmaE,lm ⟩,

(2.9)

in order to estimate the final temperature and polarization power spectra. They imply that,

when E remains unchanged, B changes the sign. Then, TT, TE, EE and BB power spectra

characterize both temperature and polarization CMB signals. Planck TT power spectra is

represented in Figure 2.4, while EE is shown in Figure 2.5. Their correlation, since does not

have relation with this PhD thesis is not shown, but the reader is encouraged to see Planck

Collaboration (2020c) for the latests results. BB power spectra was not recovered by Planck,

but Figure 2.6 shows its actual constrain by modern experiments. Moreover, 2.7 shows the

comparison between the estimates from past and present experiments with the predictions by

LiteBIRD.
2The reader is encouraged to follow the complete derivation in Zaldarriaga and Seljak (1997).
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Figure 2.5: Planck 2018 EE polarization power spectrum in 10−5µK2. Red dots show the binned

results while grey ones represent the unbinned results. Blue line show the ΛCDM theoretical

spectrum. The ±1σ uncertainty is represented as vertical lines for each bin. Residuals with

respect to the ΛCDM model are shown in the middle panel. Unbinned data point uncertainties

are represented in the ±1σ blue region. The difference between 2015 and 2018 Planck results

is represented as green dots in the bottom panel (Planck Collaboration, 2020c).
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Figure 2.6: CMB angular power spectrum measurements for recent experiments. Upper panel:

temperature and E-mode and B-mode polarization signals. Middle panel: cross-correlation

spectrum between TT and EE. Lower panel: lensing deflection power spectrum. The dashed

line shows the best-fit ΛCDM model to the Planck temperature, polarization, and lensing data

(Planck Collaboration, 2020a).
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Figure 2.7: CMB angular power spectrum predictions for LiteBIRD in comparison with recent

and past experiments. Upper panel: temperature and E-mode and B-mode polarization signals.

Middle panel: cross-correlation spectrum between TT and EE. Lower panel: lensing deflection

power spectrum. The grey lines show the theoretical predictions by the ΛCDM model, being the

primordial B-modes at r = 0.004 represented as a dashed grey line (LiteBIRD Collaboration,

2023a).
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2.2 Galactic and extragalactic emissions

As shown in Figure 2.1, several components from our Galaxy and another galaxies emit in the

microwave sky. In fact, at determined frequencies, they dominate the total emission. Galactic

components are mainly thermal dust from interstellar grains and synchrotron emission from

ultra-relativistic electrons spiralling the Galactic magnetic field. Extragalactic emissions are

mainly synchrotron and dust radiation from radio galaxies behaving such active galactic nuclei

and dusty star-forming galaxies, respectively, and Sunyaev-Zeldovich effects from galaxy clus-

ters. This section will describe each emission forming the data used along the PhD thesis for

training the neural networks.

2.2.1 Interstellar dust

Interstellar dust is present in almost all wavelengths of astronomical insterest. As a first approx-

imation it is mainly formed by amorphous silicate and carbonaceous materials (Draine, 2003).

However, after the high-sensitivity emission measures by Planck, providing the scientific com-

munity with unprecedented detailed dust maps up to 5 arcmin resolution, several dust models

from the 90s used in the pre-Planck simulations become unrealistic, especially in polarization.

In a recent concise review, Hensley and Draine (2021) described the constraints of inter-

stellar dust in the post-Planck era. With respect to the dust grains morphology, they show

that the grains in the interstellar medium (ISM) emitting in the microwave regime are mainly

formed by heavy elements ejected from the bulk of stars to the ISM. Then, while some of the

atoms remain in the gas, a fraction of them get locked in the grains. In particular: C, O, Mg,

Si and Fe are mainly the elements forming the interstellar dust mass, while elements such as

Al, S, Ca and Ni compose a minor fraction of the total mass. Their actual abundances in the

solar mass are corrected at the time of the Sun’s formation by using several chemical evolution

models or by using observations of young stars in order to estimate their abundances in the

ISM and therefore in the dust grains emitting in the microwave regime 3.

With respect to their emission, the bulk of the dust grains are heated to ∼ 20K, which

imply that they emit thermally in the far infrared (FIR). Both DIRBE and FIRAS instruments

aboard COBE constrained the dust spectrum between 3.5 and 1000 µm. After the unprece-

dented detailed measurements of the FIR-submillimeter dust emission over the full sky, Planck

3The reader is encouraged to see the references therein for detailed information about these observations.
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constrained the dust spectrum from 80 to 10000 µm (Planck Collaboration (2014c), Planck

Collaboration (2015), Planck Collaboration (2016d)).

Furthermore, in the beginnings of the 00ties, it was found that both aligned and aspherical

grains are responsible of polarizing the starlight they absorb, being published the first full-

sky polarized dust by WMAP, and found that the dust spectral energy distribution (SED) is

consistent with a modified blackbody with a power-law opacity κν ∝ ν β. After several releases,

Planck found agreement with a modified blackbody with a temperature Td = 19.6K and

β = 1.53±0.02 on the dust SED. However, this is a first order approximation. It has been found

that, even on the degree scale, both parameters show variations in the sky (Planck Collaboration

(2016b), Planck Collaboration (2016c)). This is therefore a challenge for component separation

algorithms, which have to known the spectral variation of dust along the sky.

Moreover, Planck observation has confirmed in Coulton and Spergel (2019) that dust power

spectrum, although can be approximated at first order with a power law, Ad (l) ∝ lαd , with

αd ≈ −2.4, has high level of non-Gaussianity with non-zero polarized bispectra. In fact, this

mislead characterization of polarized dust emission has led to a false detection of primordial

B-modes from BICEP experiment. In order to reach those levels of precision, dust simulations

must have enough information about the smaller scale structures from dust and their variation

along the sky, which is actually a limitation due to the higher levels of contamination from

systematics and instrumental noise.

2.2.2 Synchrotron emission

At lower frequencies (≲ 30 GHz in temperature and ≲ 100 GHz in polarization), as shown in

Fig 2.1, the sky signal is dominated by synchrotron emission.

Synchrotron radiation is emitted by high energy electrons gyrating in a magnetic field.

Ginzburg and Syrovatskii (1965) reviewed the relation between non-thermal emission and syn-

chrotron radiation. His model from the early 50ties was improved in Ginzburg and Syrovatskii

(1969) and supported by maps of Galactic and extragalactic sources and by the discovery of the

polarized nature of the radiation. Following that theoretical model, the observed non-thermal

emission comes from high-energy relativistic electrons spiralling the weak Galactic magnetic

fields.

As previously shown, dust constraints from Planck allowed a reliable characterization for

future models in both temperature and polarization. This is not the same for synchrotron
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emission, due to the sensitivity of the LFI Planck instrument. In fact, models used in recent

collaborations for simulating the microwave sky are based on the power law scaling with a

spatially varying spectral index from the Haslam 408 MHz emission maps (Haslam et al. (1981),

Haslam et al. (1982)). Its spectral index was constrained using WMAP and Planck data as

βs ∼ −3. However, post-Planck observations using S-PASS experiment (Krachmalnicoff et al.

(2018), Fuskeland et al. (2021)) show that the spectral index vary from βs ≈ −2.8 at low

Galactic latitudes to βs ≈ −3.3 at higher ones. Also using BICEP2 and SPIDER fields, it is

found a mean synchrotron spectral index of βs ≈ −3.22±0.06 and βs ≈ −3.21±0.03 (Fuskeland

et al., 2021). In any case, characterizing synchrotron radiation is crucial for constraining the

tensor-to-scalar ratio at values lower than r = 0.001.

2.2.3 Cosmic infrared background

The cosmic infrared background (CIB) is formed by accumulated emissions over the entire

history of the Universe, from nucleosynthesis sources to sources present in the first-stars-era

and actual new stellar populations (Kashlinsky et al., 2018). After dividing CIB observations

into 2-5 µm and 1-2 µm wavelength ranges, there is general agreement between models for the

nature of CIB fluctuations for the first range, although the second range is actually not well

constrained. Euclid mission will observe with unprecedented detail the CIB anisotropies from

high redshifhts, allowing the scientific community to study its properties.

2.2.4 Thermal Sunyaev-Zeldovich effect

Thermal Sunyaev-Zeldovich is caused by CMB photons scattering off hot electrons in galaxy

clusters (Sunyaev and Zeldovich, 1972), being the effective spectrum no longer a perfect black-

body. Its signature observation is that, bellow 217 GHz, the effective SZ spectrum is negative

and above that frequency it is positive. Around 217 GHz, the effective power spectrum is

around zero. Moreover, Planck Collaboration analyzed the SZ effect in several clusters such as

the Coma and Virgo ones, and published a reliable catalogue of SZ clusters in the sky 4.

4The reader is encouraged to see Planck releases for more information.
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2.2.5 Other emissions

As shown in Figure 2.1, there are several other emissions in the microwave sky. Since they are

mainly secondary contaminants for the CMB, they will be superficially described in this Phd

thesis.

• Free-free

Free-free emission is produced by electron-ion interactions in the ionised phased of the

ISM. Dickinson et al. (2003) model was used in pre-Planck simulations, describing the

variation of the spectral index of free-free emission from -2.12 to -2.2 considering both

the frequency and the electronic temperature. After Planck, free-free emission is more

reliable modeled by using the two-component model by Draine (2011). The spectral index

then varies from -2.13 at 500 K to -2.15 for 20000 K.

• Spinning dust

Spinning dust, also called Anomalous Microwave Emission, is produced by rotational

dust grains due to non-zero electric dipole moments, as explained in Draine and Lazarian

(1998). Although it was firstly observed in the late 90s, Planck gave unprecedented

detailed observations of this effect (Planck Collaboration, 2014b). Actually, the Ali-

Häımoud et al. (2009) accurately model this effect. The method is based on a sum of two

spinning dust populations, one having a spatially varying peak frequency, and the other

one having a spatially constant peak frequency.

• Molecular lines

Molecular line emission from dense molecular clouds in our Galaxy and external ones also

pollutes the CMB maps. In particular, 12CO lines strongly contaminate the signal at

115.27 GHz, 230.54 GHz and 345.80 GHz for J = 1 −→ 0, J = 2 −→ 1 and J = 3 −→ 2,

respectively, which are near the HFI Planck channels 100, 217 and 353 GHz. Other lines

such as CN, HNC, C2H, HCO+, CS and many others also contaminate the signal at

5-10% levels.

2.3 Point sources

A Point Source (PS) is a single identifiable localized source of an emission. In astronomy, a PS

usually adopt the shape of the instrument’s beam through the Point Spread Function (PSF),
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as is shown in figure 2.8.

Figure 2.8: Illustration of a PS arising from the convolution of an object with the PSF.

A compact source in an astronomical map is similar to a point-like one with a certain flux

density. While luminosity is the radiant flux from a source over the power of signal, being

an absolute measure of radiated electromagnetic power, and quantified by Watts (W ), flux

density can be defined as the luminosity received by a surface per unit area. Its units are

W/m2. Another way to define this quantity is as the irradiance of a surface per unit frequency

or wavelength. In this case, its units are W/m2/Hz. In Astrophysics, the flux density unit is

usually the Jansky (Jy), which are related to previous units as 1 Jy = 10−26 Wm−2Hz−1.

PS are relevant in CMB science. At low frequencies (< 10 GHz), early evolutionary models

of radio sources (Toffolatti et al. (1998), de Zotti et al. (2005)) provided accurate fits for them.

In particular, the first one remarkably constrained the number counts of WMAP sources and

was used by González-Nuevo et al. (2005) to give predictions for Planck counts. Moreover,

González-Nuevo et al. (2008) used the second evolutionary model to also estimate statistical

properties of WMAP sources. Both models also give good constraints for the number counts of

radio sources at high frequencies (≥ 100 GHz), after a statistical extrapolation of flux densities

by adopting a simple power-law with a fixed spectral index. Furthermore, as explained by

Tucci, M. et al. (2011), that is a first approximation of the behavior of the active galactic

nuclei (AGN) core at high frequencies, due to a steepening of the spectral index at ν > 30

GHz 5, which could be more relevant in blazars at frequencies in the range 10 − 1000 GHz.

In fact, a steepening of the spectral index from 0.5 to 1.2 was observed in Planck, as shown

in Figure 2.10. Furthermore, at those frequencies, the model by Tucci, M. et al. (2011) is

5See references in Tucci, M. et al. (2011) for detailed information.
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actually the state-of-the art in order to estimate the number counts of radio sources. Indeed, it

was used in pre-Planck simulations Delabrouille et al. (2013), giving remarkable fits compared

with observations from Planck, as shown in their two published catalogues of compact sources

(Planck Collaboration (2014a), Planck Collaboration (2016a)).

The model by Tucci, M. et al. (2011) is basically an extrapolation of the 5GHz number

counts to higher frequencies by following the next assumptions:

1. Three different populations of radio sources are considered, based on their spectral index

α5
1 in the 1− 5 GHz frequency range: steep-spectrum sources if α5

1 < −0.5, flat-spectrum

ones if −0.5 ≤ α5
1 < 0.3 and inverted-spectrum ones if α5

1 ≥ 0.3.

2. Sources are simulated at 5 GHz using the models by Toffolatti and de Zotti. More partic-

ularly, for flat and inverted sources, the number counts are given by fitting observational

data using

n̄(S) = n0
(S/S0)

k

1− e−1
(1− e−(S/S0)l−k

), (2.10)

where n̄(S) is the differential number counts normalized to S 5/2, n0 = 47.4 Jy−1sr−1,

S0 = 1.67Jy, k = 0.5 and l = −0.66, as found in observations. On the other hand, for

steep-spectrum sources the number counts are estimated as the difference between the

previous fit and the total number counts predicted by Toffolatti model. The fraction of

Blazar Lacertae (BL Lacs) sources from flat-spectrum populations are taken at 5 GHz by

using the evolutionary model by de Zotti.

3. Then, the extrapolation is done by using several spectral models. For steep-spectrum

sources, it is used

S (ν) = S5GHz (ν/5)αhi (2.11)

where αhi = α5
1 − ∆α, being the spectral steepening ∆α extracted from a Gaussian

distribution with average 0.3 and dispersion 0.2, as founded in observations. For inverted-

spectrum sources it is used

S(ν) = S0 (ν/ν0)
k (1− e−(S/S0) l−k

), (2.12)

where ν0 is related to the peak frequency in the spectrum and S0 = (1−e−1)S(ν0), k = α5
1

and l value us fitted by using observations. For flat-spectrum sources there are used four

different spectral models. As seen in Tucci, M. et al. (2011), the C2Ex one is the one
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better fitting the data. In that model, spectra is described by

S(ν) =

S5GHz (ν/5)αflat 5 ≤ ν ≤ νM

S (νM)(ν/νM)αsteep ν ≥ νM ,

where νM is the break frequency, which is the one related to the transition from the

optically thick to the optically thin regime of the synchrotron radiation from the central

black hole of the active galactic nuclei, αflat = α5
1 − ∆α is the spectral index in the

optically thick regime and αspectral = −0.8±0.2 is the spectral index in the optically thin

regime. More particularly, for this model 0.01 ≤ rM ≤ 0.3 parsecs, which is the smallest

radius from which optically-thin synchrotron emission can be observed with α < −0.5.

The other kind of point sources are called far-IR sources. They are mainly early-type galax-

ies, formed by old stellar populations with mass-weighted ages of ≳ 8 − 9 Gyr, corresponding

to redshifts z ≳ 1−1.5, and spiral and irregular galaxies formed by significantly younger stellar

populations (see Lapi et al. (2011), Cai et al. (2013) for more detailed information) of about

≲ 7 Gyr, corresponding to redshifts z ≲ 1. Therefore, their emission in the microwave regime

is mainly due to high amounts of dust while forming their stellar populations.

2.3.1 Point sources are also polarized

Due to their synchrotron radiation from relativistic electrons in their jets and lobes, point

sources can be highly polarized, with maximum values of ∼ 70 − 75% of linear polarization,

as explained in Tucci and Toffolatti (2012). However, with actual instruments, only a few

sources are observed to be polarized, with a total fractional polarization value, Π = P/S, as

high as ∼10% of the total flux density, S. Although improvements have been made in the total

number of detected sources last years after Planck by using more sophisticated ground-based

instruments with much higher resolution such as the Atacama Cosmology Telescope (ACT)

and the South-Pole Telescope (SPT), the properties of polarized point sources are not well

constrained yet, which is not only a lack of knowledge in the AGN research but also relevant

for CMB studies since they constitute a major contaminant for the primordial B-mode detection

when r < 10−4, as predicted by Puglisi et al. (2018).

Since the estimated polarization is only a few percentage of the total flux density of

the source, it is theoretically believed that the magnetic fields formed in the AGN of radio

sources are highly inhomogeneous, or almost without ordering, as explained in concise reviews
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(Ginzburg and Syrovatskii (1969), Saikia and Salter (1988), Mesa, D. et al. (2002)). However,

observations based on measurements of the orientations of the linear polarization from the jets

and lobes in the sources show coherent structures across the images. This change of ordering

can be related not only to the degree of polarization but also to the change in the position

angle of the linearly polarized radiation passing through a magneto-ionic medium, an effect

known as Faraday rotation. Therefore, the position angle, also known as polarization angle, is

one of the most relevant characteristics of extragalactic radio sources. Actually, its nature is

observationally unconstrained and believed to be random.

With respect to the polarization, it is generally used the fraction with respect the total

flux density in order to characterize the degree of polarization. Due to the challenging of the

detection in faint signals as in Q and U polarization maps, completeness levels are hard to

achieve, and it is more usual to work with the probability function P(Π) of the polarization

fraction. Although it is only an approximation, as shown in Puglisi et al. (2018), after assuming

that polarization fraction and flux density are uncorrelated and statistically independent, one

can model P(Π) by means of a log-normal distribution

P(Π) =
A√

2πσ2Π
exp

[
−(ln(Π)/µ)2

2σ2

]
, (2.13)

where µ and σ are the median and the standard deviation, respectively. Furthermore, the

fractional polarization can be then approximated by the log-normal parameters

⟨Π⟩ ≈ µe
1
2
σ2

⟨Π2 ⟩ ≈ µ2e2σ
2

Πmed ≈ µ

(2.14)

In the last years, different values of the mean and median fractional polarization have

been published at all microwave regimes, all of them bellow 10% of the total flux density, as

predicted in Tucci and Toffolatti (2012). Table 2.9 from Datta et al. (2018) collect the number

of sources and statistical degree of polarization in different catalogues published in the last

years, being the analysis by Bonavera et al. (2017a), Bonavera et al. (2017b) and Trombetti

et al. (2018) the most relevants when dealing with Planck sources as in this PhD thesis. On the

one hand, Bonavera et al. (2017a) and Bonavera et al. (2017b) used the stacking technique for

constraining the mean polarization fraction of radio and dusty sources respectively in Planck

data, reaching values of about 3%, as seen in Table 2.9. On the other hand, Trombetti et al.

(2018) reanalysed the median fractional polarization at the same Planck channels by using the
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intensity distribution analysis method, obtaining values between 2 and 3%. In those all recent

works, the degree of polarization seems to be independent of both frequency and total flux

density.

Figure 2.9: Actual fractional polarization constrains for radio and infrared sources Datta et al.

(2018).
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Figure 2.10: Fraction and number of radio and infrared sources with respect to their spectral

index distribution for each Planck channel Planck Collaboration (2016a).
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2.4 Simulations

This section will resume the process for simulating the microwave sky described above. Along

this PhD thesis, it has been used 2-dimensional patches of the total simulated sky for training

and testing the neural networks. The frequencies used along the thesis are the 100, 143, 217

and 353 GHz HFI channels of the Planck satellite. The sky is simulated in both temperature

and polarization. Depending on each study of this PhD thesis, the sky is divided into latitude

regions, as can be seen in Figure 2.11, because of the strong contamination of our Galaxy. Black

lines delimite the extragalactic region (ER), with simulations above |b| > 30◦ of latitude, black

and white lines contain the Galactic region (GR, 10◦ < |b| < 30◦) and between white lines is

represented the Galactic plane (GP, |b| < 10◦).

Figure 2.11: The microwave sky as seen by Planck at 217 GHz. Horizontal lines delimite the

different regions analyzed along this PhD thesis: black lines delimite the extragalactic region,

black and white lines contain the Galactic region and between white lines is represented the

Galactic plane (ESA image).
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2.4.1 Temperature simulations

Temperature sky is used in both section 4 and section 6 for the detection of point sources and

for recovering the CMB, respectively. In both cases, the used frequencies are 143, 217 and

353 GHz. Then, in temperature, the three maps are simulated before cutting the patches.

Foreground and CMB maps are downloaded from the Planck Legacy Archive (PLA6) database.

It is a reliable website containing all the releases from Planck and also the simulated sky from

the models best fitting the published data.

Firstly, a position in the sky is defined by means of a longitude and latitude parameters.

They are the centered position of each patch of the sky. Then, both the CMB and foreground

maps are cutted by taking this position, the patch area and the pixel size. In both cases,

the pixel size is 90 arcsec, and the patch area is 128×128 pixels for the detection of point

sources, and 256×256 pixels for recovering the CMB. For cutting the patches, it is used the

gnomonic projection of the HEALPix framework. The CMB is a simulation for a ΛCDM model

Universe, with the cosmological parameters published in Planck. At these frequencies, as shown

in Figure 2.1, only thermal dust pollutes the signal. Then, it is also downloaded from the PLA

and, following its documentations, it is based on the GNILC map applied to the Planck second

release, extrapolated to the other channels assuming a modified blackbody emission law with

the spectral index map from Planck 2013 first release.

Thermal Sunyaez-Zeldovich effect is also included in the simulations after downloaded from

the PLA. Also following its documentation, clusters are generated by following the number

counts method of Delabrouille et al. (2002).

Finally, random white instrumental noise is added to the patch. In particular, the Planck

sensitivity for each channel is: 0.55, 0.78 and 2.56 µKCMB deg (Planck Collaboration, 2020a).

After forming the patch with these emissions (which is called Input Total along this PhD

thesis), point sources are injected on each patch by simulating their number counts at 217

GHz with the C2Ex model by Tucci, M. et al. (2011). Their flux density is assigned by

using the CORRSKY method by González-Nuevo et al. (2005), which was used in Planck for

simulating point source catalogues. Their spectral behavior is considered by extrapolating

their flux density below/above the 217 GHz channel. The spectral index for radio and infrared

sources is estimated by assuming a Gaussian distribution of the published spectral index for

each channel (Planck Collaboration, 2016a), as shown in Figure 2.10.

6https://pla.esac.esa.int/#home.
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The CIB is simulated by assuming that it is entirely formed by proto-spheroidal galaxies

in the process of forming their stellar masses. For simulate their number counts, the model by

Cai et al. (2013) is used as so as the angular power spectrum by Lapi et al. (2011). Their flux

density is also assigned by using CORRSKY. Their spectral behavior is considered by using

the same spectral index estimated for the infrared point sources.

An example of a patch for each simulated emission of the microwave sky cited above is

represented in Figures 2.12 and 2.13.

2.4.2 Polarization simulations

Polarization simulations, used in sections 5 and 7, are similar to the temperature ones. In

this case, the frequencies used are 100, 143 and 217 HFI Planck channels, due to the low

sensitivity of the 353 GHz channel. For constraining the polarization flux density and angle of

point sources, the patches are cutted by also using the gnomonic projection of the HEALPix

framework, with a patch area of 32×32 pixels. For recovering the CMB, the methodology for

cutting the patches is the projection by Krachmalnicoff and Puglisi (2021), since it was found

during the development of the work by Casas et al. (2023b) that, when using the HEALPix

projection, a strong E-to-B leakage (E-mode polarization contaminating the B-mode spectrum)

dominates the power spectrum.

Then, as for the temperature simulations, several emissions formed the Input Total patch.

As shown in Figure 2.1, Galactic emission at these frequencies is due to synchrotron and dust.

Both of them, as so as the CMB, are downloaded from the PLA in Q and U stoke parameter

maps. Since the power spectra of both CIB and thermal Sunyaev-Zeldovich effect are several

orders of magnitude bellow the CMB signal, these emissions are not included in the polarized

sky of this PhD thesis.

The CMB is also a simulation for a ΛCDM Universe with the published cosmological

parameters by Planck, and both scalar and tensor modes.

Thermal dust, following the PLA documentation, is simulated with a realization of the

Vansyngel et al. (2017) model at 353 GHz and extrapolated to the lower frequencies used in

this work by using Planck second release dust maps and Planck first release dust spectral index

maps. On the other hand, synchrotron emission is simulated by following a power law scaling

with a spatially varying spectral index for such emission.

Point sources are differently injected into the patch, depending on each Chapter of the
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PhD thesis: in Chapter 5, a single, central PS is injected into the patch. In Chapter 7, PS are

distributed along the patch similarly than in temperature. In both cases, their polarization is

taking into account by assuming that they follow a log-normal distribution with the parameters

of Bonavera et al. (2017a).

Random instrumental noise is added to the patch similarly to the temperature case. In

polarization, the sensitivity of Planck is 1.96, 1.17 and 1.75 µKCMB deg.

An example of a patch with each simulated emission of the microwave sky cited above is

represented in Figures 2.14 and 2.15 for Q, and in Figures 2.16 and 2.17 for U .
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Figure 2.12: Example of each emission simulated to train the networks in temperature at 143,

217 and 353 GHz (from left to right). The emissions are the CMB, radio and dusty PS, and

dust from top to bottom. The units, represented in the colorbars, are µKCMB.
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Figure 2.13: Example of each emission simulated to train the networks in temperature at 143,

217 and 353 GHz (from left to right). The emissions are the CIB, thermal SZ effect and

instrumental noise from top to bottom. The units, represented in the colorbars, are µKCMB.
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Figure 2.14: Example of each emission simulated to train the networks in Q polarization at

100, 143 and 217 GHz (from left to right). The emissions are the CMB, radio PS and dust

from top to bottom. The units, represented in the colorbars, are µKCMB.
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Figure 2.15: Example of each emission simulated to train the networks in Q polarization at

100, 143 and 217 GHz (from left to right). The emissions are synchrotron and instrumental

noise from top to bottom. The units, represented in the colorbars, are µKCMB.
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Figure 2.16: Example of each emission simulated to train the networks in U polarization at

100, 143 and 217 GHz (from left to right). The emissions are the CMB, radio PS and dust

from top to bottom. The units, represented in the colorbars, are µKCMB.
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Figure 2.17: Example of each emission simulated to train the networks in U polarization at

100, 143 and 217 GHz (from left to right). The emissions are synchrotron and instrumental

noise from top to bottom. The units, represented in the colorbars, are µKCMB.
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CHAPTER 3

Machine Learning

3.1 Machine Learning Basics

3.1.1 The Concept of Learning

A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E (Goodfellow et al., 2016).

• The Task, T

Learning is the ability to perform a task. A ML algorithm can have tasks like classification,

regression, anomaly detection and others. For example, a classification task or problem

may consist to find a category for a input in the data. In the case of regression, the

main objective will be to predict a numerical value using input information. Therefore, a

classification ML algorithm can be used for example to asign authomatically a category

to a galaxy based on input data, and then classify it. On the other hand, a regression ML

algorithm can be used for example to predict the numerical value of a function, based on

input data.

• The Performance measure, P

In order to evaluate how good a ML algorithm is, one must design a quantitative value to

determine its performance. This measure is the performance measure P, and it is related

to the task T. For tasks such as classification, the performance measure is often the

accuracy of the model. This is the proportion of examples for which the model produces

the correct output. In tasks such as regression, the performance measure is the error rate

or loss, that is, the proportion of examples for which the model produces an incorrect

output.

• The Experience, E

ML algorithms are generally categorized as unsupervised or supervised according to the
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experience they are allowed to have during their learning. These types of learning can

be seen schematically in figure 3.1. Unsupervised learning algorithms learns properties

of a dataset from its structure. On the other hand, supervised learning algorithms learns

behaviors from a dataset by using a label or target associated to each input data.

Figure 3.1: Supervised (left pannel) and unsupervised (right pannel) learning algorithms, in

this case with the task of classifying samples into different categories. For Supervised learning,

the data classifies between red dots, green stars and blue crosses according to the label imposed

by the agent. For unsupervised learning, the algorithm classify the data into blue dot clusters

according to the similarity of their intrinsic parameters (Goodfellow et al., 2016).

3.1.2 Overfitting and Underfitting

The main challenge in a ML problem is to perform well on inputs, but since in fields like

Astrophysics or Cosmology the quantity of data increases every day, the idea is not to reduce

the error in the input data but to reduce the expected value of the error on new input data.

That is called the test error. To deal with that usually while training a ML algorithm is to have

minimum two datasets: one for train the algorithm and another for testing it. Furthermore, the

data on test dataset must not be contained on train dataset. This is to prevent a phenomenon

called overfitting.

Overfitting occurs when there is a gap between train and test error, on practice, when the

model works extremely well with present data, but it fails while evaluating with new data. On

the other hand, underfitting occurs when the model is not able to obtain a sufficiently low error

value on train dataset. On practice, underfitting can be interpreted as a model which cannot

understand well the task for which it is trained. In figure 3.2 is represented a schematic view of

this elements. As shown, the goal is to adjust one trained model with data. In the left image

is presented an underfitting case: the model cannot fit the data because it has not sufficient

previous knowledge or training. In the right image is shown an overfitting case: the model
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works unrealistic well through fitting all points. This is because it works well with this data,

but not necessarily well with other data. In the center image the model have a good fitting.

Figure 3.2: An schematic view of points and its fitting showing overfitting (right) and under-

fitting (left). In the center image is represented a good fitting (Goodfellow et al., 2016).

To deal with underfitting, one must use a great amount of input data to train the model.

On the other hand, to deal with overfitting, the model performance should be evaluated with

new data not contained on the train dataset.

3.2 Deep learning

Deep Learning is a field of ML that works with data to learn non-linear parameters. Its principal

models are Neural Networks (NN), a type of models inspired on human brain with the mission

of learning non-linear behaviors from the data. Moreover, the goal of a NN is to approximate

some function f ∗. For example, in a classification problem, the function y = f ∗(x) looks to

map an input x to a category y. Then, in general, a NN define a mapping y = f(x; θ) in order

to learn the value of the parameters θ to approximate a function. The simplest type of NNs

are the Feedforward Neural Networks (FNN) or Multilayer perceptrons:

• They are called feedforward because the train data flows through the function evaluated

at x, passing the intermediate computations used to define f , and finally reaching the

output y.

• They are called networks because they are represented by composing functions, i.e f(x) =

f (3) (f (2) (f (1) (x))). Each of these functions are called layers. Therefore, f (1) is the first

layer of the neural network, f (2) is the second layer, and so on. The length of all the
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composing functions is called the depth of the model, and that is the reason why these

models are usually called deep models.

The first layer is called the input layer. The final layer is then the output layer. Since

they are ML models, they are need to be trained. During this process, the objective is to

drive f(x) to obtain its approximate function f ∗(x). Each input data x is accompanied

by a label y ≈ f ∗(x). Then the output layer produce a value theoretically close to y.

Since the learning algorithm decide how to use the NN to produce a desired output by

implementing the best approximation of f ∗, the layers between the input and the output

layers are called hidden layers. These layers are the main problem of NNs: if the number of

hidden layers is high, then the number of parameters increase. In this case, it is difficult

to follow the optimization on each parameter and compute that analytically implies a

waste of time. Therefore, it is computed numerically and the researcher generally do not

follow what happens inside the NNs. This is why NNs are usually called black boxes.

• They are called neural because they are inspired by neuroscience: each element of a layer

is similar to a neuron in the brain, and each hidden layer is vector-valued. Thus, the

functions f (i)(x) represent mathematically the behavior of biological neurons.

In figure 3.3 it is presented the general structure of a FNN. At the top panel is represented

a neuron, formed by inputs xi and weights wi, which will adjust their value through a cost

function f on each epoch of training. An epoch is the training step when backpropagation

algorithm updates the weights by applying the learning algorithm through the entire training

dataset. On the other hand, at the bottom panel it is represented the general architecture of a

feedforward neural network.

3.2.1 Gradient-Based Optimization

Generally ML and DL models use optimization to learn behaviors from data. Optimization is

the task of minimazing or maximizing some function f(x) by altering x. The function is called

the cost or loss function.

There are multiple loss functions to minimize a model. For example, for tasks such as

classification, the Binary Crossentropy function is a well-suited loss function. For tasks like

46



MACHINE LEARNING

Figure 3.3: General architecture of a feedforward neural network model. In the figure, xi are

the inputs, wi are the weights of the nodes or neurons and yi = f(
∑
xiwi) are the cost functions

(Goodfellow et al., 2016).

regression, the Mean Squared Error (MSE) works generally well. It has the form

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (3.1)

where n is the number of points in the dataset, yi are the data points, and ỹi are the data

points fitted by the model. Therefore, the model would respond to certain inputs compared

with their corresponding labels.

NNs are usually trained by using iterative, gradient-based optimizers that looks to obtain

a low value for the cost function. This method is called gradient descent: a model is determined

by a function y = f(x), where x and y are real numbers. Its derivative is f ′(x) = dy/dx and it

gives the change of f(x) at the point x, in other words

f(x+ ϵ) ≈ f(x) + ϵf ′(x) (3.2)

The derivative is useful for minimizing a function. As f(x − ϵsign(f ′(x))) have a lower value

than f(x) for a given ϵ, f(x) can be reduced by displacing x in small steps with opposite sign

of the derivative. This technique is how the gradient descent method works. An illustration of

this method is shown in figure 3.4.
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Figure 3.4: Scheme of how the derivatives of a function can be used to lead its way to a

minimum (Goodfellow et al., 2016).

When f ′(x) = 0, the model have no information about which direction should move. These

points are known as critical or stationary points. A local minimum is a point where f(x) is

lower than all its neighboring points, therefore the model cannot decrease more. A point with

the absolute lowest value of f(x) is called a global minimum.

The inputs have the initial information and propagates through the net to the output

layer. This phenomenon is called forward propagation. When the model compute the loss

value from the cost function, the information goes back from the cost function to the input

layers of the network, in order to compute the gradient. This is called the back-propagation

algorithm (Rumelhart et al., 1986).

When the input and output of the function to minimize are both vectors, optimization is

based on computing the jacobian matrix, defined as

J i, j =
∂

∂xj
f(x)i (3.3)

When the function has multiple input dimensions, the task is to compute the hessian matrix,

defined as

H(f)(x) i, j =
∂ 2

∂xi∂xj
f(x) (3.4)

which is the jacobian of the gradient. In a NN, a critical point ∇xf(x) = 0 is examined in

order to determine if a point is a local minimum. When the hessian is positive definite, that

is, when the directional second derivative in any direction is positive, the point will be a local
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minimum. However, in multiple dimensions, a single point can have different second derivatives

for each direction. In this case, gradient descent fails to determine the nature of a point using

the hessian matrix, implying a slow learning.

3.2.2 Stochastic Gradient Descent

The stochastic gradient descent (SGD) is an evolution of the gradient descent method for taking

into account the misleading with multiple dimension data. It is used to obtain an unbiased

value for the gradient by taking the average gradient for a subset of samples B = {x, ..., xm}

called minibatch uniformly from the training set on each step of the algorithm. The minibatch

size m is chosen to be a relatively small number of examples between 1 and a few hundred,

depending on the size of the training dataset. This hyperparameter is one of the most important

in a NN model, and can be tuned to search for an improve in the model.

The algorithm takes the initial parameter θ from the model, and compute the gradient

estimate

g ← 1

m
∇θ

m∑
i=1

L(f (x(i); θ), y(i)) (3.5)

where ∇θ is the gradient of the parameter θ, L is the per-example loss, x(i) are the m examples

in a minibatch from the training dataset and y(i) are their corresponding targets. After that,

it applies an update in the parameters

θ ← θ − ϵg (3.6)

and then it starts a new epoch. On the other hand, ϵ is an hyperparameter called learning

rate, which determines the step size at each iteration while moving toward a minimum of the

loss function. The negative side of SGD is that, in general, it is a slow algorithm since it may

not be guaranteed to arrive at a local minimum in a reasonable amount of time. Because of

that, several faster algorithms called optimizers have been developed the last years, which are

extensively described in Goodfellow et al. (2016) and the reader is encouraged to consult it for

more information.

3.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (Cun et al., 1990) are NNs generally used to extract

behaviors from image data, which can be thought as a 2D grid of pixels, but it is usual to work
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with this type of NNs to process data with tensor-like topology, for example, a coloured image

have which have more than one channel (RGB). In this case, each tensor consist in a 2D pixel

image for each channel. The difference of these NNs with respect to the ones seen before is that

CNNs use convolution in place of general matrix multiplication in at least one of their layers.

Figure 3.5: General architecture of a CNN model (Goodfellow et al., 2016).

Figure 3.5 shows the general architecture of a CNN model. The layers are known as

convolutional blocks, and they consist of three stages: in the first one, the layer uses parallel

convolution operations in order to produce a set of linear activations. In the second stage, a

nonlinear activation function changes the values from the previous step. In the third step, the

output of the layer changes when using a pooling function, which aggregates information by

grouping neighboring pixels using either their maximum or average values. A FNN can be used

after the output block, as in the figure 3.5, to categorize the outputs of the net but this is not

a general case. Since the networks used along this PhD thesis do not have pooling stages, both

convolution and detector ones will be described in more detail 1.

3.2.4 Convolution Stage

In the convolution stage, the NN applies a convolution operation on each pixel. It is defined as

s(t) =

∫
x(a)w(t− a)da = (x ∗ w)(t) (3.7)

where x is the input, and w is the kernel. The output s is called the feature map. The input

is usually a multidimensional array of data or tensor, and the kernel is usually a tensor of

parameters related to the learning algorithm. If the network use convolutions over more than

one axis at a time, i.e a two-dimensional kernel K, the feature map is defined by a discrete

convolution

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.8)

1The reader is encouraged to consult Goodfellow et al. (2016) for a concise review of the pooling stage.
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This type of function, more useful to implement in a ML model thanks to the less variation on

m and n, is called the cross-correlation function. Figure 3.6 shows an example of convolution

applied to a 2−D tensor.

Figure 3.6: Convolution operation on a 2−D image in the convolution stage of a CNN. After a

convolution in the green grid, a feature map in the blue grid with high dimensionality is created

on each step (Goodfellow et al., 2016).

3.2.5 Detector Stage

In the detector stage, the main objective is to take the set of linear activations produced in the

convolution stage, and run it through a nonlinear activation function. Generally, the activation

functions g(z) have a left derivative defined by the values of the function to the left of z, and a

right derivative defined by the values to the right of z, and they are not differentiable at z = 0

In general, this stage has a transformation such as

z = W Tx+ b (3.9)
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where W is a matrix of kernels, and b are the bias. On the other hand, x are the inputs.

After that, the NN applies the activation function g(z). The most popular activation functions

are the sigmoid, the hyperbolic tangent, the linear units and the rectified linear units (ReLU)

functions.

Figure 3.7: Illustration of the activation function f(y) ReLU (left) and its generalization leaky

ReLU (right), which depends on a parameter a (Goodfellow et al., 2016).

ReLU is popular because it is relatively easy to optimize. As it is shown in Figure 3.7

(left panel), it outputs a non-zero value at half of its domain like the linear units and a zero

value at the other half of its domain. This implies that the derivatives through ReLU are high

when the unit is active. On the other hand, the second derivative is 0 in all its domain. This

means that the gradient direction is more useful for learning than using activation functions

with second-order effects. ReLU follows the transformation

h = g (W Tx+ b) (3.10)

where the parameters are the same as in equation (3.9).

Another possibility is to use a generalization of ReLU called the Leaky Rectified Linear

Units (leaky ReLU), which is the one used in the neural networks of this PhD thesis. This

function uses a non-zero slope αi when zi < 0, that is

hi = g (z, α)i = max(0, zi) + αimin(0, zi) (3.11)

as is shown at right side in figure 3.7. After that, it fixes αi to a small value.

Tunning the detector stage through changing the activation function is another procedure

to search for an improvement in a NN model. This tunning consists generally on a genetic grid
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seach, which tests model for evenly spaced out values of hyperparametrs and determines which

combination gives best results on validation set. Because of that, understand the detector stage

is an extremely active area of research in the world of DL.

3.2.6 Fully Convolutional Neural Networks

Object segmentation is another recently and important goal in the field of DL (Long et al.,

2014). In this case, the DL model looks for classify each pixel instead of the whole image.

If the image is accompanied by a label, a well-trained model theoretically is able to classify

this label as one class. There are two types of image segmentation: Instance Segmentation

and Semantic Segmentation. The last one is the type of image segmentation which looks to

classify the objects belonging to the same class in the image with a single label. An example

of Semantic Segmentation is shown in figure 3.8.

Figure 3.8: Illustration of Semantic Segmentation studied with a NN (Long et al., 2014).

Fully-Convolutional (FCNN) are NNs trained to perform image segmentation. They make

both learning and inference on the whole image at-a-time by feedforward computation and

backpropagation. In their upsampling steps they make a prediction at each pixel and in their

subsampling steps they make a learning at each pixel.

Each layer is a three-dimensional array of size h × w × d, where h and w are height and

width respectively, and d is the feature or channel dimension.

Each FCNN block have three steps (convolution stage, detector stage and pooling stage)

which depend only on relative spatial coordinates. The activation functions of each layer

compute outputs through

y i j = fks ({xsi+δ i,sj+δ j}0≤δ i, δ j≤k) (3.12)
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where k is the kernel size, s is a parameter called the stride or subsampling factor, (i, j) is the

location and fks determines the layer type (convolution, detector or pooling stage). Therefore,

while a CNN computed a nonlinear function, a FCNN computes a nonlinear filter.

A FCNN have two general steps: first, it convolves the image as a CNN with a factor

f . The second step is the upsampling of the image. Upsampling with factor f consist on

take a fractional input stride of 1/f . Since f is integer, upsampling can be seen as backwards

convolution or deconvolution with an output stride of f .

Their learning process is also based on backpropagation and optimization. In this case,

backpropagation algorithm updates both filters and kernels. Since they extract a signal from

others contaminats in an image, they are specially designed for the tasks of this PhD thesis:

both point source detection and CMB recovery are then image segmentation problems 2.

3.2.7 Learning multi-dimensional kernels

As shown in previous sections, the microwave sky has a particular spectral behavior. In this

PhD thesis, the learning is supervised. Therefore, the similar the input image is to the label,

the better the network is performing. However, in some occasions, the input patch could have

complex and different structures with respect to the label, for example, thermal dust cirrus

or strong radio sources. For this purpose, multi-frequency information could help the neural

network to learn. In particular, the networks developed in this PhD thesis read multi-frequency

data, then, their learning process vary with respect the one described in Goodfellow et al. (2016).

In this case, the network have to learn multi-dimensional kernels. This process is extensively

described in Goodfellow (2010), but next pages will describe it briefly.

Firstly, let’s define new notation for simplicity: @d and @T
d represent the convolution and

deconvolution between both visible and hidden channels, respectively. On the other hand, #d

is the convolution between both the gradient and the visible channel. Thus, the convolutional

blocks make a convolution operation

Hc ij =
∑
k,m

WkmiVc◦d+k,m,j = W@dV, (3.13)

while the deconvolutional blocks, connected to them, make a transpose convolution operation

Rqmj =
∑

c,k |d◦c+k=q

∑
i

WkmiHc, i, j = W@d
TH, (3.14)

2The mathematical updating of uni-dimensional FCN kernels are extensively explained in Goodfellow et al.

(2016). The reader is encouraged to consult it for more information.
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where d is a vector of strides, c is a pixel position, ◦ is the elementwise product, i is the visible

channel and j is the hidden channel, that is, the patches of the sky read on each block and the

resulting feature maps. Then, the information flows forward the network. After the last block,

the mean squared error function is computed outputing a loss value. Then, the basic gradient

computed at the end of the architecture is

∂L(H = W@dV )

∂Wc, i, j

=
∑
k,m

∂L

∂Hk jm

Vd◦k+c, i,m = ∇WL(H = W@dV ) = (∇HL)#dV. (3.15)

However, there are three more gradients to compute for updating the parameters of the network:

the gradient of the loss with respect to the weights W of the final block, the gradient of the loss

with respect to the outputs H of the final block and the gradient of the outputs with respect

to the inputs V . The first one is used for updating the weights of the final block, the second

one for updating the outputs of the final block and the third one for propagating the gradient

backwards.

• Gradient with respect to the weights

Rq,m,j =
∑

c,k |d◦+k=q

∑
i

WkmiHc ij ⇒
∂L

∂Wxy z

=
∑
qmj

∂L

∂Rqmj

∂Rqmj

∂Wxy z

=

=
∑
qmj

∂L

∂Rqmj

∂
∑

c,k |d◦+k=q
∑

i WkmiHc ij

∂Wxy z

=

=
∑
q j

∂L

∂Rq y j

∂
∑

c,k |d◦+k=qWxy zHcz j

∂Wxy z

=

=
∑
q j

∂L

∂Rq y j

∑
c,k |d◦+k=q

Hcz j =
∑
cj

∂L

∂Rd◦c+x,y, j
Hcz j ⇒

∂L

∂Wc ij

=

=
∑
km

Hk jm
∂L

∂Rd◦k+c, i,m
⇒ ∂L

∂Wc ij

=
∑
km

∂L

∂Hk jm

Vd◦c, i,m ⇒

⇒ ∇W L(R + W@d
TH) = H#d∇RL

(3.16)
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• Gradient with respect to the outputs

Rq,m,j =
∑

c,k |d◦+k=q

∑
i

WkmiHc ij ⇒
∂L

∂Hxy z

=
∑
qmj

∂L

∂Rqmj

∂Rqmj

∂Hxy z

=

=
∑
qmj

∂L

∂Rqmj

∂
∑

c,k |d◦+k=q
∑

i WkmiHc ij

∂Hxy z

=
∑
qm

∂L

∂Rqmz

∂
∑

k |d◦x+k=q WkmyHxy z

∂Hxy z

=

=
∑
qm

∂L

∂Rqmz

∑
k |d◦x+k=q

Wkmy =
∑
km

∂L

∂Rd◦x+k,m,z
Wkmy ⇒

∂L

∂Hc ij

=

=
∑
km

Wkmi
∂L

∂Rd◦c+k,m,j
⇒ Hc ij =

∑
km

WkmiVd◦c+k,m,j ⇒

⇒ ∇HL(R + W@d
TH) = W@d∇RL

(3.17)

• Propagating the gradient backwards

∂L(H = W@dV )

∂Vxy z
=

∑
c ij

∂L

∂Hc ij

∂Hc ij

∂Vxy z
=

=
∑
c ij

∂L

∂Hc ij

∂
∑

km WkmiVd◦c+k,m,j
∂Vxy z

=

=
∑
c i

∂L

∂Hc iz

∂
∑

k |d◦c+k=x Wky iVxy z

∂Vxy z
=

=
∑
c i

∂L

∂Hc iz

∑
k |d◦c+k=x

Wky i =

=
∑

k |d◦c+k=x

∑
i

∂L

∂Hc iz

Wky i ⇒
∂L(H = W@dV )

∂Vqmj

=

=
∑

c,k |d◦c+k=q

∑
iWkmi

∂L

∂Hc ij

⇒ ∇VL(H = W@dV ) =

= W@d
T∇HL

(3.18)

Once each gradient is computed, the parameters become updated based on an optimizer.

Along this PhD thesis, the optimizer used is AdaGrad. However, deep learning research shaded

light to many more, which are extensively described in Goodfellow et al. (2016). Then, each

parameter θ is updated by following

θt+1 = θt −
η√

ϵI + diag(Gt)
gt, (3.19)

where gt is any of the above gradients at the time-step t, η is the initial learning rate, ϵ is a

small quantity to avoid the division by zero, I is the identity matrix and Gt =
∑t

τ=1 gτ g
T
τ is

the sum of the outer product of the gradients until time-step t.

56



CHAPTER 4

Detecting point sources

4.1 Introduction

As explained before, radio and dusty galaxies are a major contaminant for recovering the CMB

at small scales (l > 1000) in all the range of frequencies where the signal is present in the sky.

Moreover, the first ones pollute the signal mostly bellow 220 GHz, as shown in Figure 2.10,

while the second ones are more relevant at higher frequencies. This is because the emission

from radio galaxies come mainly from the high-energy relativistic jets from their AGN, being

generally non-thermal sources, more relevant at lower frequencies. On the other hand, the

grains from star-forming regions of the dusty galaxies behave similarly to the dust emission

from our Galaxy, which is more relevant in the FIR spectrum.

Planck detected several thousands of PS in temperature and several hundreds in polariza-

tion, as published in both Planck Catalogues of Compact Sources (PCCS Planck Collaboration

(2014a) and PCCS2 Planck Collaboration (2016a)). However, the Mexican Hat Wavelet 2

(MHW2, González-Nuevo et al. (2006)), which was the method used for PS detection in tem-

perature maps in Planck, has several conditionants that could affect a reliable detection of

PS: firstly, it assumes a gaussian distribution for the PS, which implies it can only properly

characterize this kind of shape. Secondly, its convolution affects the total image, implying that

the patch changes its properties once the method is used. Thirdly, it always produce artifacts

near the borders that should be taken into account in a post-processing step in order to avoid

false detections. Because of that, for future experiments, new models should be developed.

Neural networks seem to be good candidates for detecting PS in background noisy maps, as

concluded by Bonavera et al. (2021), who developed a FCNN called the Point Source Image

Detection Network (PoSeIDoN) to detect PS in single-frequency temperature patches of the

sky by performing image segmentation.

Furthermore, PoSeIDoN was trained with realistic simulations of the 217 GHz microwave

sky as seen by Planck, and tested against realistic simulations not only at the channel used for
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training, but also at 143 and 353 GHz channels. Its behavior was also compared against the

performance of the MHW2 on the same patches. The network successfully recovered PS at 90%

completeness corresponding to 253, 126 and 250 mJy for 143, 217 and 353 GHz respectively.

On the other hand, with a 3σ flux density detection limit, the MHW2 recovered PS up to

181, 102 and 153 mJy. However, while PoSeIDoN reached a maximum of 50% of spurious

detections (false positives), the MHW2 recovered sources with much more than 50% at all flux

density intervals. After applying a safer 4σ flux density detection limit to reduce the number

of spurious detections, it recovered PS up to 235, 137 and 192 mJy, but still the number of

spurious detections doubled the one from PoSeIDoN.

These methods are designed to detect PS in single-frequency conditions, but each PS

has its own spectral behavior and single-frequency detection imply a huge wasting of physical

information. Because of that, the use of multi-frequency information could allow to reliable

detect more sources with respect to single-frequency methods.

As shown in Planck Collaboration (2018), Planck detected thousands of multi-frequency

sources with the Matrix Filters approach (Herranz et al., 2009). This chapter describes the

first published method of multi-frequency PS detection based on a neural network model.

The methodology is an evolution of PoSeIDoN. Instead of learning how to segmentate PS in

background noisy patches of the sky in one frequency channel, it uses three channels to take

into account the spectral behavior of the emissions presented in the sky for recovering the PS

contribution. It is called the Multi-frequency Point Source Image Detection Network (MultiPo-

SeIDoN), and its performance was published in the Astronomy and Astrophysics journal Casas

et al. (2022b), in a work led by the author of this PhD thesis.

Moreover, MultiPoSeIDoN is trained with 50000 realistic simulations of the microwave

sky as seen by Planck. Each simulation has three 128×128 pixel patches of the 143, 217

and 353 GHz channels, with a pixel size of 90 arcseconds. The patches are cut by using the

gnomonic projection of the HEALPix framework (Górski et al., 2005) outside the Galactic mask

(|b| > 30◦), in the region above/bellow the black horizontal lines of Figure 2.11.

The simulations are formed by thermal dust, the CMB, the CIB, thermal SZ efect, radio

and dusty galaxy emissions and instrumental noise. In particular:

• The CMB is the map published in Planck after using the SEVEM method Mart́ınez-

González et al. (2003).

• Thermal dust is a simulation from the PLA website, consisting in applying of the
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GNILC method Remazeilles et al. (2011) to the PR2-2015 Planck data at 353 GHz.

Their extrapolation to lower channels has been made by using the PR1-2013 Planck dust

spectral indeces.

• The CIB is simulated by assuming that it is formed by proto-spheroidal galaxies in the

process of forming their stellar masses. To simulate them, the source number counts given

by Cai et al. (2013), their angular power spectrum given by Lapi et al. (2011) and the

software CORRSKY are used.

• The thermal SZ effect is also a simulation from the PLA, based on the number counts

given by the method of Delabrouille et al. (2002).

• Radio and IR late-type PS are simulated by taking into account the C2Ex model by

Tucci, M. et al. (2011) for the number of counts of the first ones, and the source number

counts by Cai et al. (2013) for the second ones. They are injected into the patches by

using CORRSKY. Their spectral behavior is simulated by assuming that vary as

S = S0

(
ν

ν0

)α

, (4.1)

were α is the spectral index for each population, and assumed to be a gaussian value over

the data published in the PCCS2, and shown in Fig. 2.10.

• Instrumental noise is simulated by assuming a random white noise along the patch,

with the sensitivity of Planck, given in Planck Collaboration (2020a): 0.55, 0.78 and 2.56

µKCMB deg for 143, 217 and 353 GHz, respectively.

Figure 4.1 shows one example of the simulations used in this chapter. In the first column

it is shown the three patches seen by MultiPoSeIDoN in both train and test datasets (143, 217

and 353 GHz respectively). The colorbars show the scale of the temperature emission in Jy. As

shown, the 353 GHz channel presents higher contamination from the dust of our Galaxy, as so

as CIB pollution at small scales. It could also be seen the different resolution between the 143

GHz channel and the other two, due to the full width at half maximum (FWHM) of the Planck

instrument. A brighter PS appears in the patch, which could also be seen in the second column

patches, used as a label for the supervised learning of MultiPoSeIDoN. The spectral behavior

of the PS is easier to see: there are sources visible at 353 GHz that start to be apparent at 217

GHz, but they are not in the 143 GHz patch. That is, following the spectral index distributions
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of Figure 2.10, these sources are probably dusty ones, while the brighter PS is probably a radio

galaxy, since it also appears at 143 GHz.

Figure 4.1: From left to right, an example of one simulation used for training and testing

MultiPoSeIDoN and the MTXFs, with the Input total and PS-only input patches, and the

MTXFs and MultiPoSeIDoN PS outputs at 143, 217, and 353 GHz from top to bottom at

b > 30◦ Galactic latitudes. The flux density values (in Jy) for each panel are shown in the

colorbars.

Thus, the choose of these channels for studying the performance of MultiPoSeIDoN is

not trivial: the main channel is the 217 GHz one, because the fraction of sources is higher

than in the other two, as shown in Figure 2.10. On the other hand, 353 GHz channel helps

MultiPoSeIDoN to separate the thermal dust contribution when comparing against the 143

GHz channel. Moreover, 217 GHz is the channel with the higher resolution of Planck, as shown

in Planck Collaboration (2020a), and also the one when SZ effects are negligible, as explained

in Sect. 2.2.4, which helps the network to detect small structures such PS.

As said before, the detection of PS is considered an image segmentation problem: Mul-

tiPoSeIDoN reads patches of the sky and separate the PS signal with respect the other ones.

Then, it is a FCNN formed by several convolutional blocks connected to deconvolutional ones.
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At the end of its architecture, a loss function takes the output and the PS label.

The network is formed by six convolutional blocks of 8, 2, 4, 2, 2, and 2 kernels of sizes

of 9, 9, 7, 7, 5, and 3, respectively, which make inference over the input patches. They are

connected to six deconvolutional blocks of 2, 2, 2, 4, 2, and 8 kernels of sizes of 3, 5, 7, 7, 9,

and 9, which make prediction about the location and flux density of every PS in the patch.

Every layer has a leaky ReLU activation function, which allows the information to pass. At

the end of the architecture, the mean squared error loss function compares the output with the

label, estimating a loss value. After that, the gradient is computed and the parameters of the

network are updated through the backpropagation algorithm. This architecture is called Flat

MultiPoSeIDoN because both label and output are a patch formed by PS at 217 GHz, with a

flat behavior, that is, PS have the same spectral behavior in the three channels. An extension

of this architecture to three outputs, and taking into account the spectral behavior of the PS

for input and output, is also developed for comparison. Its name is Spectral MultiPoSeIDoN.

In that case, the architecture is similar but having 9 kernels in the first convolutional block and

another 9 in the last deconvolutional one instead of 8. Both flat and spectral architectures are

shown in Figures 4.2 and 4.3, respectively.

4.2 Results

After being trained, both networks are tested with similar data, not used for training. In

particular, they read a test set formed by 5000 more patches of the sky, then predicting 5000

patches with the PS. Since creating a catalogue from pixel positions in a patch is not an optimal

process, the detection algorithm from Bonavera et al. (2021) is used, which is based on two

parameters: the minimum flux density limit for considering a pixel value as a detection, and

the number of pixels between detection, for taking into account a PS instead of an artifact

produced by the network. This algorithm produces a series of both position and flux density

for each detection, in order to compare them with the true catalogues, which are the PS in the

label patches. After that, three statistical quantities are used for analyzing the detections. In

particular:

• Photometry

It is simply the comparison between the flux density of a PS in the input catalogue with

respect the flux density of its corresponding estimate. It is usually represented as a scatter

61



DETECTING POINT SOURCES

8 feature maps

512 feature 
maps

Five 
convolutional 

blocks

First convolutional block

Fine-grained features addition

. . .

8 feature maps

Five 
deconvolutional 

blocks

Last deconvolutional block

Figure 4.2: Architecture of Flat MultiPoSeIDoN. Firstly, it has a convolutional block, which

produces eight feature maps. After that, the space dimensionality increases to 512 feature maps

through five more convolutional blocks. These layers are connected to deconvolutional ones,

which decreases the space dimensionality to eight feature maps in the last deconvolutional block.

Fine-grained features are added from each convolution to its corresponding deconvolution.

plot with a line representing the ideal 1:1 case.

• Completeness

It is the ratio between the number of true detections and the total number of input sources

over a given flux limit, that is

C(> S0) =
Ntruedetected(> S0)

Ninput(> S0)
(4.2)

It is usually represented as a cumulative plot with respect to the flux density limit.

• Reliability

It is the number of detected sources that do not have a counterpart in the input catalogue

(called spurious sources or false positives), that is

R(S0) =
Nspurious(> S0)

Ninput(> S0)
=
Npredicted(> S0)−Ntruedetected(> S0)

Ninput(> S0)
(4.3)

It is usually represented as a percentage plot with respect to the flux density limit, and

in combination with the completeness plot.
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Figure 4.3: Architecture of spectral MultiPoSeIDoN. Firstly, it has a convolutional block, which

produces nine feature maps. After that, the space dimensionality increases to 576 feature maps

through five more convolutional blocks. These layers are connected to deconvolutional ones,

which decreases the space dimensionality to nine feature maps in the last deconvolutional block.

Fine-grained features are added from each convolution to its corresponding deconvolution.

4.2.1 Photometry

Figure 4.4 shows the comparison between input and recovered flux density in mJy for each

detected source in the test dataset at 143, 217 and 353 GHz channels. Blue, red, cyan and

orange circles represent the estimates from Flat MultiPoSeIDoN, Spectral MultiPoSeIDoN, the

MTXF at and the MTFX after applying a safer 4σ flux density detection limit, respectively.

In general, both methodologies present a similar behavior along the three channels. Neural

networks recover the flux density without presenting the Eddington Bias below the 100 mJy

Planck limit of reliability. At these flux density low ranges, the uncertainty is at least lower

than 10 mJy. Flat approach is slightly more accurate than the Spectral one, especially at 217

GHz, where Spectral MultiPoSeIDoN estimates have an uncertainty of 10 mJy up to 103 mJy

flux density range.

On the other hand, the MTXF also shows accurate estimates of the flux density of the

detected sources for the three channels. At the same flux density limit bellow the 100 mJy
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Planck’s one, there is still not Eddington Bias at 143 and 217 GHz but the uncertainty when

recovering is about 30 mJy, slightly worse than both MultiPoSeIDoN’s. At 353 GHz, due to

dust and CIB contamination, the MTXF start to present an Eddington Bias at 120 mJy, while

MultiPoSeIDoN are still reliable in their estimates at those flux density ranges.
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Figure 4.4: Flux density comparison between the input sources and the recovered ones by flat

(blue dots) and spectral (red dots) MultiPoSeIDoNs, the MTXF (cyan dots), and the MTXF

with a 4σ flux detection limit (orange dots) at 143, 217 and 353 GHz from top to bottom.

Black dashed lines represent the ideal 1:1 case.
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4.2.2 Completeness and reliability

Figure 4.5 shows the comparison between input and recovered completeness and reliability for

each detected source in the test dataset at 143, 217 and 353 GHz channels. Blue, red, cyan

and orange lines represent the estimates from Flat MultiPoSeIDoN, Spectral MultiPoSeIDoN,

the MTXF and the MTXF after applying a safer 4σ flux density detection limit, respectively.

Completeness performance is similar for both methodologies at 143 and 217 GHz: they

reach the 90% of completeness before Planck levels (represented as a grey dotted line). In

general, MultiPoSeIDoN has a better performance than the MTXF, being the flat case more

accurate than the spectral one. The respective percentage of spurious sources shows similar

results than in Bonavera et al. (2021), when compared PoSeIDoN with the MHW2: the per-

centage of spurious sources from the neural network is clearly lower than from the filters at

similar completeness levels, especially for fainter sources, at low flux density ranges. While for

the MTXF, the percentage of spurious sources slowly decreases when increasing the frequency

channel, it remains relatively stable for MultiPoSeIDoN at all flux density intervals.

In fact, at 143 GHz, the percentage of spurious detections varies from 100% to above

0% for fainter sources between 60 and 200 mJy, while MultiPoSeIDoN spurious detections are

bellow 30% levels. At 217 GHz, the MTXF spurous detections vary from 100% to 0% for fluxes

between 60 and 1000 mJy, while MultiPoSeIDoN only presents a relatively high percentage of

spurious detections for fainter sources bellow 100 mJy.

At 353 GHz, the performance is clearly better for MultiPoSeIDoN: while completeness and

reliability are similar than the other frequencies, the MTXF show a worse performance due to

dust contamination. Moreover, although reaching the 90% of completeness levels at the same

flux density interval than Planck, the percentage of spurious detections is above 50% even for

brighter sources between 1000 and 2000 mJy.
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Figure 4.5: Completeness (top panels) and reliability (bottom panels) of flat (blue lines) and

spectral (red lines) MultiPoSeIDoNs, the MTXF (cyan lines), and the MTXF with a 4σ flux

detection limit (orange lines) at 143, 217 and 353 GHz from top to bottom. Grey dotted lines

represent the 177, 152 and 304 mJy 90% of completeness level reached by Planck for each

channel.
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4.2.3 MultiPoSeIDoN vs PoSeIDoN

Finally, Figure 4.6 shows the performance comparison between PoSeIDoN (in green) and Mul-

tiPoSeIDoN (in blue and red for flat and spectral cases, respectively) at 217 GHz in photometry

and completeness and reliability plots from top to bottom, respectively.

As shown, using multi-frequency information allows the neural network to have good per-

formance: while MultiPoSeIDoN constraints accurately the flux density of the recovered sources,

following the 1:1 case represented with the black dashed line, PoSeIDoN tends to underesti-

mate the flux of the detected sources below 300 mJy. On the other hand, while MultiPoSeIDoN

reaches the 90% of completeness level at lower flux density intervals than Planck nearly without

spurious detections, PoSeIDoN reaches the 90% of completeness at higher flux density intervals,

with more than 50% of spurious detections bellow 100 mJy.
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Figure 4.6: Comparison between PoSeIDoN and MultiPoSeIDoN performances. Top panel:

Flux density recovering from PoSeIDoN (green dots) and from flat and spectral MultiPoSeI-

DoNs (blue and red dots, respectively). The black dashed line represents the ideal 1:1 case.

Bottom panel: Completeness and reliability from PoSeIDoN (green lines) and from flat and

spectral MultiPoSeIDoNs (blue and red lines, respectively). The grey dotted line represents

the 90% of completeness level by Planck.
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CHAPTER 5

Characterizing the polarization of point sources

5.1 Introduction

After the publishing the Second Planck Catalogue of Compact Sources, 234 PS were detected

in polarization, which corresponds to only 2.715% of the sources detected in total intensity.

Moreover, as shown in Section 2.3.1, relevant properties to understand the nature of the po-

larized PS could not be constrained with those poor statistics. In fact, post-Planck studies

gave relatively better statistics than Planck but still these physical properties could not been

accurately estimated.

Today, the method generally used for detecting PS in polarization is the Filtered Fusion

(FF), proposed in Argueso et al. (2009). However, this method is reliable only to 300 mJy, as

shown in Herranz et al. (2021), where an additional method based on a bayesian estimator is

presented. However, also this method could not give accurate estimates of the polarization flux

density bellow the 300 mJy limit. Moreover, the FF method is biased by the errors from Q

and U maps, and its estimates must be processed, as shown in Planck Collaboration (2016a).

Therefore, the question is that if only a few percent of the PS present polarization or if the

methods used for their detection could not give reliable estimations for fainter sources.

Based on the accurate results presented in the last chapter, neural networks could be also

reliable methods for detecting PS in polarization. For this task, there could be two possibil-

ities: the first one is a blind detection as in the last chapter, where PS are detected in noisy

background maps while extracting their flux density. The second one is a non-blind detection,

where the PS polarization properties are estimated after knowing where they are located in

temperature. Since Planck presents accurate estimations for the PS in temperature and it has

a worse polarization sensitivity, it is easier to perform in a non-blind way. Thus, this Chapter

presents a method based on a convolutional neural network for estimating both polarization

flux density and angle of a point source centered in a small patch of the sky, a method published

in the Astronomy and Astrophysics journal Casas et al. (2023a), in a work led by the author
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of this PhD thesis.

The network is called the POint Source Polarisation Estimation Network (POSPEN), and

it is simultaneously trained with Q and U Planck 10000 realistic simulations. Each one has a

patch of the sky at 217 GHz of 32×32 pixels of area, with a pixel size of 90 arcseconds. The

patches were cutted by using the gnomonic projection of the HEALPix framework outside the

Galactic mask (|b| > 30◦). Firstly, the microwave sky is simulated by taking into account all

the elements emitting in polarization at this frequency (CMB, dust and synchrotron). Then,

the central PS is injected into the patch. Finally, random white noise is added to the patch.

In particular:

• The CMB is the map released by Planck using the SEVEM method.

• Thermal dust is a simulation from the PLA website, based on the model by Vansyngel

et al. (2017) with spectral indeces from Planck PR1 release and large scale corrections

with Planck PR2 dust release map.

• Synchrotron emission is also a simulation from the PLA, and it is based on a power law

scale per pixel, being the spectral index derived from WMAP data.

• Radio PS are injected in the center of the polarized patches by assuming a log-normal

distribution with µ = 0.7 and σ = 0.9 parameters from Bonavera et al. (2017a) for the

brighter source selected in a catalogue produced by using the source number counts from

the C2Ex model by Tucci, M. et al. (2011) in temperature.

• Instrumental noise is added as random white noise at Planck levels (1.75 µKCMB deg

at 217 GHz).

Figure 5.1 shows one example of the simulations used in this Chapter. In the top row, it is

shown the patch with all emissions that POSPEN reads in P =
√
Q2 + U2 total polarization,

Q and U from left to right. Bottom row shows the PS only map, used as a label for the training.

In all cases, the units are Jy.

Furthermore, Figure 5.2 shows the architecture of POSPEN. After reading the Input total

patch in its first convolutional block, five more are connected, with 8, 32, 64, 128, and 256 ker-

nels, with sizes of 2, 2, 3, 5, and 5 and strides of 2, 2, 3, 5, and 5. After the convolutional blocks,

there are two layers of 128 and 1 neurons, respectively, which convert the image information

into numerical values. In all layers, the leaky ReLU activation function is used. At the end of
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the architecture, the MSE loss function compares the output with the label for estimating the

loss and the gradient.
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Figure 5.1: Example of one simulation used to train or validate POSPEN for P , Q, and U

polarisation maps (left, middle, and right columns, respectively). Top panels show the input

patch formed by all the emissions, where the network learns how to extract the polarization of

the PS. Bottom figures show the simulated PS, where their integrated intensity are used as a

label for the training. The units are in Jy.

5.2 Results

5.2.1 Constraining the polarization flux density

Once trained, POSPEN is tested with 1000 P more patches not used for training. It estimates a

value for the total polarization flux density of the central PS on each patch. Its performance is

then evaluated by comparing the estimates of the flux density for each PS against their known

value.

This is shown in blue in Figure 5.3, as so as the relative error of the estimates against the

input flux density levels, from top to bottom, respectively. Both dashed black lines represent

the ideal case. Therefore, POSPEN reliably recovers the flux density of sources above 80 mJy,

where Eddington bias starts to appear. In comparison with the bottom panel, for faint sources

bellow 120 mJy, polarization is recovered with an error lower than 30± 50%. Above that limit,

although with poor statistics, POSPEN has fluctuating errors but, in general, they are bellow
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Figure 5.2: Architecture of POSPEN. The information in the 217 GHz patch is convolved into

8 filters in the first convolutional block. After that, several convolutions are made through four

more layers of 32, 64, 128, and 256 filters. The information is then processed through a layer

of 128 neurons. Finally, one last neuron gives the output value.
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Figure 5.3: Estimation of total polarization flux density of the test catalogue. Top panel:

correlation between true and estimated polarization flux density. Bottom panel: polarization

relative error against the input polarization flux density. The error bars represent the uncer-

tainty of each bin, which is considered to be equal to the standard deviation. In both cases,

the dashed black lines show the ideal case.
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5.2.2 Constraining the polarization angle

Although the total polarization P is the most natural quantity for characterizing the value of

the polarized emission from an extragalactic source, due to the fact that it is more related than

Q and U to the real processes occurring along the path of photons from the source to the Earth

(Herranz et al., 2021). Thus, an estimation of both Q and U allows to estimate a polarization

angle value

ψ = tan−1

(
Q

U

)
, (5.1)

where 0 ≤ ψ ≤ 2π is the polarization angle. However, this expression implies having reliable

detections in both polarization channels. Then, for flexibility, polarization angle are estimated

by using

Q = Pcos(ψ)

U = Psin(ψ).
(5.2)

Then, 10000 Q and U simulations each are used for training POSPEN simultaneously. After

being trained, 1000 more simulations are used for testing. Firstly, Q and U photometry is

analyzed in the same way as for the total polarization, in order to give reliable estimations for

the polarization angle.

Figures 5.4 and 5.5 compare the estimates for the polarization flux densities with respect

the input ones for Q and U sources, respectively, being both of them discriminated into Q > 0

sources (in orange), Q < 0 ones (in blue), U > 0 sources (in green) and finally U < 0 ones (in

brown). Also the relative error against the input polarization is shown in the bottom panels of

each figure, being the errorbars the standard deviation of each bin, representing the uncertainty

of the model on each flux density range.

As shown, although separately analyzing both positive and negative Q and U sources,

respectively, results show the same as for the total polarization: POSPEN is reliable above

the 80 mJy limit. Below this value, the Eddington Bias appears in both cases. In this case,

uncertainty increases due to the use of a different sign instead of the positive definite values of

the total polarization.

Moreover, although Q and U could be accurately estimated and therefore the sign of the

polarization angle, there are cases where one of them could not be correctly estimated. Because

of that, the associated sing of the polarization angle could not be in the correct quadrant. To

take into account this issue, Q and U values should be compared for every source: when Q > 0
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and U < 0, the final angle is obtained by adding π/2 to the estimation, while when Q < 0

and U > 0, π/2 are substracted to the estimation. In order to give reliable estimations of the

polarization angle, Figure 5.6 represents the root mean squared error of the polarization angle

with respect the cut in polarization flux density for Q and U detections, that is, with a 250

mJy cut in both channels, POSPEN can estimate the polarization angle with an uncertainty

of 30◦.

The performance in the estimation of the polarization angle is shown in Figure 5.7 for

Q and U sources in orange and green dots, respectively, being the coloured areas their 30◦

uncertainties. As shown, the estimation is generally accurate for bright sources above the 250

mJy cut in flux density since they have to follow the ideal 1:1 case, represented as a dashed

black line in both panels.
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Figure 5.4: Estimation of Q polarization flux density of the positive and negative sources

(in orange and blue, respectively) in the test dataset. Top panel: correlation between true

and estimated polarization flux density. Bottom panel: polarization relative error against the

input polarization flux density. The error bars represent the uncertainty of each bin, which is

considered to be equal to the standard deviation. In both cases, the dashed black lines show

the ideal 1:1 case.
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Figure 5.5: Estimation of U polarization flux density of the positive and negative sources

(in green and brown, respectively) in the test dataset. Top panel: correlation between true

and estimated polarization flux density. Right panel: polarization relative error against the

input polarization flux density. The error bars represent the uncertainty of each bin, which is

considered to be equal to the standard deviation. In both cases, the dashed black lines show

the ideal 1:1 case.
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Figure 5.6: Relation between polarization angle uncertainty for the estimations of POSPEN and

the cut in polarization flux density in both Q and U sources (in orange and green, respectively).

The dashed red line shows the minimum uncertainty considering enough number of sources to

have good statistics.
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Figure 5.7: Estimation of the polarization angle. Top panel: Correlation between true and

estimated polarization angles for Q and U sources (in orange and green, respectively). The

coloured areas represent a confidence interval of ±29◦ for Q sources and ±32◦ U ones, which

are the standard deviation of the relative error of each population, respectively. Dashed black

lines represent the 1:1 case. Right panel: Distribution of polarization angles for both true and

estimated Q and U angles (in orange and green, respectively).
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CHAPTER 6

Recovering the cosmic microwave background

in temperature

6.1 Introduction

As described in Leach et al. (2008), several pre-Planck methods were developed and optimized to

separate the CMB from the other signals in the microwave sky. This process, called component

separation, was one of the main objectives in the Collaboration, which finally was carried out

by four methods, which published unprecedented detailed CMB maps in both temperature

and polarization, as the one seen in Figure 1.5. They will be briefly described, but the reader

is encouraged to see more information in Planck Collaboration (2020b), and the following

references for more information about each method.

• Commander (Eriksen et al. (2008), Galloway et al. (2023)) is a Bayesian approach em-

ploying a Monte Carlo method called Gibbs sampling that fits the data as a parametric

model with standard posterior sampling or maximization techniques, where each param-

eter represent an emission of the microwave sky.

• NILC (Basak and Delabrouille, 2012) extracts the CMB by minimizing the contam-

ination from Galactic and extragalactic foregrounds and noise by computing the linear

combination of the input maps that minimize the variance in a basis spanned by spherical

wavelets called needlets.

• SEVEM (Mart́ınez-González et al., 2003) is an internal template-cleaning approach

based on difference maps between two neighboring Planck channels that trace the fore-

ground contaminants at the corresponding frequency ranges. After that, a linear com-

bination of these templates is subtracted from CMB-dominated frequency maps by min-

imizing the variance of the clean map outside a given mask. Finally, a combination of

individually-cleaned frequency maps in harmonic space produces a cleaned, co-added,

CMB map.
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• SMICA (Cardoso et al., 2008) separates the CMB by synthetizing the maps from spher-

ical harmonic coefficients obtained from the combination of a set of frequency maps with

a multipole vector of weights.

However, although giving reliable and unprecedented detailed CMB maps, the implemen-

tation of these methods required years of research and developing in order to reach the final

precise CMB measurement, with the introduction of notable improvements from the early to

latest releases. Moreover, only 78% of the sky were confidently masked by these methods,

due to strong contamination in the Galactic plane and brighter PS, which were masked once

detected.

Moreover, as shown, for an accurate CMB measurement, methods with different charac-

teristics should be developed and optimized. As explained before, the microwave sky is formed

by several emissions, some of them with non-linear behaviors. Thus, neural networks seem to

be the perfect candidates for separating the CMB from these emissions, especially after ana-

lyzing their performance when detecting PS by following an image segmentation problem in

Chapter 4. Then, this Chapter will describe a similar approach but for recovering the CMB in

temperature realistic simulations of Planck. The results shown in this Chapter are published

in the Astronomy and Astrophysics journal (Casas et al., 2022a), in a work led by the author

of this PhD thesis.

The Cosmic microwave background Extraction Neural Network (CENN) is the FCN used

along this Chapter. It is trained with 60000 realistic simulations of the microwave sky as

seen by Planck. Simulations, frequencies used and architecture are the same as in the Flat

MultiPoSeIDoN case. However, there are slightly variations with respect that case:

• Patches have 256×256 pixels of area in order to have enough statistics at the large scale

multipoles and clearly observe the first recombination peak at l ∼ 200.

• Both train and test simulations comprises the 100% of the sky instead of avoiding the

Galactic plane, in order to study the performance of the network at different conditions.

In fact, the sky is divided into different latitude regions for testing the network. The

divisions are explained in Figure 2.11.

• The label is now the CMB patch.

Figure 6.1 shows an example of simulation used for training and testing CENN at three

latitude ranges: the Galactic plane (hereafter GP) at 0◦ < |b| < 5◦, being b the latitude
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coordinate, the Galactic region (hereafter GR) at 5◦ < |b| < 30◦ and the extragalactic region

(hereafter ER) at 30◦ < |b| < 90◦.

0 50 100 150 200 250

0

50

100

150

200

250

Input Total

0 50 100 150 200 250

0

50

100

150

200

250

Input CMB

0 50 100 150 200 250

0

50

100

150

200

250

Output CENN

0 50 100 150 200 250

0

50

100

150

200

250

Residual Map

1000

2000

3000

4000

5000

200

100

0

100

200

300

200

100

0

100

200

300

100

75

50

25

0

25

50

75

0 50 100 150 200 250

0

50

100

150

200

250

Input Total

0 50 100 150 200 250

0

50

100

150

200

250

Input CMB

0 50 100 150 200 250

0

50

100

150

200

250

Output CENN

0 50 100 150 200 250

0

50

100

150

200

250

Residual Map

200

400

600

800

1000

200

100

0

100

200

300

400

200

100

0

100

200

300

400

40

20

0

20

40

0 50 100 150 200 250

0

50

100

150

200

250

Input Total

0 50 100 150 200 250

0

50

100

150

200

250

Input CMB

0 50 100 150 200 250

0

50

100

150

200

250

Output CENN

0 50 100 150 200 250

0

50

100

150

200

250

Residual Map

0

100

200

300

400

500

300

200

100

0

100

200

300

200

100

0

100

200

40

20

0

20

40

60

Figure 6.1: Patches at 0◦ < |b| < 5◦ (top row), 5◦ < |b| < 30◦ (middle row), and 30◦ < |b| < 90◦

(bottom row) latitude intervals. Columns from left to right represent the maps that CENN

reads with all the emissions, the CMB on each simulation, used as a label during the training,

CENN estimation, and the residual map computed as the difference between the second and the

third column patches from left to right. The frequency is 217 GHz, and their temperature (in

µKCMB) is shown in the right vertical colourbars. The x and y labels are the pixel coordinates

for each 256×256 patch.

Furthermore, Figure 6.2 shows the CENN’s architecture, which is the same as for Flat

MultiPoSeIDoN and the reader is encouraged to follow Section 4.1 for more information.

85



RECOVERING THE COSMIC MICROWAVE BACKGROUND IN TEMPERATURE

conv1

conv2

conv3

conv4

conv5

conv6

deconv1

deconv2

deconv3

deconv4

deconv5

(256, 256, 3)

(128, 128, 8)

(64, 64, 16)

(32, 32, 64)

(16, 16, 128)

(8, 8, 256)

(4, 4, 512)

(8, 8, 512)

(16, 16, 256)

(32, 32, 128)

(64, 64, 32)

(128, 128, 16)

(8, 8, 256)

(16, 16, 128)

(32, 32, 64)

(64, 64, 16)

(128, 128, 8)

(256, 256, 1)

Fine-grained features addition

Figure 6.2: Architecture of CENN. The first one has a convolutional block, which produces eight

feature maps. After that, the space dimensionality increases to 512 feature maps through five

more convolutional blocks. These layers are connected to deconvolutional ones, which decreases

the space dimensionality to eight feature maps in the last deconvolutional block. Fine-grained

features are added from each convolution to its corresponding deconvolution.

6.2 Results

6.2.1 Power spectrum

Once trained, CENN is tested with similar, although not used for training, data. Four datasets

are formed: one with 6000 realistic simulations of Planck at random positions at all sky, and

three more, 2000 realistic simulations each, one for each latitude interval (GP, GR and ER).

The main statistical quantity used for evaluate the performance of the network is the

power spectrum, described in Section 2.1. In this first analysis, CENN is only tested using the

first dataset. After obtaining a set of CMB predictions, an algorithm for estimating the TT

power spectrum is run for each of them, as so as for the input CMB signal contained on each

simulation. After estimating the power spectrum of each patch, the average data is rebinned

and then both mean and standard deviation are saved in order to have an uncertainty for each

multipole range.
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Figure 6.3 shows, in the top panel, the comparison between both l(l + 1)Cl/2π average

power spectrum of the CMB in the input simulations (in blue) and the power spectrum estimates

by CENN (in red). It is also represented in the bottom panel the difference between both signals

(in black). In all cases the units are µK2.

As shown, CENN recovers the CMB with high accuracy at all multipole ranges. In general,

the mean absolute error is lower than 50 ± 100µK2, especially at small scales (l ∼ 1500) and

large scales (l < 500), although the second ones could be an effect of poor information due to

the patch smallness. It is remarkable however that in general the power spectrum difference

between input and estimation is around 0 ± 100µK2 at the rest of the multipole intervals.

In fact, at smaller scales than l ∼ 1500, Planck component separation methods generally

overestimate the CMB power spectra due to instrumental noise effects.
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Figure 6.3: Average CMB power spectrum comparison computed over the entire test dataset.

The input CMB is represented as a blue line, and the estimates from CENN are shown as a

red line. The corresponding uncertainties, computed as the standard deviation of each bin,

are the blue and red areas, respectively. The difference between input and output is shown in

the bottom panel as a black line, with its uncertainty being the grey area. Red dashed line

represents the ideal case.
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6.2.2 Residuals

Although powerful information can be obtained from the power spectrum analysis, another

useful quantity to evaluate is the power spectrum of the residual patches, that is, firstly, the

residual patch is estimated as the difference between input and output patches (an example of

that could be seen in the right column of Fig. 6.1). Then, the TT power spectrum is estimated

for each patch and the mean and standard deviation are taken in the same as in the previous

section.

Figure 6.4 shows the power spectrum of the residual patches (in black), in comparison

with both input and output power spectrum (blue and red lines) and the power spectrum of

each element in the simulations: dust, CIB, PS and Noise in orange, green, pink and brown

respectively. All the power spectra are estimated not only for the test dataset with simulations

at all sky (bottom right panel), but also at the three latitude test datasets (GP, GR and ER

in the top left panel, top right panel and bottom left panel, respectively)

As shown, residuals are generally below the input signal in the four cases, even at small

scales (l > 2000) when PS, CIB and instrumental noise starts to dominate the signal. Even

more, although dust is the dominant emission polluting the signal with scales from 1 to 3 orders

of magnitude above the input, residuals are generally between 1 and 2 orders of magnitude below

it. Moreover, as seen by CENN’s uncertainties, the CMB is accuraterly recovered at all Planck

multipole range, since uncertainty results are compatible with zero until l ∼ 2000.
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Figure 6.4: Average power spectrum of the residuals (black) and its uncertainty (grey area)

for GP (top left panel), GR (top right panel) and ER latitude regions (bottom left panel)

and for the whole sky (bottom right panel) against the input and output CMB (blue and red

lines, respectively) and their uncertainties (blue and red areas, respectively). In all cases, these

uncertainties are the standard deviation of each bin. The power spectrum of each foreground

in the simulations is also plotted. The thermal dust is represented by the orange line, the PS

and CIB by the pink and green lines, respectively, and the instrumental noise is shown by the

brown line.
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6.2.3 Looking inside CENN

Finally, Figure 6.5 shows how convolutional and deconvolutional blocks in CENN make inference

and prediction, respectively over the input images about where the CMB is located and which

is its value on each pixel. As shown, by using convolution operations, all regions in the patch

are analyzed by CENN pixel-at-pixel. Then, at the deepest layers of the network, CENN learns

by comparing the CMB values with the other foregrounds, in order to separate the signals.

This is then used in the deconvolutional blocks to infer the shape of the CMB signal.

conv1 conv2 conv3 conv4 conv5

deconv1 deconv2 deconv3 deconv4 deconv5

Figure 6.5: Example of the feature maps of each convolutional block of CENN (top panel) and

each deconvolutional one (bottom panel).

91



RECOVERING THE COSMIC MICROWAVE BACKGROUND IN TEMPERATURE

92



CHAPTER 7

Recovering the cosmic microwave background

in polarization

7.1 Introduction

As shown if Figures 2.6 and 2.7, after the third Planck release, the E-mode, as well as its

correlation with temperature, were unprecedentedly constrained to multipoles l ∼ 1700. How-

ever, the B-mode could not be constrained due to the low sensitivity of the instrument aboard

the satellite. Post-Planck experiments such as BICEP/Keck estimated the lensed B-modes

(50 < l < 300) with high accuracy, while ACT and SPTPol gave upper limits for the lensed

B-mode at small scales (l > 1000). Moreover, future CMB experiments such LiteBIRD are

designed to unveil the primordial B-mode signal at larger scales than BICEP/Keck (l < 200).

Following LiteBIRD Collaboration (2023b), in addition to Commander and NILC algo-

rithms described in Chapter 6, three more component separation algorithms are already been

used with LiteBIRD simulations to constrain the tensor-to-scalar ratio in future data releases:

• FGBuster (Puglisi et al., 2022) is a parametric method which uses nonlinear optimization

to explore the likelihood function by firstly estimating all nonlinear spectral foreground

parameters, secondly by estimating amplitudes conditionally with respect to the spectral

parameters and, finally, by computing the angular power spectra from the amplitude

maps.

• Moment expansion (Chluba et al. (2017), Vacher et al. (2022)) is a parametric method

which allows Taylor-expansion based distortions in the SED models for each foreground,

taking into account their nonlinear averaging effects.

• cMILC (Remazeilles et al., 2021) combines the moment-expansion and NILC methods by

imposing additional constraints on the ILC weights that cancels out individual foreground

components through their Taylor-expanded SEDs. Then each moment corresponds to one
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additional linear constraint in the ILC, solving the combination of foreground-specific and

variance constraints by single Lagrange multiplier system.

As shown, all these methods are different between them although they share the same goal.

However, none of those methods are based on artificial intelligence, therefore it could be useful

to explore some ML approach as in temperature. In this Chapter, a new methodology for

recovering both E and B-mode CMB polarization based on neural networks is presented, work

submitted to the Astronomy and Astrophysics journal (Casas et al., 2023b) and led by the

author of this PhD thesis. The network is a simplified version of CENN, trained with less

information and, because of that, with a simple and shallower architecture, as shown in Figure

7.2.

The network is trained with the same Q and U sky than POSPEN from Chapter 5, although

with several modifications for this work:

• In order to take into account multi-frequency information, three HFI channels are used

for helping CENN to discriminate between foreground contamination and the CMB. Due

to the sensitivity given in Planck Collaboration (2020a), the channels used are 100, 143

and 217 GHz, which are the ones with the lower noise levels.

• The ∼ 5 arcmin Planck sky is smoothed with several Gaussian filters of 30, 25 and 20

arcmin. This has to be done for increasing the signal-to-noise ratio of the patches. With

this approach, it is easier to give a prediction, although losing part of the signal.

• Patches are cutted from all-sky maps by using the Krachmalnicoff and Puglisi (2021) ap-

proach, because the gnomonic projection from HEALPix causes a strong E-to-B leakage,

as explained in Casas et al. (2023b).

Thus, CENN is trained with 10.000 simulations for Q and U simultaneously. Figure 7.1

shows an example of the sky used for training and testing the network.

Furthermore, CENN is formed in this study by four convolutional blocks with 8, 2, 4 and

2 kernels of sizes of 9, 9, 7 and 7, respectively. The number of filters is 8, 16, 64 and 128,

respectively. Each layer has a subsampling factor of 2 and a padding type ”Same” for adding

space around the input data or the feature map in order to deal with possible loss in width

and/or height dimension in the feature maps after having applied the filters. The convolutional

blocks are connected to four deconvolutional ones to help the network to predict low-level
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features by taking high-level features into account, previously inferred by the convolutional

blocks, as explained in Casas et al. (2022a). The deconvolutional blocks have 2, 2, 2 and 4

kernels of sizes of 3, 5, 7 and 7, respectively. The number of filters is 64, 16, 8, and 1 with the

same subsampling and padding type than the convolutional ones. In all layers, the activation

function is leaky ReLU. This architecture is represented in Figure 7.2.

Once trained, the network is tested with 1.000 simulations. In order to analyze the per-

formance of CENN, both EE and BB power spectra is estimated from Q and U input and

recovered patches by using the NaMaster framework (Alonso et al., 2019).
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Figure 7.1: Example of one simulation used for training CENN in Q (top row) and U (bottom

row) polarization at 30 arcmin resolution. The left column shows the input patch formed by

all the emissions, the second one represents only the CMB signal, used for minimizing the loss

function during training. The third column shows the output CMB after validating CENN and

the fourth one shows the residual patch, which is computed as the difference between input

and output CMB. The units in all the patches are µKCMB.
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Figure 7.2: Architecture of CENN. It has four convolutional blocks connected to other four

deconvolutional ones, which are trained to read 3 input images of the microwave sky and

recovery the CMB signal of the central frequency channel (in this case corresponding to 143

GHz).
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7.2 Results

7.2.1 Power spectrum

In order to give reliable results from CENN, the sky is smoothed with a Gaussian filter of 30

arcmin for increasing the signal-to-noise ratio. At this situation, the CMB is the dominant

signal of the patch, making easier to recover it, although only multipoles up to l ∼ 600 can

be recovered. Figure 7.3 shows the comparison between input (in blue) and recovered power

spectra (in red) for the E-mode (top panel) and the B-mode (bottom panel). Black line shows

the difference between them, while the coloured areas are the uncertainty of each signal.

As seen, the E-mode is recovered with a mean difference of 0.1±0.3 µK2, while the B-mode

is estimated with 0.01±0.05 µK2. At large scales (l < 200), CENN has a worse performance,

probably due to the smallness of the patch and the poor statistics for learning the anisotropies.

In order to compare this performance against high resolution data, Figure 7.4 shows the

network trained at 30 arcmin and tested against a new dataset of 25 arcmin resolution (orange

line), formed by patches at the same position in the sky. As a comparison, the same architecture

but trained at 25 arcmin (red line) is shown. Both differences with respect to the input signal

(in blue) are shown as brown and black lines, respectively. The coloured areas represent the

uncertainty of each signal. In this case, CENN can recover the signal for multipoles up to

l ∼ 700.

As shown, results are similar to the last case: the E-mode is recovered with a mean

difference of 0.1±0.5 µK2 for the 25 arcmin network and 0.3±0.7 µK2 for the 30 arcmin one.

On the other hand, the B-mode is estimated with a difference of 0.005±0.04 µK2 in the 25

arcmin case and 0.01±0.05 µK2 in the 30 arcmin one. Therefore, results show that it is better

to train the network at the same resolution than testing, and that it is reliable at 25 arcmin

resolution.

Then, Figure 7.5 shows the same analysis but testing three networks at 20 arcmin resolu-

tion, where instrumental noise starts to dominate the signal: both trained at 30 and 25 arcmin

from the last cases (in magenta and orange, respectively), and a third one trained at 20 arcmin

(in red). Their differences with respect the input signal (in blue) are shown in yellow, brown

and black, respectively. The coloured areas represent the uncertainty of each signal. In this

case, CENN can recover the signal for multipoles up to l ∼ 800.
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This case shows that CENN recovers the E-mode with similar performance to that of the

previous cases when trained at 20 arcmin. However, both networks trained at 25 and 30 arcmin

show slightly worse performance than in the previous cases. On the other hand, the B-mode

show completely opposite performance: similar results are obtained when training at lower

resolution and much worse performance is obtained when training at 20 arcmin. This implies

that, firstly, the network can infer small scales from high resolution data, although trained at

lower resolution and, secondly, noise levels are crucial during the weights optimization, that

is, it seems better to train the network in unrealistic conditions although testing with realistic

ones.

Finally, CENN is tested in Figure 7.6 with 5 arcmin resolution data without noise, in order

to give an approximation for future CMB experiments with higher resolution than Planck. In

this case the recovered signal can reach multipoles l ∼ 1500. The performance is compared

against a different foreground model (d4s2 from PySM) at the same position in the sky. The

input signal is represented in blue, both train and d4s2 foreground models in red and orange,

respectively. Their difference with respect to the input signal are shown in black and brown,

respectively.

As shown, CENN accurately recovers both modes with similar results than the 30 arcmin

case, especially at middle and smaller scales (l > 200), showing the d4s2 foreground model case

worse results with respect the train foreground model.
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Figure 7.3: EE and BB power spectra recovery after training and testing CENN at 30 arcmin

resolution. Top panel: EE power spectra in the input simulations (blue line) and patch average

output power spectra from CENN at 30 arcmin red line. Top bottom panel: Difference between

input and recovered EE power spectra at 30 arcmin (black line). Bottom panel: the same but for

the B-mode. In all cases, coloured areas shown the standard deviation of each bin, considered

as the uncertainty of the model. Red dashed lines in bottom sub-panels represent the ideal

case.
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Figure 7.4: EE and BB power spectra recovery after training CENN at 25 and 30 arcmin

resolution and tested at 25 arcmin. Top panel: EE power spectra in the input simulations

(blue line), patch average output power spectra from CENN trained at 25 (red line) and 30

arcmin (orange line). Top bottom panel: Difference between input and recovered EE power

spectra from CENN trained at 25 arcmin (black line) and 30 arcmin (brown line). Bottom

panel: the same but for the B-mode. In all cases, coloured areas shown the standard deviation

of each bin, considered as the uncertainty of the model. Red dashed lines in bottom sub-panels

represent the ideal case.
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Figure 7.5: EE and BB power spectra recovery after training CENN at 20, 25 and 30 arcmin

resolution and tested at 20 arcmin. Top panel: EE power spectra in the input simulations (blue

line), patch average output power spectra from CENN trained at 20 (red line), 25 (orange line)

and 30 arcmin (magenta line). Top bottom panel: Difference between input and recovered EE

power spectra from CENN trained at 20 (black line), 25 (brown line) and 30 arcmin (yellow

line). Bottom panel: the same but for the B-mode. In all cases, coloured areas shown the

standard deviation of each bin, considered as the uncertainty of the model. Red dashed lines

in bottom sub-panels represent the ideal case.

101



RECOVERING THE COSMIC MICROWAVE BACKGROUND IN POLARIZATION

0 200 400 600 800 1000 1200 1400
10 3

10 2

10 1

100

101

EE
[

K
2 ]

Input
Recovered-train fg. model
Recovered-d4s2

0 200 400 600 800 1000 1200 1400

0

2

4

EE
[

K
2 ] train fg. model

d4s2

0 200 400 600 800 1000 1200 1400
10 3

10 2

10 1

BB
[

K
2 ]

Input
Recovered-train fg. model
Recovered-d4s2

0 200 400 600 800 1000 1200 1400
0.0

0.1

0.2

BB
[

K
2 ] train fg. model

d4s2

Figure 7.6: EE and BB power spectra recovery after training CENN at 5 arcmin resolution

without noise. Left top panel: EE power spectra in the input simulations (blue line), patch

average output power spectra from CENN training foreground model (red line) and d4s2 (orange

line) foreground models. Left bottom panel: Difference between input and recovered EE power

spectra from CENN for the training (black line) and d4s2 (brown line) foreground models.

Right panel: the same but for the B-mode. In all cases, coloured areas shown the standard

deviation of each bin, considered as the uncertainty of the model. Red dashed lines in bottom

sub-panels represent the ideal case.
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7.2.2 Residuals

Although the last section shows a reliable analysis to understand the performance of the network

when recovering the CMB in polarization, it is more relevant to work with the power spectra of

the residual patches, which are defined as the difference between input and recovered patches.

In fact, the last comparison between input and recovered signals could not show the possible

introduction of artifacts created along the patch by CENN.

Then, following the same resolution analysis than the last section, Figure 7.7 shows the

power spectrum of the 30 arcmin residuals patches (in black), in comparison with the input

signal (in blue) and the highest noise seen by CENN in the test simulations (represented as a

dashed grey line), corresponding to the one for the 100 GHz channel.

As shown, for the E-mode, most of the residuals appear at large scales (l < 200), where

they are of the order of the input signal. Above that scales, residuals decrease from 10−1 µK2

to 10−2 µK2. The B-mode shows accurate results, being the power spectrum of the residuals

bellow the input signal at all scales, although the noise levels are above residual ones.

As shown in Figure 7.8, similar results are obtained when training at 25 arcmin and testing

both 25 and 30 arcmin networks. In this case, the E-mode is accurately recovered above l > 200,

since residuals are of two orders of magnitude lower, being the 25 arcmin (in black) ones below

the 30 arcmin ones (in brown). Furthermore, at the smaller scales (l > 500), residuals are 10−2

µK2, although the noise levels are above them. Similar results are obtained when recovering

the B-mode. In fact, noise levels dominate the signal above l > 500.

Figure 7.9 shows the performance when training and tested at 20 arcmin resolution (in

black). Both networks trained at 30 and 25 arcmin (in yellow and brown) are also tested at

this resolution. The E-mode is similarly recovered with respect the previous cases, being the

residuals one order of magnitude below the input one (in blue) above l > 200. The 20 arcmin

case has higher residuals than the other cases above l > 400. On the other hand, the B-mode

is accurately recovered for both 25 and 30 arcmin cases, although noise levels are higher than

those train cases and indeed dominates the signal at all scales. However, the 20 arcmin case

(in black) recovered the signal with higher residuals than the input.

Finally, when training and testing with 5 arcmin data without noise, CENN recovers the

CMB with much better results than in the previous cases at l > 200, being the E-mode recovered

with residuals between 1 and 2 orders of magnitude below the input signal (in blue) for the same

foreground model as in the training (in black) and for the d4s2 foreground model (in brown).
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On the other hand, the B-mode is accurately recovered when testing with the same foreground

model, obtaining residuals of about 5 × 10−3 µK2 for l > 100, although when changing the

foreground model, it is obtained a worse recovering because residuals are at the order of the

input signal. CENN seems to be sensitive to the sky used for training. Therefore, in order to

a properly recovery of the B-mode, the foregrounds should be correctly characterized and the

network should be optimized for each kind of sky.
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Figure 7.7: EE and BB residuals after training CENN at 30 arcmin resolution and tested at

the same resolution. Top panel: EE power spectra in the input simulations (blue line) and

residual patch average power spectra from CENN at 30 arcmin (black line). Bottom panel: the

same but for the B-mode. In all cases, coloured areas shown the standard deviation of each bin,

considered as the uncertainty of the model. Grey dashed line shows the higher instrumental

noise levels seen by CENN.
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Figure 7.8: EE and BB residuals after training CENN at 25 and 30 arcmin resolution and

tested at 25 arcmin. Top panel: EE power spectra in the input simulations (blue line), residual

patch average power spectra from CENN at 25 (black line) and 30 arcmin (brown line). Bottom

panel: the same but for the B-mode. In all cases, coloured areas shown the standard deviation

of each bin, considered as the uncertainty of the model. Grey dashed line shows the higher

instrumental noise levels seen by CENN.
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Figure 7.9: EE and BB residuals after training CENN at 20, 25 and 30 arcmin resolution and

tested at 20 arcmin. Top panel: EE power spectra in the input simulations (blue line), residual

patch average power spectra from CENN at 20 (black line), 25 (brown line) and 30 arcmin

(yellow line). Bottom panel: the same but for the B-mode. In all cases, coloured areas shown

the standard deviation of each bin, considered as the uncertainty of the model. Grey dashed

line shows the higher instrumental noise levels seen by CENN.
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Figure 7.10: EE and BB residuals after training CENN at 5 arcmin resolution without noise.

Left panel: EE power spectra in the input simulations (blue line), residual patch average power

spectra from CENN for the training (black line) and d4s2 (brown line) foreground models.

Right panel: the same but for the B-mode. In all cases, coloured areas shown the standard

deviation of each bin, considered as the uncertainty of the model.
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7.2.3 Looking inside CENN

Finally, Figures 7.11 and 7.12 show how convolutional and deconvolutional blocks in CENN

make inference and prediction over the input Q and U patches, respectively, about where the

CMB is located and which is its value on each pixel. As shown, by using convolution operations,

all regions in the patch are analyzed by CENN pixel-at-pixel. Then, at the deepest layers of

the network, CENN learns by comparing the CMB values with the other foregrounds, in order

to separate the signals. This is then used in the deconvolutional blocks to infer the shape of

the CMB signal.

conv1 conv2 conv3 conv4

deconv1 deconv2 deconv3 deconv4

Figure 7.11: Example of the feature maps of each convolutional block of CENN (top panel)

and each deconvolutional one (bottom panel) when testing with a Q patch.
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conv1 conv2 conv3 conv4

deconv1 deconv2 deconv3 deconv4

Figure 7.12: Example of the feature maps of each convolutional block of CENN (top panel)

and each deconvolutional one (bottom panel) when testing with a U patch.
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CHAPTER 8

Summary and conclusions

The cosmic microwave background, although it has been extensively studied these last decades,

is still a profitable source of information about the first stages of the Universe and their relation

with its actual nature. Future experiments will allow to unveil most details about the first

instants of the Universe. However, with the improvement in the quality and quantity of data

along with the challenging of the future CMB experiments, powerful automatic and flexible

methods should be develop and optimize.

Artificial neural networks seem to be the perfect candidates for this objective since, once

trained, they are capable to automatically and instantaneously perform a task. Moreover, they

are specially designed to deal with non-linear behaviors from data, which are precisely the

ones that have the CMB foregrounds, that is, the Galactic and extragalactic emissions that

contaminate the CMB maps.

This PhD thesis wants to cement several methodologies based on neural networks, applied

to different studies: radio source detection in temperature maps, the constraining of their

polarization properties and the recovery of the CMB in both temperature and polarization

maps. The that have been obtained with these neural networks are presented in four chapters

(4, 5, 6 and 7, respectively), and published in high-impact papers (Casas et al. (2022b), Casas

et al. (2023a), Casas et al. (2022a) and Casas et al. (2023b)) led by the author of this PhD

thesis.

Despite some variations in the methodological details of each analysis, the main idea along

the four works is to train and test convolutional neural networks with realistic simulations of

the Planck satellite. The sky seen by the neural networks is not only formed by the CMB,

but it also contains dust and synchrotron emission from our Galaxy, thermal SZ from Galaxy

clusters, the CIB, radio and dusty sources, and instrumental noise. In all train datasets, the

microwave sky is cut into squared patches with different area size, depending on each analysis.

MultiPoSeIDoN, CENN and POSPEN are the neural networks developed, trained and

analyzed in this PhD thesis. First and second ones are fully-convolutional neural networks,

with architectures designed to perform image segmentation. The third one is a convolutional
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neural network, designed to extract a numerical value from an image. In all cases the learning

is supervised, that is, an emission in the simulations is kept and used for minimizing a loss

function at the end of each architecture. This is called a label. In Chapter 4, PS detection is

performed by using the PS patch as a label. In Chapters 6 and 7, the CMB is used instead. In

Chapter 5, the polarization flux density of the PS is the quantity of interest.

MultiPoSeIDoN is trained in Chapter 4 to detect PS in realistic simulations of the HFI

Planck channels. Detection is performed by using multi-frequency information, and results are

compared with the Matrix Filters, a method used in Planck. Based on the analysis of the

photometry, completeness and reliability, the neural network is more accurate than the filter,

especially at the highest frequencies, where Galactic dust dominates the signal. More on, it is

more reliable than the filter at the same completeness, since it detects a much lower number

of spurious sources or false positives. The comparison against the same neural network trained

with single-frequency information show that accurate results are obtained when training with

multi-frequency data.

POSPEN is trained in Chapter 5 for characterizing the polarization properties of PS in

realistic simulations of the 217 GHz Planck channel. It is a convolutional neural network that

reads a patch in the sky and outputs a numerical value for the PS located in the center of the

patch. Once obtained the polarization flux density in both Q and U channels, it can estimate

the polarization angle. Results shown a better performance with respect to the actual methods,

because it could give reliable results at 80 mJy, instead of the 200 mJy limit for the traditional

methods. Moreover, it could estimate accurately the polarization angle for PS above 200 mJy.

CENN is trained in Chapters 6 and 7 to recover the CMB signal in temperature and

polarization, respectively. Although varying the size of the train dataset and the deepness of the

network, accurate results are obtained in both cases in terms of the power spectra. In particular,

in temperature, CENN shows reliable results by comparing both true and recovered CMB

signals, and also when estimating the power spectra of the residual patches, especially at small

scales, where noise starts to dominate the signal. In fact, the neural network behaves differently

with respect to traditional component separation methods, giving a precise estimation of the

power spectra instead of overestimate the signal.

In polarization, although the sensitivity of the Planck instrument did not allow an esti-

mation for the B-mode, CENN is able to give, at least in the actual conditions, an upper limit

in Planck realistic simulations. Even more, CENN accurately estimates the E-mode. Due to
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the low signal-to-noise ratio, patches should be smoothed, therefore the network only can re-

cover the polarization up to multipoles l ∼ 800. When testing without noise, the network can

accurately recover the CMB at smaller scales, an approximation for future CMB experiments

with higher sensitivity than Planck. By comparing the performance when training at higher

resolution, it is found that the network is more accurate when trained with lower levels of noise,

although tested in worse conditions. By testing with a different foreground model with respect

to the one in the training dataset, it is found that CENN is sensitive to the sky used for training,

and therefore the network should be optimize for each kind of sky, and also foregrounds should

be correctly characterize, especially for the B-mode recovery.

Therefore, this PhD thesis is not only a compendium of methodologies based on neural

networks for CMB studies, but also wants to study how neural networks behave with this kind

of data. Understanding these methods would allow to use them in future CMB experiments.

For example, the CENN extension to all sky should be the next objective, in order to give

not only estimations for the B-mode at large scales, where recombination peak represents the

primordial signal, but also the use of information of larger areas for recover the entire signal in

both modes. Furthermore, although Planck estimated with high reliability the polarization of

point sources, poor statistics were obtained. Probably, a higher number of sources lies bellow

the reliability limit of the Filtered Fusion method used in Planck. POSPEN can probably

characterize their flux density, and also the polarization angle for the brighter sources in each

Planck channel. As commented above, better statistics would allow a better understanding of

their polarized behavior.
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Resumen y concusiones

El fondo cósmico de microondas, a pesar de haber sido detenidamente estudiado estas últimas

décadas, es aún una gran fuente de información sobre los primeros instantes del Universo y su

relación con su actual naturaleza. Experimentos futuros serán capaces de descubrir más detalles

aún sobre los primeros instantes del Universo. Sin embargo, el aumento de la cantidad y calidad

de los datos, junto con los desaf́ıos a los que deberán enfrentarse los futuros experimentos del

fondo cósmico de microondas, nuevos métodos automáticos y flexibles deben desarrollarse y

optimizarse.

Las redes neuronales artificiales parecen ser las perfectas candidatas para este objetivo dado

que, una vez entrenadas, son capaces de realizar una tarea automática e instantáneamente.

Además, están especialmente diseñadas para lidiar con comportamientos no lineales en los

datos, que son precisamente los que tienen los foregrounds del fondo cósmico de microondas,

es decir, las emisiones Galácticas y extragalácticas que contaminan la señal.

Esta tesis de doctorado pretende cimentar varias metodoloǵıas basadas en redes neuronales,

aplicadas a diferentes estudios: la detección de fuentes radio en mapas de temperatura, el ajuste

de sus propiedades de polarización y la recuperación del fondo cósmico de microondas en mapas

de temperatura y polarización, resultados divididos en cuatro caṕıtulos de esta tesis (4, 5, 6

and 7, respectivamente) y publicados en art́ıculos de alto impacto (Casas et al. (2022b), Casas

et al. (2023a), Casas et al. (2022a) y Casas et al. (2023b), respectivamente), liderados por el

autor de esta tesis de doctorado.

A pesar de variar detalles de la metodoloǵıa en cada análisis, la idea principal en los cuatro

trabajos es entrenar y testear redes neuronales convolucionales con simulaciones realistas del

satélite Planck. El cielo visto por las redes neuronales no sólo está formado por el CMB, sino

que además contiene polvo y emisión sincrotrón de nuestra galaxia, efectos termales de SZ

de grupos de galaxias, el CIB, fuentes radio y dusty, y ruido instrumental. En todos los sets

de entrenamiento, el cielo de microondas es cortado en parches cuadrados con diferente area,

dependiendo de cada análisis.

MultiPoSeIDoN, CENN y POSPEN son las redes neuronales desarrolladas, entrenadas y

analizadas en esta tesis doctoral. La primera y la segunda son redes neuronales totalmente con-

volucionadas, con arquitecturas diseñadas para realizar segmentación de imagenes. La tercera

es una red neuronal convolucional, diseñada para extraer un valor numérico de una imagen.



En todos los casos, el aprendizaje es supervisado, es decir, se guarda una emisión de las sim-

ulaciones para minimizar la función de coste al final de cada arquitectura. A esta emisión se

la llama etiqueta. En el Caṕıtulo 4, para la detección de fuentes se utiliza el parche con las

fuentes puntuales como etiqueta. En los Caṕıtulos 6 y 7, se utiliza el CMB en su lugar. En el

Caṕıtulo 5 la densidad de flujo de polarización de la fuente puntual es la cantidad de interés.

MultiPoSeIDoN se entrena en el Caṕıtulo 4 para detectar fuentes puntuales en simulaciones

realistas de los canales HFI de Planck. La detección se realiza utilizando información multi-

frecuencia, y se comparan los resultados con los Matrix Filters, un método usado en Planck. En

base al análisis de la fotometŕıa, completitud y fiabilidad, la red neuronal es más precisa que

el filtro, especialmente a las frecuencias más altas, cuando el polvo Galáctico domina la señal.

Más aún, es más fiable que el filtro a la misma completitud, ya que detecta un número mucho

más bajo de fuentes espúreas or false positives. La comparación con la misma red neuronal

entrenada con información uni-frecuencia muestra resultados más precisos cuando la red se

entrena con datos multi-frecuencia.

POSPEN se entrena en el Caṕıtulo 5 para caracterizar las propiedades de polarización de

fuentes puntuales en simulaciones realistas del canal 217 GHz de Planck. Es una red neuronal

convolucional que lee un parche del cielo y devuelve un valor numérico de la densidad de flujo

de polarización de la fuente puntual localizada en el centro del parche. Una vez obtenida la

polarización de los canales Q y U , puede estimarse el ángulo de polarización. Los resultados

muestran un rendimiento mejor que los métodos utilizados actualmente, ya que es capaz de

dar resultados fiables hasta 80 mJy, en lugar de los 200 mJy que suelen tener los métodos

tradicionales como ĺımite. Además es capaz de estimar precisamente el ángulo de polarización

de fuentes por encima de los 200 mJy.

CENN se entrena en los Caṕıtulos 6 y 7 para recuperar la señal del CMB en temperatura

y polarización, respectivamente. A pesar de variar el tamaño del set de entrenamiento y la

profundidad de la red, se obtienen resultados precisos en ambos casos en términos del power

spectrum. En particular, en temperatura, CENN obtiene resultados fiables al comparar las

señales del CMB real con el recuperado, y además cuando se estima el power spectrum de los

parches residuo, especialmente a pequeña escala, donde el ruido domina la señal. De hecho,

la red neuronal se comporta de manera diferente con respecto a los métodos tradicionales de

separación de componentes, ya que recupera con precisión la señal a pequeña escala en lugar

de sobreestimarla.



En polarización, a pesar de que la baja sensibilidad del instrumento de Planck no permitió

a la Colaboración obtener una estimación del modo B, CENN es capaz de dar, al menos en

las condiciones actuales, un upper limit en simulaciones realistas de Planck. Aún más, CENN

estima precisamente el modo E. Debido a la baja señal con respecto al ruido, los parches

deben filtrarse, de modo que la red sólo puede recuperar la polarización hasta multipolos l ∼

800. Cuando se testea sin ruido, una aproximación de futuros experimentos del CMB con

mayor sensibilidad que Planck, la red recupera precisamente escalas más pequeñas. Mediante

la comparación cuando se entrena con mayor resolución, se encuentra que la red es más precisa

cuando se entrena con niveles más bajos de ruido, aún siendo testeada en peores condiciones.

Cuando se testea con un modelo de foregrounds distinto con respecto al del set de entrenamiento,

se encuentra que CENN es sensible al cielo usado para su entrenamiento y, por tanto, la red

debeŕıa optimizarse para cada tipo de cielo, aśı como los foregrounds debeŕıan caracterizarse

correctamente, especialmente para la recuperación del modo B.

Por lo tanto, esta tesis de doctorado no es sólo un compendio de metodoloǵıas basadas en

redes neuronales para estudios del CMB, sino que pretende estudiar como las redes neuronales

se comportan con esta clase de datos. La comprensión de estos métodos permitiŕıa su uso

en futuros experimentos del CMB. Por ejemplo, la extensión de CENN a todo cielo debeŕıa

ser el siguiente objetivo, para dar no sólo estimaciones del modo B a gran escala, donde el

pico de la recombinación representa la señal primordial, sino que permitiŕıa recuperar toda

la señal de ambos modos utilizando información de áreas más grandes. Más aún, aunque

Planck estimo con gran fiabilidad las fuentes puntuales polarizadas, se obtuvo una estad́ıstica

pobre. Probablemente, un mayor número de fuentes presentan polarización por debajo del

ĺımite de fiabilidad del método Filtered Fusion usado en Planck. Probablemente POSPEN

pueda caracterizar su densidad de flujo, y además el ángulo de polarización de las fuentes más

brillantes en cada uno de los canales de Planck. Como se comentó durante la tesis, una mejora

en la estad́ıstica de la detección de las fuentes permita entender mejor su comportamiento en

polarización.
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A., Connolly, A. J., Garrison, L. H., Narayan, G., and Villaescusa-Navarro, F. (2022). Ma-

chine Learning and Cosmology. arXiv e-prints, page arXiv:2203.08056.

Eriksen, H. K., Jewell, J. B., Dickinson, C., Banday, A. J., Górski, K. M., and Lawrence, C. R.
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quency technique for the detection of point sources in cosmic microwave background maps.

Monthly Notices of the Royal Astronomical Society, 394(1):510–520.

Hinton, G. E. et al. (1986). Learning distributed representations of concepts. In Proceedings

of the eighth annual conference of the cognitive science society, volume 1, page 12. Amherst,

MA.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief

Nets. Neural Computation, 18(7):1527–1554.

Hu, W. and White, M. (1997). A CMB polarization primer. New Astronomy, 2(4):323–344.

Kashlinsky, A., Arendt, R. G., Atrio-Barandela, F., Cappelluti, N., Ferrara, A., and Hasinger,

G. (2018). Looking at cosmic near-infrared background radiation anisotropies. Reviews of

Modern Physics, 90(2):025006.

Krachmalnicoff, N., Carretti, E., Baccigalupi, C., Bernardi, G., Brown, S., Gaensler, B. M.,

Haverkorn, M., Kesteven, M., Perrotta, F., Poppi, S., and Staveley-Smith, L. (2018). S-PASS

view of polarized Galactic synchrotron at 2.3 GHz as a contaminant to CMB observations.

Astronomy & Astrophysics, 618:A166.

Krachmalnicoff, N. and Puglisi, G. (2021). ForSE: A GAN-based Algorithm for Extending CMB

Foreground Models to Subdegree Angular Scales. The Astrophysical Journal, 911(1):42.

Lapi, A., González-Nuevo, J., Fan, L., Bressan, A., De Zotti, G., Danese, L., Negrello, M.,

Dunne, L., Eales, S., Maddox, S., Auld, R., Baes, M., Bonfield, D. G., Buttiglione, S., Cava,



BIBLIOGRAPHY

A., Clements, D. L., Cooray, A., Dariush, A., Dye, S., Fritz, J., Herranz, D., Hopwood, R.,

Ibar, E., Ivison, R., Jarvis, M. J., Kaviraj, S., López-Caniego, M., Massardi, M., Micha lowski,
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